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ABSTRACT

Binary data is a common response data in many �elds of research including

�nance, social sciences, psychology and medicine. The most common model used

for the analysis of binary data is the logistic regression model. However, the problem

of identi�cation and corresponding treatment of in�uential outliers still remains to

be well studied to check the adequacy of the �tted binary logistic models. Many

researchers have developed robust statistical model to solve this problem related to

the presence of atypical observations in the data. Gelman (2004) proposed a model

that dealt with outliers problem by trimming the probability of success in logistic

regression. The trimming values in this model are �xed and the user is required to

specify this value well in advance. We explore this work and other robust logistic

regression models then extend this work to allow for the trimming value to be

estimated from the data. In particular, this research work presents a self selecting

robust logistic regression (SsRLR) model. We proved that the SsRLR model is more

robust to the presence of leverage points in the data. Parameter estimations is done

using a full Bayesian approach, implemented in WinBUGS 14 software.

viii



Chapter 1

INTRODUCTION

1.1 Background of the Study

Many dependent variables of interest in the �eld of social sciences are usually not

continuous variables. In most cases, the outcomes are categorical with two levels,

namely, yes/no, success/failure, 0/1. Such variables are called binary or dichoto-

mous. Binary logistic regression is a helpful way of explaining the relationship

between one or more independent variables and a binary response. The most at-

tractive characteristic of a logistic regression model is that it neither assumes the

linearity in the association between the independent and the outcome variable, nor

necessitates normally distributed variables (Pregibon, 1981). It does not assume

homoscedasticity as well and generally admits less rigorous constraint than linear

regression models.

Most of the works linked to the logistic regression occurs in the experimental

epidemiological study but in the past decade it has also been utilized in observa-

tional studies. Studies of residuals and the identi�cation of outliers and in�uential

cases are not carried out so regularly to examine the suitability of the �tted model.

Data arising from observational studies sometimes can be thought of as bad from

the point of view of outlying responses. The ordinary method of implementing logis-

tic regression models with maximum likelihood, has good optimality properties in

ideals settings, but is very sensitive to bad data obtained from observational studies

(Pregibon, 1981).

Often in logistic regression analysis applications, the real data set contains out-

liers; the observations for these cases are well separated from the rest of the data.
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These outlying cases may produce residuals that often have dramatic in�uence on

the �tted maximum likelihood linear predictor (Hilbe, 2009). Therefore, it is es-

sential to study the outlying situation sensibly and choose whether they should be

kept or removed, and if kept, whether their e�ect should be diminished in the �tting

procedure and/or the logistic regression model should be reviewed ((Menard, 2002)

and (Hosmer & Lemeshow, 2000)).

There exist three ways that an observation can be thought of as unusual, namely,

outlier, in�uential and leverage (Sarkar & Rana, 2011). In logistic regression, a set

of observations whose values diverge from the expected range and produce residuals

and may signify a samples particularity are called outliers. These outliers can exces-

sively in�uence the results of the analysis and lead to wrong inferences (Jennings,

1986).

Detection of outliers and consistent treatment are a very important task of any

modelling exercise, failure of which can lead to severe distortion of the validity of

the inferences drawn from such modeling exercise (Sarkar & Rana, 2011). Therefore

the use of robust logistic regression methods appears necessary and reasonable in

order to obtain reliable estimates of parameters (Ritschard, 1990). These regression

methods derive their strength from various tools to help detecting outliers, reduce

their in�uences or to remove them from the data set (Maronna & Yohai, 2000).

Robust statistics, which have experienced a very important growth over the last

�fteen years, are developed to eliminate adverse e�ects that may be experienced

due to the presence of atypical observations in the data. The robustness is obtained

through mechanisms that automatically reduce or discontinue the importance of

atypical data in the estimation. In disregarding the implementation costs, it is

generally a matter of choice between degree of robustness and e�ciency (Ritschard,
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1990).

