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ABSTRACT 

 

In the present study, an unsteady magnetohydrodynamic viscous incompressible electrically 

conducting fluid flow between two parallel porous plates of infinite length in x  and 

z directions subjected to a constant pressure gradient in the presence of a uniform transverse 

magnetic field applied parallel to the y  axis with the upper plate moving with a time 

dependent velocity in the x  direction. The lower plate is fixed while fluid suction/injection 

takes place through the walls of the channel with a constant velocity for suction and injection 

has been investigated. 

The nonlinear partial differential equation governing the flow are solved numerically using 

the finite difference method and implemented in MATLAB. The results obtained are 

presented in graphs. The velocity profiles, the effect of pressure gradient, magnetic field, time 

and suction /injection on the flow and the effects of varying the various parameters on the 

velocity profile are discussed. A change on the parameters is observed to either increase, 

decrease or to have no effect on the velocity profile.  

The MHD flow between porous plates studied in this work has many important applications 

in areas such as the designing of cooling systems with liquid metals, geothermal reservoirs, in 

petroleum and mineral industries, in underground energy transport, accelerators, MHD 

generators, pumps, flow meters, purification of crude oil, polymer technology and in 

controlling boundary layer flow over aircraft wings by injection or suction of fluid out of or 

into the wing among many other areas.  
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CHAPTER ONE 

INTRODUCTION AND LITERATURE REVIEW 

1.0  Introduction  

Fluid is a substance that undergoes continuous deformation when acted upon by an 

external force. Fluids are classified as liquids or gases which are made up of molecules 

held together by intermolecular forces such that the fluid possesses volume but no 

definite shape. The molecules in a liquid are close together compared to the molecules in 

a gas which are always in haphazard motion in all directions colliding with one another.  

Fluid flows can be described based on their dependence on time as either steady or 

unsteady. For steady flows, all fluid flow variables for example velocity, temperature, 

pressure, and density are independent on time while unsteady fluid flows are fluid flows 

in which the fluid properties are dependent on time i.e. the conditions change with time. 

In practice there are always slight variations in velocity and pressure, but if the average 

values are constant, the flow is considered steady. 

1.1  Magnetohydrodynamics (MHD) 

The word magneto hydrodynamics is composed of the words magneto (meaning 

magnetic), hydro (meaning liquid) and dynamics (referring to the change or progress 

within a system by forces). Magnetohydrodynamics is the science in which there is 

interaction between hydrodynamics and electromagnetism. Electromagnetism is the study 

of interaction between electric and magnetic fields whereas Hydrodynamics is the science 

that is concerned with the flow of fluids.  

Electromagnetic studies involves the study of dynamics of substances that have mass and 

exists as solid ,liquid ,gas, or plasma moving in an electromagnetic field, especially where 

currents established in the matter by induction modify the field, so that the field and 

dynamics equations are coupled. When a conducting fluid or an ionized gas (plasma) 

becomes strongly magnetized when flowing in the presence of a magnetic field referred 

to as a magnetic fluid, an electric field is generated and electric current is also generated 

perpendicular to the magnetic field. The interaction of the current with the magnetic field 

changes the motion of the fluid and produces an induced magnetic field. 

http://en.wikipedia.org/wiki/Magnetic_field
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1.2  Couette Flow 

The flow of a viscous fluid in the space between two parallel plates, one of which is 

moving relative to the other, where the flow is driven by the presence of a viscous drag 

acting on the fluid and the applied pressure gradient parallel to the plates is referred to as 

Couette flow .This flow is named in honor of Maurice Marie Couette, professor of 

Physics at the French University of Angers who first studied the flow. 

Couette flow is frequently used to illustrate shear driven motion in which the fluid flow is 

induced due to the movement of one of the plates of the channel. It is investigated due to 

its varied application in fluid engineering, geophysics and astrophysics. The theory of 

Couette flow can be used for the measurement of viscosity and estimating drag forces in 

many applications. 

1.3  Dimensional Analysis 

Dimensional analysis is the process of expressing the units of any given physical quantity 

in terms of the fundamental units which include the units of time, mass and length. It is 

built on the principle of dimensional homogeneity that states that an equation expressing 

a physical relationship between quantities must be dimensionally homogeneous and 

proves to be a powerful tool in formulating problems that defy analytical solution and 

must be solved experimentally. 

A porous medium or a porous material is a material containing pores (voids), or spaces 

between solid material through which liquid or gas can pass. Porosity or void fraction is a 

measure of the void spaces in a material, and is a fraction of the volume of voids over the 

total volume. Fluid flow through porous media is a subject of most common interest and 

has emerged as separate field of study due to the effects of porosity on fluid flow.  

The study of fluid flow between porous walls is very important and is an idealization of 

the flow behavior that occurs in the real world in different geometries and finds varied 

applications in industries, engineering and in many other scientific fields.  

1.4  Literature Review 

 

Faradays (1831) discovery of induction where he concluded that electromagnetic 

induction is the production of an electromotive force across a conductor when it is 

http://en.wikipedia.org/wiki/Porosity
http://en.wikipedia.org/wiki/Fluid
http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Electromotive_force
http://en.wikipedia.org/wiki/Electrical_conductor
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exposed to a varying magnetic field referred to as induction. The flow of an electrically 

conducting fluid such as mercury under a magnetic field gives rise to an induced electric 

current. This discovery led to more and vast studies in the field of MHD. The concept of 

MHD was also studied by Hartman (1938) when he studied the effects of a conductor in 

an electrically conducting fluid. This followed. 

Alfven (1942) did a lot of contribution in MHD where he established transverse waves in 

electrically conducting fluid and explained many astrophysical phenomena in relation to 

transverse waves. The interaction between electromagnetics and hydrodynamics was 

shown to be significant if the non-dimensional number  ( / ) / 2 1eBL     Linguistics 

(1952) where B is the magnetic field, L-characteristic length,  -electrical conductivity, 

e  is the magnetic permeability and   is the density of the fluid. 