In the context of regression, a range of robust methods have been developed,

among them, the trimming robust approach (Gordaliza, 1991). This robust tech-

nique allows one to handle a proportion, α of contaminating data to guarantee the

robustness of parameter estimation. The research work extends the literature by

elucidating a part of some earlier work in robust estimation. This project is focused

on the work of Gelman (2004) related to the trimming approach.

1.2 Statement of the Problem

Robustness is a subject highly developed in the �elds of estimation of the posi-

tion and scale of simple and multiple regression. Attention has been paid to the

robust logistic regression, which is an area where outliers may also appear. Pregi-

bon (1981) started by developing an analytical measure to assist in the detection of

outliers and leverage points and quantify their e�ect on diverse aspects of the max-

imum likelihood �t. Thereafter, a good number of robust estimation procedures in

the context of logistic regression have been examined. Gelman (2004) proposed a

robust logistic regression model using a trimming approach. This approach used a

trimming value, 0.01 which gives the chance of random error in both direction in the

interval [0, 1]. Therefore classical logistic regression and Gelman's Robust Logistic

Regression model (GRLR) (the linear predictor part only) respectively, are given

by,

π = logit−1(XTβ) (1.1)

π = 0.01 + 0.98logit−1(XTβ), (1.2)

where 0.01 and 0.98 are �xed. The model requires that the statistician specify these

values beforehand. SsRLR model solves this problem in the GRLR model by relax-
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ing this restriction and letting these probabilities to be self selected by the data at

hand so that only a prior distribution, say Uniform [a, b] with a and b belonging to

[0, 1] is given. A full Bayesian approach in parameter estimation given their prior

distribution is used.

1.3 Justi�cation

As more and more social scientists, scholars, practitioners and students are inter-

ested in explaining and predicting phenomena that can be characterized by a binary

variable (Kateri & Agresti, 2010), it is apparent that research has to be carried out

in details to properly deal with binary data with outlier cases. There is, therefore,

need to develop robust model that is easy to understand.

The results of this work will contribute a lot to enhancing the method of selecting

the probability values in GRLR model, obtaining a reliable �tted logistic model and

will motivate more use of logistic regression with the presence of outliers in di�erent

areas such as epidemiology, social sciences, psychology, where logistic regression is

commonly used.

1.4 Objectives of the Study

1.4.1 General Objective

The general objective is to develop a robust regression model for binary response

data.
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1.4.2 Speci�c Objectives

1. To use a Bayesian approach to select the trimming probability in logistic regres-

sion.

2. To develop a self-selecting robust logistic regression model.

3. To improve the robustness of Gelman's robust logistic regression model.

1.5 Signi�cance of the Study

This study will provide more understanding on robust binary model. With the

self-selecting robust logistic regression, we will o�er a theoretical result, that will

help practitioners in handling outliers in logistic regression. The �ndings from this

research will enable researchers to implement the robust logistic regression model

without the trouble of having to specify the trimming probability beforehand.

1.6 Organization of the Study

The rest of this work is organized as follows: chapter two presents a review of

literature relating to our research objectives by describing from the generalized linear

models to robust logistic regression. In chapter three, we discuss the methodology

in which we develop the model for handling logistic regression with outliers and

give a detailed procedure of the estimation of the robust logistic model. Simulation

study is carried out in chapter four while the last chapter o�ers conclusions and

suggestions based on our research.
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Chapter 2

LITERATURE REVIEW

2.1 Generalized Linear Model

The generalized linear model originally developed by Nelder & Wedderburn (1972),

presented in great detail in Enderlein (1987) and Antoniadis (1992), is used when

the distribution of the error is not normal. Models catalogued in the class of gener-

alized linear models are characterized by three components as discussed below.