A flow in a channel of a hydromagnetic fluid in which the motion of the fluid is due to 

movement of one of the plates of the channel, is called MHD Couette flow.  MHD flows 

are characterized by a basic phenomenon which is the tendency of magnetic field to 

suppress vorticity that is perpendicular to itself which is in opposite to the tendency of 

viscosity to promote vorticity. 

MHD Couette flow is studied by a number of researchers due its varied and wide 

applications in the areas of geophysics, astrophysics and fluid engineering. 

 Researchers have studied unsteady channel or duct flows of a viscous and incompressible 

fluid with or without magnetic field analyzing different aspects of the problem.  

Tao (1960)  studied  the Magnetohydrodynamic effects on the formation of Couette flow 

and Katagiri (1962) investigated unsteady hydromagnetic Couette flow of a viscous, 

incompressible and electrically conducting fluid under the influence of a uniform 

transverse magnetic field when the fluid flow within the channel is induced due to 

impulsive movement of one of the plates of the channel. 

 Muhuri (1963) considered this fluid flow problem within a porous channel when fluid 

flow within the channel is induced due to uniformly accelerated motion of one of the 

plates of the channel. Soundalgekar (1967) investigated unsteady MHD Couette flow of a 

viscous, incompressible and electrically conducting fluid near an accelerated plate of the 

channel under transverse magnetic field. The effect of induced magnetic field on a flow 
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within a porous channel when fluid flow within the channel is induced due to uniformly 

accelerated motion of one of the plates of the channel, studied by Muhuri (1963). The 

work by Muhuri (1969) was later analyzed by Govindrajulu (1969). Mishra and Muduli 

(1980) discussed effect of induced magnetic field on a flow within a porous channel when 

fluid flow within the channel is induced due to uniformly accelerated motion when one of 

the plates starts moving with a time dependent velocity. In the above mentioned 

investigations, magnetic field is fixed relative to the fluid.  

Singh and Kumar (1983) studied MHD Couette flow of a viscous, incompressible and 

electrically conducting fluid in the presence of a uniform transverse magnetic field when 

fluid flow within the channel is induced due to time dependent movement of one of the 

plates of the channel and magnetic field is fixed relative to moving plate. Singh and 

Kumar (1983) considered two particular cases of interest in their study viz. (i) impulsive 

movement of one of the plates of the channel and (ii) uniformly accelerated movement of 

one of the plates of the channel and concluded that the magnetic field tends to accelerate 

fluid velocity when there is impulsive movement of one of the plates of the channel and 

when there is uniformly accelerated movement of one of the plates of the channel.  

 Katagiri (1962) studied the problem when the flow was induced due to impulsive motion 

of one of the plates while Muhuri (1963) studied the problem with accelerated motion of 

one of the plates. Both had considered that the magnetic lines of force are fixed relative to 

the fluid. Singh and Kumar (1983) considered the problem studied by Katagiri (1962) and 

Muhuri (1963) in a non-porous channel with the magnetic lines of force fixed relative to 

the moving plate. Khan et al. (2006) investigated MHD flow of a generalized Oldroyd-B 

fluid in a porous space taking Hall current into account while Khan et al. (2007), 

considered MHD transient flows of an Oldroyd-B fluid in a channel of rectangular cross-

section in a porous medium. The influence of Hall current and heat transfer on the steady 

MHD flow of a generalized Burgers’ fluid between two eccentric rotating infinite discs of 

different temperatures was studied by Hayat et al. (2008), in a case where the fluid flow 

was induced due to a pull with constant velocities of the discs. 

Various aspect of the flow problems in porous channel have been studied, Bég et al. 

(2009), studied unsteady magnetohydrodynamic Hartmann-Couette flow and heat transfer 

in a Darcian channel with Hall current, ionslip, viscous and Joule heating effects. 

Makinde et al. (2012) studied unsteady hydromagnetic flow of a reactive variable 
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viscosity third-grade fluid in a channel with convective cooling while Vieru et al. (2010) 

studied the Axial Flow of Several Non-Newtonian Fluids through a Circular Cylinder. 

Seth et al. (2011), studied the problem considered by Singh and Kumar (1983) when the 

fluid flow is confined to porous boundaries with suction and injection considering two 

cases of interest, viz (i) impulsive movement of the lower plate and (ii) uniformly 

accelerated movement of the lower plate. Seth et al. (2011) concluded that the suction 

exerted a retarding influence on the fluid velocity whereas injection has accelerating 

influence on the flow while the magnetic field, time and injection reduce shear stress at 

lower plate in both the cases while suction increases shear stress at the lower plate. 

Jha and Apere (2011) investigated Hall and ion-slip effects on unsteady MHD Couette 

flow in a rotating system with suction and injection. Guchhait et al. (2011) studied the 

combined effects of Hall current and rotation on unsteady Couette flow in porous 

channel. Sheikholeslami et al. (2013) studied Heat transfer of Cu-water nanofluid flow 

between parallel plates while Prasad et al. (2012) considered unsteady hydromagnetic 

couette flow through a porous medium in a rotating system. Seth et al. (2012) studied 

the effects of Hall current and rotation on unsteady MHD Couette flow in the presence 

of an inclined magnetic field and also in the same year Seth et al (2012).considered 

unsteady MHD Couette flow of class-II of a viscous incompressible electrically 

conducting fluid in a rotating system.  

 

More researchers, Ahmed and Kalita (2013) considered a  sinusoidal fluid 

injection/suction on MHD three dimensional Couette flow through a porous medium in 

the presence of thermal radiation and also Ahmed and  Kalita (2013) studied 

Magnetohydrodynamic transient flow through a porous medium bounded by a hot vertical 

plate in presence of radiation. 

Extensive researches have been done, including those cited above, on the flow between 

parallel plates. However, no emphasis has been given to the problems analyzed by Seth et 

al. (2011) with consideration with motion on the upper plate. This work presents findings 

of studies on MHD Couette flow problem between porous plates with magnetic field lines 

fixed relative to the moving upper plate with suction and injection on the plates.  

1.5  Statement of the Problem 

In the previous studies, analysis on MHD Couette flow problem between porous plates 

with magnetic field lines fixed relative to the moving upper plate with suction and 

http://academic.research.microsoft.com/Author/21727394/dumitru-vieru
http://academic.research.microsoft.com/Publication/27489108/axial-flow-of-several-non-newtonian-fluids-through-a-circular-cylinder
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injection on the plates has not been investigated. This study considers the flow of 

unsteady viscous incompressible electrically conducting fluid between two parallel 

porous plates 0y  and hy  of infinite length in x  and z directions with a constant 

pressure gradient in the presence of a uniform transverse magnetic field oH  applied 

parallel to the y  axis. 

 

Figure 1.1: Physical Model of the Problem 

1.6  Justification of the study 

MHD flow has many important varied applications in industries, engineering and other 

scientific fields. Examples of few applications are; in the modeling of processes such as 

transpiration cooling, where the walls of a pipe or channel containing heated fluid are 

protected from overheating by passing cooler fluid over the exterior surface of the pipe or 

channel; in the modeling of the fluid flow occurring during the separation of isotopes of 

Uranium-235 and Uranium-238 by gaseous diffusion in order to produce fuel for nuclear 

reactors; in controlling boundary layer flow over aircraft wings by injection or suction of 

fluid out of or into the wing, or as part of a model for flow past a membrane or filter 

 Other important applications of MHD flow between porous plates are in the designing of 

cooling systems with liquid metals, geothermal reservoirs, in petroleum and mineral 

industries, underground energy transport, accelerators, MHD generators, pumps, flow 

meters, purification of crude oil, polymer technology among many other areas. 

Hydromagnetic Couette flow of an electrically conducting fluid in the presence of a 

transverse magnetic field is one of the problems in Magnetohydrodynamics which has 

received considerable attention due to its varied and wide applications in the areas of 

Geophysics, Astrophysics and fluid engineering fields. 
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Flow in porous channels finds varied applications in industries, engineering and many 

other scientific fields.  

1.7  Hypothesis 

The motion of the upper plate has no effect on the MHD flow between two parallel 

porous plates with suction and injection and magnetic field lines fixed relative to the 

moving plate.  

1.8  Objectives of the Study 

1.8.1  General Objective 

To analyze unsteady hydromagnetic couette flow between two parallel porous plates with 

magnetic field lines fixed relative to the moving upper plate with injection /suction 

through the walls of the channel. 

1.8.2  Specific objectives 

1. To determine the effects of magnetic field, pressure gradient and viscosity on the 

flow variables. 

2. To determine the effect of suction /injection on the flow variables. 

Having defined the terms that are used in this study and stating the problem, we shall 

consider the governing equations in the next chapter 
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CHAPTER TWO 

THE GOVERNING EQUATIONS 

2.0 Introduction 

The equations governing the flow of an incompressible electrically conducting fluid in the 

presence of a transverse magnetic field lines fixed relative to the moving upper plate with 

suction and injection on the plates are presented in this chapter. First, this chapter 

considers the assumptions made in this particular flow problem and the consequences 

arising due to these assumptions. The equations of conservation of mass and momentum 

are considered and the equations governing the flow are given in their general forms, non-

dimensional parameters are defined and a finite difference scheme to solve the resulting 

equations is described. 

2.1 Assumptions 

The following assumptions are made in this study  

1. All velocities are small compared with that of light v
2
/c

2
<<1 

2. The fluid flow is restricted to a laminar domain. 

3. The fluid is incompressible. 

4. Electrical conductivity, thermal conductivity, Dynamic viscosity, Darcy 

permeability, and diffusion co efficient are constant. 

5. The force due to electric field is negligible compared with the force due to 

magnetic field. 

6. The induced magnetic field, the external electric field and the electric field due to 

the polarization of charges are negligible. 

7. The porous medium is entropic, homogeneous and non – magnetic, thus there is 

no magnetic induction. 

The fundamentals of fluid dynamics are based on universal laws that govern fluid flows 

such as the equation of continuity, equation of motion and the electromagnetic equation. 

 

2.2  THE GOVERNING EQUATIONS 

2.2.1  Equation of continuity 

The equation of continuity is derived from the law of conservation of mass which states 

that under normal conditions mass can neither be created nor destroyed. It is derived by 
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taking a mass balance on the fluid entering and leaving a volume element in the flow 

field. The general equation of continuity of a fluid flow is given by   

0











 

q
t




         (2.1) 

where  is the velocity in x, y and z directions (  ) 

 2.2.2  Equation of motion 

This equation is also known as the momentum equation and is derived from the Newton’s 

second law of motion. The law requires that the sum of all the forces acting on a control 

volume must be equal to the rate of change of fluid momentum within the control volume.

   

          (2.2) 

where      is the temporal acceleration ,   is the convective acceleration,  is 

the pressure gradient ,    is the force due to viscosity and  represents the body 

forces vector in x ,y and z directions.  

2.2.3  Electromagnetic equations 

The electromagnetic  equations give the relationship between E the electric field 

intensity, B the magnetic induction vector, D the electric displacement, H the magnetic 

field intensity, J the induction current density vector and the charge density , as given 

by Griffiths (1999) are: 

 

         (2.3) 

  . B = 0       (2.4) 

        (2.5) 

Equation (2.3) is Ampere’s law, named after the Ampere Andre‐Marie, who showed that 

wires carrying electric currents attract and repel each other magnetically. Equation (2.4) is 
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referred to as the Gauss’ law for magnetism which states that all magnetic fields B 

have field lines that are continuous. 