The random component identi�es the probability distribution of the explana-

tory variable. We assume that the statistical sample consists of n random variables

{Yi; i = 1, . . . , n} independent admitting distributions from an exponential struc-

ture. This means that the laws of these variables are dominated by one measure

called reference and the family of their densities relative to this measurement is

given by

f(yi, θi, φ) = exp

{
yiθi − υ(θi)

u(φ)
+ w(yi, φ)

}
. (2.1)

This formulation includes most usual distributions having one or two parameters,

namely, Gaussian, inverse Gaussian, Gamma, Poisson, Binomial. In this notation,

θi is the natural parameter of the exponential family (Antoniadis, 1992). For some

distribution, the function u takes the form:

u(φ) =
φ

ωi
, (2.2)

where ωi are the known weights of observations, �xed here to 1 for simplicity and

φ is the dispersion parameter. This is a nuisance parameter arising, for instance

when the variances of the Gaussian distributions are unknown, but equal to 1 for

distributions of single parameter (Poisson, Binomial). The exponential structure in
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equation (2.1) can be expressed in canonical form by letting

Q(θ) =
θ

φ
(2.3)

a(θ) = exp

{
−υ(θ)

φ

}
b(y) = exp {w(y, θ)} . (2.4)

From this we obtain,

f(yi, θi) = a(θi)b(yi) exp {yiQ(θi)} . (2.5)

The planned observations of explanatory variables are organized in the matrix

of design X. Let β be a vector of p parameters such that the linear predictor,

deterministic component model, is a vector with n components,

ηi = β0 + β1Xi1 + . . .+ βpXip; i = 1, . . . , n. (2.6)

The third component of the generalized linear models expresses a functional re-

lationship between the component random and the linear predictor. By considering

{µi = E(Yi); i = 1, . . . , n}, we set

ηi = g(µi); i = 1, . . . , n, (2.7)

where g, called the link function is assumed monotone and di�erentiable. This yields

a model in which a function of the mean belongs to the subspace generated by the
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explanatory variables:

g(µi) = X
′
β, i = 1, . . . , n. (2.8)

The link function that associates the mean µi to the natural parameter is called

canonical link function. In that case,

g(µi) = θi = X
′
β (2.9)

2.2 Binary Logistic Regression

Historically, logistic regression and binomial regression were the �rst methods used,

particularly in marketing, for scoring, and in epidemiology to address the problem

of modelling of a binary variable, binomial (number of trials or success) or Bernoulli

(with ni = 1), such as, possessing or not possessing a product, a good or bad cus-

tomer, death or survival of a patient, absence or presence of a disease (Antoniadis,

1992).

Thus, in the generalized linear model, improvements are continually being made

to the logistic regression (McFadden, Nobel Prize in Economics was awarded in 2000

for his work on this), con�rming it as one of the more reliable modelling methods,

with several statistical indicators which allow easy control the robustness ( LR ratio,

R squared of McFadden, Hosmer-Lemeshow test).

2.2.1 Mathematical Principles and Properties

When one wishes to model a binary response variable, the form of the relationship

is often not linear. It is convenient to use a non-linear function, of type logistics.

The principle of binary logistic regression is to consider a binary variable to predict

(target variable admitting only two possible modalities) as y =0 or 1 and p explana-
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tory variables noted X = (X1, X2, . . . , Xj), continuous, binary or qualitative (Hilbe,

2009).

The goal of logistic regression is to model the conditional expectation E(Y |X =

x) = µ, by estimating a mean value of Y for all values of X. For a value of Y being

0 or 1 (Bernoulli distribution), this mean value is the probability that Y = 1.

Otherwise it is to explain the probability

µ = Pr(Y = 1) or 1− µ = Pr(Y = 0),

or rather a transformation of the latter by a mutual observation of explanatory

variables. The idea is indeed to involve a real function g monotonous operating

from (0,1) to < and therefore seek a linear model of form:

g(µi) = X
′
β, (2.10)

with β vector of unknown parameters associated to the vector X and of dimension

(p, 1) if the vector X is of dimension (1, p) (Antoniadis, 1992). There are many func-

tions whose graphs have a sigmoidal shape and are candidates for this role, among

them we can have:

Probit: if one chooses the normal distribution N(0,1), then the corresponding

probability model is called Probit model, and it is given by:

µ =

∫ X
′
β

−∞
φ(t) dt = Φ(Xβ)

1− µ =

∫ +∞

X′β

φ(t) dt = 1− Φ(Xβ) (2.11)

where Φ is the cumulative distribution function of normal and φ its density function.
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Logit: one model more easier to use is the logit model de�ned as:

g(µ) = logit(µ) = ln

(
µ

1− µ

)
(2.12)

with probability ,

µ =
exp(Xβ)

1 + exp(Xβ)
= g−1(Xβ)

1− µ =
1

1 + exp(Xβ)
= 1− g−1(Xβ) (2.13)

Then the quotient
µ

1− µ
is called Odds and the function ln

(
µ

1− µ

)
is called logit.

The computation of the odds ratio allows for consideration of this transformation

as noted earlier (Fougere, 2008).

2.3 Tobit Model

We will now consider the case of limited dependent variable models. These are

models where the dependent variable is continuous but is observable on a certain

interval. They are models which lie midway between the linear regression models,

where the endogenous variable is continuous and observable, and qualitative models.

Indeed, the basic structure of limited dependent variable models is represented

by the Tobit. The Tobit model refers generally to regression models in which the

dependent variable de�nition area is constrained in one form or another (Harari-

kermadec, 2009). In economics, such models were introduced by Tobin (1958). His

analysis focused on durable goods and consumption expenses and was based on a

regression taking into account speci�cally the fact that these expenses can not be

negative.

The dependent variable was therefore subject to a constraint of non negativity.

The model and its generalizations are better known among economists as Tobit
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model. This term was introduced by Goldberger (1964) because of the similarities

with the probit model. However, these models are also called censored regression

models or truncated regression models. For precision we introduce the distinction

between truncated and censored samples:

A regression model is said to be a truncated regression model when all observa-

tions of the explanatory variables and the dependent variable set outside a certain

interval are completely lost.

A regression model is said to be censored regression model when one has at least

observations of explanatory variables on the entire sample (Harari-kermadec, 2009).

More formally, consider N pairs of variables (xi, y
∗
i ) where the variable y∗i is

generated by a random process such that E(y∗i |xi) = xiβ , where β ∈ <k is a vector

of unknown parameters. It is assumed that the variable y∗i is not always observable,

it is observed only if its value is greater than a certain threshold. Hence it is possible

to build a variable yi, which is equal to y∗i when it is observable and it is equal to a

constant c by convention when yi is not observable. The Tobit model is a censored

model, contrary to y∗i , one observes xi for the entire sample (Tobin, 1958).

yi =

 y∗i if y∗i > ci

ci otherwise.
(2.14)

The constant may be identical for all individuals. Two cases can arise depending on

the nature of the observations:

If the vector xi is observable for all individuals, regardless of the fact that the

variable y∗i is observable or not, then it is a censored sample. Only the variable y∗i

is observed over an interval (ci,+∞).
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If the vector xi is observable only for the individuals for whom the variable y∗i is

observable, then it is a truncated sample. It does not have observations (xi, y
∗
i ) for

individuals where y∗i > ci.

The linearity assumption is put into question and shows that ordinary least

squares is not the appropriate method for estimating such a relationship. In a

general way, here one cannot use a continuous density to explain the conditional

distribution of expense relative to income: a continuous distribution is incompatible

with the fact that several observations of expenses are zero. It is in this context that

Tobin (1958) proposed his limited dependent variable model.

The economic analysis of this situation is that the agent chooses consumption

level that optimizes utility under a budget constraint. If the optimum consumption

is positive, the optimal amount is consumed, and if it is negative, it is not consumed.

Therefore the agent is limited by a constraint of positivity. The model is given by

y∗i = xiβ + εi, ∀i = 1, . . . , N,

yi =

 y∗i if y∗i > 0

0 if y∗i ≤ 0,
(2.15)

where disturbances ε are normally distributed, that is, ε ∼ N(0, σε).