Equation (2.5) is known as Faraday’s law, named after Michael Faraday, who, in 1831, 

discovered experimentally that a current is induced in a conducting loop when magnetic 

flux linking the loop changes. This law states that changing magnetic fields produce an 

electric field. The electromagnetic field induced in a circuit is equal to the rate of change 

with time of the total magnetic flux through the circuit no matter how the flux changes. 

2.3  Non -Dimensional Numbers 

The dimensionless parameters allow the application of the results obtained in a model to 

any other dynamically similar case. In this work there are two non-dimensional numbers 

that are used. These are; 

 Reynolds number 

 Hartmann number  

2.3.1  The Reynolds Number, Re 

The Reynolds number is the ratio of inertial forces to viscous forces and is important in 

analyzing any type of flow where there is velocity gradient shear. It is expressed as  

    Re
VL


   

The Reynolds number indicates the relative significance of the viscous effects compared 

to the inertia effect. If the Reynolds number of the system is small, the viscous force is 

predominant and the effect of viscosity is important in the whole flow field otherwise if 

the Reynolds number is large, the inertia force is predominant and the effect of viscosity 

is important only in the thin layer of the region near solid boundary. 

2.3.2  Hartmann Number, M  

The Hartmann number is the ratio of the magnetic force to viscous force and is defined as 

    

2 2
2 0

2

e H v
M

U


   

It is a dimensionless number which gives a measure of the relative importance of drag 

forces resulting from magnetic induction and viscous forces in Hartmann flow, and 

determines the velocity profile for such flow. 
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2.4  Mathematical Formulation  

Initially (when time 0t ), fluid and the porous plates of the channel are assumed to be at 

rest. When time 0t , the upper plate ( hy  ) starts moving with time dependent velocity 

n

otu  (where ou is a constant and n  a positive integer) in the x  direction while the lower 

plate is fixed, the fluid suction/injection takes place through the walls of the channel with 

uniform velocity oV  where 0oV  for suction and 0oV  for injection. 

The velocity and the magnetic fields are given as 0( , ,0)q u v  and 0(0, ,0)H H


 

respectively. 

The magnetic forces 2

0e H Velocity   

2 2 2

0 0

0

ˆ0 0 ( )

0 0

e e

i j k

J B H u H u i

H

        (2.6) 

From the Navier Stokes equation  

2u
u u P u F

t
  


      


     (2.7) 

2u
u u P u J B

t
  


       


    (2.8) 

The flow is incompressible (the density  , is considered a constant) and is considered in 

one dimension along the x- axis hence the Navier stokes equation along the x-axis is 

given as   
2 2

2 2

u u u P u u
u v J B

t x y x x y
  

       
         

        
 

 (2.9) 

For a Couette flow 0
P

x


 


 but for the analysis 
P

x





= a constant  
. The two plates are 

infinite in length hence 0
u

x





.The fluid is injected on the lower plate with a constant 
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velocity 0V  and is also sucked from the upper plate at the same constant velocity 0V .The 

general equation governing the flow reduces to  

2 22

0

2

( )e H uu u u
v

t y y

 

  

   
   

  
     (2.10) 

where 







 , and 

2 22

0

2

e H uu u u
v

t y y


 



  
   

  
       (2.11) 

where 





   

The magnetic field lines are fixed relative the moving upper plate (The upper plate is 

accelerating uniformly–a function of time) hence the velocity is considered as a relative 

velocity and reflects how fast the fluid is moving relative to the plate .The general 

equation governing the flow  

 2 22
0 0

2

n

e H u u tu u u
v

t y y


 



  
   

  
   (2.12) 

With the boundary conditions defined as;  

0u    0 y h   0t   

0

nu u t  at   y h  0t        (2.13) 

0u   at   0y   0t   

Taking 1n  , for a case of uniform acceleration, the governing equation for the flow 

becomes  

 2 22
0 0

2

e H u u tu u u
v

t y y


 



  
   

  
   (2.14) 

2.5  Non-Dimensionalization of the Equations 

Non dimensionalization is a process that aims at ensuring that the results obtained from a 

study are applicable to other geometrically similar configurations under similar set of 
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conditions. The method is of great generality and mathematical simplicity and starts with 

selecting a suitable scale against which all dimensions in a given physical model are 

scaled. The non dimensionalization of the governing equation is performed by selecting 

characteristic dimensionless quantities. The independent variables are non-

dimensionalized according to the following dimensionless quantities.   

  

 
y L

y
h L

       (Dimensionless)  (2.15) 

  
1

2 1

uh LT L
u

L T





    (Dimensionless)  (2.16) 

  

2 1

2 2

t TL T
t

h L

 
     (Dimensionless)  (2.17) 

The dimensionless quantities used in non dimensionalization of the governing equation 

(2.14) and the boundary condition (2.13) are    

y
y

h

  ,   
uh

u


    and   
2

t
t

h

      (2.18) 

2

2 3

u u y t u u

t y t t h t h h t

     

   

     
  

     
  (2.19) 

2

1u u u y u u

y u y y h y h h y

    

   

     
  

     
   (2.20) 

2 2

2 2 2 3 2

u u u u y u

y y y y h y y h y y h y

     

   

            
       

             
 (2.21) 

Replacing on the governing equation (2.14) 

 2 22 2
0 0

03 2 3 2
. .

e H u u tu u u
V

h t h y h y

  
 



  

  

  
   

  
 (2.22) 

Non dimensionalizing the relative velocity in equation (2.22) by setting  

u u
u h u

h






      and 

2

2

t t h
t t

h






      
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Substituting in (2.22) to non-dimensionalize the the relative velocity 

2 22 2 2

0
0 03 2 3 2
. . e Hu u u u t h

V u
h t h y h y h

   
 

 

    

  

   
     

    
(2.23)  

and multiplying the equation by  
3

2

h


 gives 

2 23 2 3 3 3 2 3 2

0
0 02 3 2 2 2 2 3 2 2

. . . . . e Hh u h u h h u h u t h
V u

h t h y h y h

   
 

      

    

  

   
     

    
 (2.24) 

2 23 2 3 2

0 0
02 2 2

eV h Hu u h u h u t h
u

t y y h

 


    

    

  

   
     

    
(2.25) 

2 23 2 3 3

0 0
02 2 2

1
.eV h Hu u h u h t h

u u
t y y h


 

    

   


  

   
     

    
(2.26) 

2 2 23 2 3

0 0
02 2 2

eV h H hu u h u t h
u u

t y y


 

   

   


  

   
     

    
  (2.27) 

2 2 23 2 3

0 0
02 2 2 2

.eV h H hu u h u t h
u u

t y y


 

   

   


  

   
     

    
 (2.28) 

2 2 23 2 3

0 0
02 2 2

eV h H hu u h u t h
u u

t y y




   

   


  

   
     

    
(2.29) 

The expression
2 2 2

20e H h
M




  is the Hartmann number squared, and 0u h


 is the 

Reynolds number Re   and hence substituting in Equation 2.29, this gives 

3 2 3
20

02 2 2

V hu u h u t h
M u u

t y y


  

   


  

   
     

    
  (2.30) 

3 2
20

2 2

ReV hu u h u h
M u t

t y y


  

  
 

  

    
     

    
  (2.31) 

Equation (2.31) is the governing equation in non-dimensional form. 

The non-dimensional boundary conditions from (2.13) using the non-dimensional 

parameters from equations (2.15), (2.16) and (2.17) are obtained as  
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0u   0 1y   and  0t   

Re
t h

u



     at 1y  ;      0t       (2.32) 

0u     at   0y   ;      0t   

The governing equation in non-dimensional form (2.31) together with the boundary 

conditions (2.32) are presented in their finite difference forms consistent with the method 

of solution in the next chapter.  
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CHAPTER THREE 

METHOD OF SOLUTION AND ANALYSIS 

3.0  Introduction 

In this chapter, the method of solution is discussed and the governing equations are 

presented in their finite difference forms consistent with the method of solution. The final 

set of the equations are presented in this chapter in their finite difference form.  

3.1  Finite Difference Technique  

The finite difference approximations for derivatives are one of the methods that can be 

used to solve differential equations. The principle of finite difference methods is close to 

the numerical schemes used to solve ordinary and partial differential equations and 

consists of approximating the differential operator by replacing the derivatives in the 

equation using difference quotients. The domain is partitioned in space and time and 

approximations of the solution are computed at the space or time points. 

The governing equations together with the boundary conditions are solved numerically 

because of the nonlinear nature of the equations that are obtained. The finite difference 

scheme is consistent since the operator reduces to the original differential equations being 

solved as the increments in the independent variables vanish and based on reasonable 

approximations of the derivatives.  

The solution by the finite-difference method approaches the true solution to the partial 

differential equation as the increments on the mesh are minimized and approach zero 

hence a faster convergence rate. In this method, the  yt,  plane is divided into a network 

of rectangles of sides  ht   and  ky   by drawing the set of lines: 

iht    and   jky   where  i  , .........,2,1,0j  
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Figure 3.1: Finite difference mesh. 

The finite difference mesh is used to divide the physical flow domain into finite number 

of discrete approximation for space and time domains to be used in the finite difference 

method.  

Consider the plane in Figure 2. Each corner of the cell forms the mesh or grid point 

.Consider a reference point  ji,  where i  and j  represent t  and y  respectively. Using 

the notation  1i  for  tt  and  1j  for  xx   we define the adjacent points that 

are i  and j  units from the reference point and give their co-ordinates in terms of i and 

t along the x-axis, j and x along the y-axis. In finite difference approximation the 

derivatives are replaced with the finite differences. ),( xtuU   and the points of 

intersection of these families of lines are called mesh points or grid points. Then, by 

central differencing, the first and second order derivatives with respect to t  are obtained 

in finite difference form. A finite difference mesh is used to express the unknown 

functional values at the  ,
th

i j  interior mesh using the known boundary points.  

The finite difference analogues of the PDEs arising from the equation governing this flow 

are obtained by replacing the derivatives in the governing equations by their 

corresponding difference approximation taking into account the initial values and 

boundary values set.  
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1, 1,

2

i j i ju uu

t t


 






 
      (3.1) 

, 1 , 1

2

i j i ju uu

y y


 






 
       (3.2) 

 

2
, 1 , 1 ,

22

2i j i j i ju u uu

y y


 



 


 
      (3.3) 

3.2  Governing Equation in Finite Difference Form 

 

Crank Nicolson proposed a method in 1957 in which the second derivative is replaced by the 

average of the finite difference approximation on the 
thj  and the  1

th
j  row thus for the 

governing equation   
3 2

20

2 2

ReV hu u h u h
M u t

t y y


  

  
 

  

    
     

    
 (3.4) 

The following substitutions are done for the derivatives for the Crank Nicolson, we have the 

proposed averages as 

, 1 ,

2

i j i ju u
u




         (3.5) 

, 1 ,i j i ju uu

t t









         (3.6) 

1, 1 1, 1 1, 1,

4( )

i j i j i j i ju u u uu

y y


     



  


 
     (3.7) 

 

2
1, , 1,

22

2i j i j i ju u uu

y y


 



 


        (3.8) 

   

2
1, , 1, 1, 1 , 1 1, 1

2 22

2 21

2

i j i j i j i j i j i ju u u u u uu

y y y


      



           
     
          

(3.9)  

Replacing in the governing equation 
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   

3
, 1 , 1, 1 1, 1 1, 1,0

2

1, , 1, 1, 1 , 1 1, 1

2 2

, 1 ,2

4( )

2 21

2

Re

2

i j i j i j i j i j i j

i j i j i j i j i j i j

i j i j

j

u u u u u uV h h

t y

u u u u u u

y y

u u h
M t


 