The censored and truncated models have been used in other disciplines especially

in epidemiology and engineering sciences. In epidemiology, such models were used to

represent survival time of patients in terms of certain characteristics. The samples

were indeed censored or truncated as soon as the patient remained alive at the last

sample observation date or if the patient could not be auscultated on that date for

any reason (Harari-kermadec, 2009).
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Similarly in engineering, censored and truncated models are used to analyse time

survival of a material or system in terms of characteristics. Such models are then

quali�ed as survival models. Economists and sociologists have also used survival

models to estimate the duration of phenomena such as unemployment, marriage,

duration of residence in certain places (Goldberger, 1964).

2.4 Probit Model

Consider the observed data with n independent observations {(xi, yi) : i = 1, . . . , n}

with the covariate vector xi of p dimension and yi either 1 or 0 the binary response.

The logistic regression model is de�ned as

logit (Pr(yi = 1|xi, β)) = log
Pr(yi = 1|xi, β)

1− Pr(yi = 1|xi, β)
= x

′

iβ. (2.16)

The probit model where

Pr(yi = 1|xi, β) = 1− Pr(yi = 0|xi, β) = Φ(x
′

iβ), (2.17)

is obtained by substituting the logistic distribution for the latent error terms εi with

the standard normal distribution (Albert & Chib, 1993). The expectation maxi-

mization (EM) algorithm can be utilized to get the maximum likelihood estimates

of β (Rubin, 1977). In addition, Φ(x) and φ(x) are distribution and density function

respectively for standard normal distribution.

Logistic regression models and probit models have the estimates of regression

coe�cient which are not robust in the presence of outliers (Pregibon, 1982). Robit

regression model for binary data is a robust alternative to the more common probit

and logistic models. By proceeding like Lange et al. (1989) who substituted the nor-
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mal distribution in the linear regression model with a t-distribution to get robust

estimators of linear regression coe�cients, one replaces the normal distribution in

the probit regression model with t-distribution with ν degree of freedom to obtain a

robust model. This model is called robit regression and denoted by robit (ν) (Liu,

2004).

Generally, the robit regression model for {(xi, yi) : i = 1, . . . , n} is,

Pr(yi = 1|xi, β) = 1− Pr(yi = 0|xi, β) = Fν(xiβ), i = 1, . . . , n, (2.18)

where Fν(xi) is the cumulative distribution function of t random variables with

centre zero and scale parameter one. The density function is given by

fν(x) =
Γ( (ν+1)

2
)

(πν)
1
2 Γ(ν

2
)(1 + x2

ν
)
(ν+1)

2

, (x ∈ (−∞,+∞)), (2.19)

As ν →∞, the robust(ν) model becomes the probit regression model.

Gelman & Hill (2007) have shown that in the presence of outliers, the model of

robit, contrary to probit and logit models, can actually relieve the points of some

con�icting data, for a better �t of the model. Therefore, if the degrees of freedom

parameter is chosen appropriately, robit model will replicate the logistic models or

probit if data follows one of these models, but will provide a robust alternative when

outliers are present.

2.5 Robust Logistic Regression

Robust signi�es the characteristic of remaining resistant against some irregular de-

viations. In statistics, models are a simple estimation of reality. The models that

14



underlie numerous statistical process are very optimistic and in real data big errors

happen with unpredictable large frequency. An observation that lies an abnormal

distance from other values in the data set is an outlier. This can later disturb sta-

tistical models causing results in an expected model to di�er signi�cantly from the

exact one. Robustness means insensitivity against some divergence from the right

model. Robust process was initiated in the works of Tukey (1960) and further, for-

mal models of robustness have been expanded in 1970's. In regression models, the

purpose of robust methods is to detect the outliers and extremely in�uential data

points, leverage points, and to end by describing the goodness of �t for the data.

One of the �rst result works related to Least Square, as a robust estimator, was

carried out by Edgeworth (1887), who enhanced the proposal of Boscovich (1757)

(Koenker & Bassett, 1985). This estimator is the least absolute deviation (LAD).