      

      



    
   

  

           
     

           

 
  

 

(3.10)

 
   

3
, 1 , 1, 1 1, 1 1, 1,0

2

1, , 1, 1, 1 , 1 1, 12

, 1 ,2

4( )

1
2 2

2

Re

2

i j i j i j i j i j i j

i j i j i j i j i j i j

i j i j

j

u u u u u uV h h

t y

u u u u u u
y

u u h
M t


 



      

      



    
   

  

     
 

 
  

 

(3.11) 

Multiplying through by t  

 

 
   

3
1, 1 1, 1 1, 1,0

, 1 , 2

1, , 1, 1, 1 , 1 1, 12

, 1 ,2

4( )

1
2 2

2

Re

2

i j i j i j i j

i j i j

i j i j i j i j i j i j

i j i j

j

u u u uV h t h t
u u

y

t
u u u u u u

y

u u h
M t t


 



     



      



    
    

 


     
 

 
   

 

(3.12) 

   

 
 

3

0
, 1 , 1, 1 1, 1 1, 1, 2

2

1, , 1, 1, 1 , 1 1, 1 , 1 ,2

2

4( )

1
2 2

22

Re

i j i j i j i j i j i j

i j i j i j i j i j i j i j i j

j

V h t h t
u u u u u u

y

t M t
u u u u u u u u

y

h
M t t


 



      

       

 
      



 
         





 

         (3.13) 

Rearranging (3.13) gives 
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   

 
   

3

0
, 1 , 1, 1 1, 1 1, 1, 2

2

1, 1 , 1 1, 1 1, , 1, , 1 ,2

2

4 ( )

1
2 2

22

Re

i j i j i j i j i j i j

i j i j i j i j i j i j i j i j

j

V h t h t
u u u u u u

y

t M t
u u u u u u u u

y

h
M t t


 



      

       

 
      



 
       





 

         (3.14) 

Here 0

4 ( )

V h t
A

y


 


 , 

3

2

h t
B 




 , 

 
2

1

2

t
C

y





, 

2

2

M t
D


 , 2 Reh

E M t


   and the 

the suction/ injection  parameter 0V h
S


 .   

Substituting the values of A, B, C, D, E and S in (3.14) gives  

   

   
, 1 , 1, 1 1, 1 1, 1,

1, 1 , 1 1, 1 1, , 1, , 1 ,2 2

i j i j i j i j i j i j

i j i j i j i j i j i j i j i j

j

u u A u u u u B

C u u u u u u D u u

Et

      

       

      

         

           (3.15) 

Rearranging (3.15) gives 

, 1 , 1, 1 1, 1 1, 1,

1, 1 , 1 1, 1 1, , 1,

, 1 ,

2 2

i j i j i j i j i j i j

i j i j i j i j i j i j

i j i j j

u u Au Au Au Au B

Cu Cu Cu Cu Cu Cu

Du Du Et

      

      



      

    

  
   

         (3.16) 

Rearranging equation (3.16) gives 

, 1 1, 1 1, 1 1, 1 1, 1 , 1 , 1

, 1, 1, 1, , 1, ,

2

2

i j i j i j i j i j i j i j

i j i j i j i j i j i j i j j

u Au Au Cu Cu Cu Du B

u Au Au Cu Cu Cu Du Et

          

   

       

      

          (3.17) 

Collecting the like terms form equation (3.16) gives      
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     

   

, 1 1, 1 1, 1

, 1, 1,

1 2

1 2

i j i j i j

i j i j i j j

C D u A C u A C u

B C D u Cu C A u Et

    

 

     

       
 (3.18) 

Rearranging equation (3.18) 

     

   

1, 1 , 1 1, 1

1, , 1,

1 2

1 2

i j i j i j

i j i j i j j

A C u C D u A C u

Cu C D u C A u Et B

    

 

       

      
 (3.19) 

The finite difference equations obtained at any space node, say, i  at the time level 
1jt 
 

has only three unknown coefficients involving space nodes at 1i  , i  and i i  at
1jt 
. In 

matrix notation, these equations can be expressed as AU B where U  is the unknown 

vector of order ( 1)N   at any time level
1jt 
. B  is the known vector of order 

( 1)N  which has the value of U at the thn time level and A is the coefficient square 

matrix of order ( 1) ( 1)N N    which is a tridiagonal structure. 

The coefficients of the interior nodes will be represented as: 

   

 

1,

,

1,

( ) ( )

1 2 1 2

j j i j j j

j j i j

j j i j

a A C d C A u g Et

b C D e C D u h B

c A C f Cu





     

      

  

  (3.20) 

For 2,3,4....( 1)j N  , then the equation   (6.6) becomes  

1, 1 , 1 1, 1j i j j i j j i j j j j ja u b u c u d e f g h            (3.21) 

The system of equations resulting from equation (6.8) are represented in a tridiagonal 

matrix form as  

2 2 2

1, 1 2 2 2 2

3 3 3

2, 1 3 3 2 3

3, 1 1 1 1 1

1 1 1

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

j

j

j N N N N

N N N

a b c
u d e f g h

a b c
u d e f g h

u d e f g h
a b c





    

  

 
            
           
                
           
           
             



   
     

   






           (3.22) 
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Equation (3.23) is the final set of equation and is solved using a computer code in 

MATLAB software. The results of the simulation in the computer code and discussions 

are presented in the next chapter. 
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CHAPTER FOUR 

RESEARCH RESULTS AND DISCUSSIONS 

4.0 Introduction 

In this chapter, the results of the simulations are presented followed by discussions at 

each step. The simulations are curried out using ISO FLUIDS 3448 which are industrial 

oils whose kinematic viscosities range between 2 and 10. 

4.1  Results and Discussions  

 

 

Figure 4.1: Varying the pressure gradient. 

From figure 4.1 it is observed that the velocity profiles increases with increase in the 

pressure gradient (beta) for both the cases of injection and suction. The pressure gradient 

is applied in the direction of the flow hence an increase in pressure gradient results in an 

increase in the force in the fluid in the direction of the flow which results in increased 

velocity of the fluid. The velocities for the injection case , ( 0)S  are greater than for the 

suction case ( 0)S  .Injection increases the pressure which increases the force in the fluid 

hence an increase in the velocities .Injection increases the pressure which increase the 

force in the fluid hence an increase in the velocities while suction reduces the pressure 
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which reduces the force in the fluid hence a decrease in the velocities which explains why 

the injection velocities are greater than the suction velocities. 

 

Figure 4.2: Varying the kinematic viscosity and pressure gradient. 

Figure 4.2 depicts that the velocity profiles increasing with increase in the pressure 

gradient for varying kinematic viscosity. There is rapid increase in velocity of the fluid 

with increase in pressure gradient for small kinematic viscosity as compared to large 

kinematic viscosity. The effect of pressure gradient decreases with increase in kinematic 

viscosity. The increase in the kinematic viscosity leads to increase in the frictional forces 

which oppose the fluid motion. 



  

25 

 

 

Figure 4.3: Varying the Hartman number, 
2M  

From figure 4.3 The velocity increases with the increase in the Hartman number .The 

Hartmann number gives a measure of the relative importance of drag forces resulting 

from magnetic induction and viscous forces hence an increase in the Hartmann number 

reduces the drug forces hence increased velocities.  
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Figure 4.4: Varying the Injection/Suction, S. 

From Figure 4.4, an increase in the suction parameter ( 0)S  leads to a decrease in the 

velocity of the fluid.  An increase in the injection parameter ( 0)S  leads to an increase in 

the velocity of the fluid. An increase in the suction parameter ( 0)S   reduces the pressure 

which reduces the force hence decrease in the velocity with increase in the suction 

parameter while an increase in the injection parameter ( 0)S  increases the pressure 

which increases the force in the fluid hence increased velocities. Thus suction exerts a 

retarding influence on the fluid velocity whereas injection has an accelerating influence 

on it. 
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Figure 4.5: Varying the kinematic viscosity. 

From Figure 4.5. The velocity of the fluid decreases with the increase in the viscosity of 

the fluid. Increase in the viscosity of the fluid leads to increase in the viscous forces in the 

fluid hence decrease in the velocity of the fluid. 

 

Figure 4.6: Surface plots. 

Figure 4.6 are the three dimension shots of the results. 
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CHAPTER FIVE 

VALIDATION CONCLUSION AND RECOMMENDATIONS 

5.0 Introduction 

This chapter presents the validation of the results of this research study, the conclusion 

and the recommendations on areas that require further research. 

5.1 Validation of the Results 

According to the results discussed, we note that the magnetic field, pressure gradient, 

time and injection have an accelerating influence whereas suction and viscosity exerts a 

retarding influence on the fluid flow between parallel porous plates with injection/suction 

with a constant pressure gradient applied in the direction of the flow. 

In the absence of the pressure gradient, the results of this study are in agreement with the 

results of the study by Seth et al (2011) which noted that suction and viscosity exert a 

retarding influence on the fluid velocity whereas injection, magnetic field and time have 

an accelerating influence. 

5.2 Conclusions 

The results of this study leads to conclusion that; 

(i) Magnetic field, pressure gradient, time and injection have an accelerating 

influence on the fluid flow with a constant pressure gradient in the direction of the 

flow on both cases of suction and injection while viscosity and suction exert a 

retarding influence.  

(ii) Fluid velocity in both the cases of suction and injection decreases with increase in 

the suction parameter and increases with the increase in the injection parameter. 

(iii)  Suction exerts retarding influence on the fluid velocity whereas injection has an 

accelerating influence on the fluid velocity.  

(iv) Viscosity exerts a retarding influence on the fluid velocity. 
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5.2 Recommendations  

In this study, magnetohydrodynamic flow between two parallel porous plates with 

injection and suction in the presence of a uniform transverse magnetic field with the 

magnetic field lines fixed relative to the moving plate with constant pressure gradient has 

been investigated. It is recommended that further research should be carried out on the 

flow when variable pressure gradient in the direction of the flow is used and also when 

variable magnetic field is used between the two parallel porous plates with injection and 

suction. 

Further research should be carried out on MHD flow between two parallel porous plates 

with injection and suction when the pressure gradient in applied in the direction against 

the flow with varying magnetic field lines. 
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APPENDICES 

 APPENDIX 1: COMPUTER CODE IN MATLAB  

The governing equation (6.9) in matrix notation in finite difference form was simulated 

in the following computer program code developed using MATLAB software, subject to 

the boundary conditions as discussed herein. The results were obtained by varying 

various flow parameters, notably kinematic viscosity, magnetic number, pressure 

gradient and the suction/injection parameter.  

function RichardCN() 

clear all; clc; 

v0=1;h=1;beta=5;M=sqrt(4);niu=2;Re=1;S=-3; 

ylow=0;yup=h+.01;ny=151; 

dy=(yup-ylow)/(ny-1); 

y=ylow:dy:yup; 

tinit=0;tend=1;nt=51; 

dt=(tend-tinit)/(nt-1); 

t=tinit:dt:tend; 

u=zeros(ny,nt);rhs=zeros(ny,nt); 

%==initial conditions 

u(:,1)=0; 

%==initial conditions 

%==boundary conditions 

for j=ny-1:ny 

u(j,1:nt)=(h/niu)*Re*t(1:nt);% for plate at y=1 

end 

u(1:2,1:nt)=0;% for plate at y=0 

%==boundary conditions 

a=(S/(4*dy))-1/(2*(dy^2));b=(1/dt)+(M*M)/2+(1/(dy^2));c=(-S/(4*dy))-1/(2*(dy^2)); 