The following improvement was Huber's M-estimator (Huber, 1973) and (Huber,

1981). In our literature on robust logistic regression, we review the M-estimators

robust method by �rst explaining the loss function and we end by the trimming

approach.

2.5.1 Loss Function

The loss function de�nes a cost or loss for each data with respect to an intermedi-

ate solution of the regression process. This is a function of the geometric distance

between the data and this intermediate solution, i.e. the residue. Thus, for each

intermediate solution is associated a total loss, which is the sum of the losses caused

by each of the given data set.

Logistic regression introduces an extra non-linearity over a linear classi�er f , by
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using a logistic (or sigmoid) function, ω de�ned as,

ω(f(xi)) =

 ≥ 0.5 if yi = +1

< 0.5 if yi = −1,
(2.20)

where

σ(f(xi)) =
1

1 + e−f(x)
.

with

f(x) = βTx.

Here, we assume y is the label of data, x is a feature vector and β is a coe�cient

vector. The loss function S is de�ned as,

S(y, f(x)) = log(1 + e−yf(x))). (2.21)

2.5.2 M-Estimator

Huber (1973) introduced the concept of M-estimator, say maximum likelihood es-

timator to limit the in�uence of erroneous data on the estimate. Estimating β by

the method of maximum likelihood, it is proposed as value of β which maximizes

the likelihood, namely the probability of observing the data as the realization of a

sample according to a certain probability distribution. To calculate the maximum

likelihood, determine the values for which the derivative of the likelihood vanishes.

This is the simplest method both computationally and theoretically. It is still

widely used in the �eld of data analysis where contamination is mainly located in the

Y -response vector. Instead of using the quadratic loss function, like in least squares,

which is associated with a Gaussian probability distribution, the M-estimator of
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Huber minimizes a sum of residual values calculated by using a loss function S

increasing less rapidly than quadratic one.

β̂M = min
β
QM(β)

QM(β) =
n∑
i=1

S(ri) (2.22)

The optimal estimate is determined from the derivative of the sum with respect to

p coe�cients of β, let,

∂S(ri)

∂βj
= ψ(ri)Xij

n∑
i=1

ψ(ri)Xij = 0,∀j = 1, . . . , p (2.23)

where the function ψ is the derivative of the loss function S. M-estimation is ob-

tained by solving the system of p non-linear equations. However, the solution is not

equivariantly relative to the scale.

Indeed, if the residues are multiplied by an arbitrary value, meaning when the

scale is changed, the resulting solution will be di�erent. We must standardize residue

with an estimate of the standard deviation σ. Thus the solution can be written as

n∑
i=1

ψ(ri|σ̂)Xi = 0, (2.24)

where the standard deviation σ has to be estimated simultaneously. One option often

used for its estimation is to use a multiple of the median absolute deviation(MAD).

This implicitly assumes that the use of contamination rate due to noise is 50%. The

median absolute deviation is de�ned by

MAD(Xi) = medi {|Xi −medj(Xj)|} . (2.25)
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and the estimator of standard deviation is given by

σ̂ = β.MAD. (2.26)

To reduce the in�uence of contaminated data, the loss function S must be chosen

according to the density of probability that de�ned the distribution of measurement

errors. The loss function must meet certain conditions. It should be symmetrical,

positive with a single minimum in zero and a growth slower than the quadratic

function.

2.5.3 Trimming Approach

Logistic regression is concerned with explaining the probability of a speci�c response

in terms of a number of regressors using a sample of relevant data. Pregibon (1981)

a�rmed that the estimated logistic regression correlation may be extremely in�u-

enced by outliers; this stimulates the necessity for robust logistic regression methods.

Researches in this direction have been conducted by Pregibon (1981), Copas (1988),

Rousseeuw & Christmann (2003), Huber (1973), Rousseeuw & Leroy (1987) and

Yohai (1987).

Trimming is an extensive approach to robustifying of statistical process. It per-

mits one to detect outliers and eliminate them from the data exploited in the es-

timation procedure. Trimming has been expanded highly by di