A=diag(diag(b*ones(ny)),0)+diag(a*ones(ny-1,1),1)+diag(c*ones(ny-1,1),-1); 

for i=2:nt-1 

    for j=2:ny-1 

B(j,i)=(((h^3)*beta)/(niu^2))*ones(size(u(j,i))); 

%B(ny,i)=(((h^3)*beta)/(niu^2))*ones(size(u(ny,i))); 
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rhs(j,i)=Un(u(j+1,i),u(j,i),u(j-1,i),a,b,c,B(j,i),M,Re,h,niu,dt,t(i)); 

%rhs(ny,i)=Un(0,u(ny,i),u(ny-1,i),a,b,c,B(ny,i),M,Re,h,niu,dt,t(i)); 

    end 

A2(:,:,i)=A;rhs(:,i); 

%[L(:,:,i),U(:,:,i)]=lu(A2(:,:,i)); 

%u(:,i+1)=U(:,:,i)\(L(:,:,i)\rhs(:,i)); 

[Q(:,:,i),R(:,:,i)]=qr(A2(:,:,i)); 

A2(:,:,i)=Q(:,:,i)*R(:,:,i); 

u(:,i)=R(:,:,i)\(Q(:,:,i)\rhs(:,i)); 

end 

u; 

figure(1) 

%%subplot(2,1,1) 

surfl(t(2:nt-2),y(2:ny-2),u(2:ny-2,2:nt-2)) 

shading interp 

colormap(winter) 

xlabel('time') 

ylabel('y-axis') 

zlabel('velocity') 

title('S= -3, M^2=2, beta=3, nu=2')  

figure(2) 

%%subplot(2,2,3) 

hold on 

plot(y(2:ny-2),u(2:ny-2,ceil(0.95*(nt-2))),'k','linewidth',2) 

%axis([0 1 0 1]) 

title('S= -3, M^2=4,') 

xlabel('y-axis');ylabel('velocity') 

hold off 

% subplot(2,2,4) 

% hold on 

% plot(t(2:nt-2),u(ceil(0.95*(ny-2)),2:nt-2),'r','linewidth',2) 

% %axis([0 1 0 1]) 

% xlabel('time');ylabel('velocity') 

% hold off 
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function rhs=Un(uR,uC,uL,A,B,C,Bb,M,Re,H,Niu,dt,tt) 

   rhs=-A*uR+((2/dt)-B)*uC-C*uL+Bb+M*M*Re*((H*H)/Niu)*tt; 

end 

end 

%% 

% function RichardCN() 

% clear all; clc; 

% v0=1;h=1;beta=5;M=sqrt(2);niu=0.03;Re=1;S=-5; 

% ylow=0;yup=h;ny=151; 

% dy=(yup-ylow)/(ny-1); 

% y=ylow:dy:yup; 

% tinit=0;tend=1;nt=51; 

% dt=(tend-tinit)/(nt-1); 

% t=tinit:dt:tend; 

% u=zeros(ny,nt);rhs=zeros(ny,nt); 

% %==initial conditions 

% u(:,1)=0; 

% %==initial conditions 

% %==boundary conditions 

% for j=ny-1:ny 

% u(j,1:nt)=(h/niu)*Re*t(1:nt);% for plate at y=1 

% end 

% u(1:2,1:nt)=0;% for plate at y=0 

% %==boundary conditions 

% a=(S/(4*dy))-1/(2*(dy^2));b=(1/dt)+(M*M)/2+(1/(dy^2));c=(-S/(4*dy))-1/(2*(dy^2)); 

% for i=2:nt-1 

%     for j=2:ny-1 

% B(j,i)=(((h^3)*beta)/(niu^2))*ones(size(u(j,i))); 

% B(ny,i)=(((h^3)*beta)/(niu^2))*ones(size(u(ny,i))); 

% rhs(j,i)=Un(u(j+1,i),u(j,i),u(j-1,i),a,b,c,B(j,i),M,Re,h,niu,dt,t(i)); 

% rhs(ny,i)=Un(0,u(ny,i),u(ny-1,i),a,b,c,B(ny,i),M,Re,h,niu,dt,t(i)); 

%     end 

% end 

% b2=b*ones(ny,nt);a2=a*ones(ny,nt);c2=c*ones(ny,nt); 
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%  

% for i=2:nt 

%     for j=2:ny 

%     c2(j,i)=c2(j,i)/b2(j-1,i); 

%     b2(j,i)=b2(j,i)-c2(j,i)*a2(j-1,i); 

%     rhs(j,i)=rhs(j,i)-c2(j,i)*rhs(j-1,i); 

%     end 

% u(ny,i)=rhs(ny,i)/b2(ny,i); 

% for j=ny-1:-1:1 

%  u(j,i)=(rhs(j,i)-a2(j,i)*u(j+1,i))/b2(j,i);    

% end 

% end 

% u; 

% figure(1) 

% subplot(2,1,1) 

% mesh(t(2:nt-2),y(2:ny-2),u(2:ny-2,2:nt-2)) 

% xlabel('time') 

% ylabel('y-axis') 

% zlabel('velocity')  

% %figure(2) 

% subplot(2,2,3) 

% hold on 

% plot(y(2:ny-2),u(2:ny-2,ceil(0.95*(nt-2))),'r','linewidth',2) 

% xlabel('y-axis');ylabel('velocity') 

% hold off 

% subplot(2,2,4) 

% hold on 

% plot(t(2:nt-2),u(ceil(0.95*(ny-2)),2:nt-2),'r','linewidth',2) 

% xlabel('time');ylabel('velocity') 

% hold off 

% function rhs=Un(uR,uC,uL,A,B,C,Bb,M,Re,H,Niu,dt,tt) 

%    rhs=-A*uR+((2/dt)-B)*uC-C*uL+Bb+M*M*Re*((H*H)/Niu)*tt; 

% end 

% end 


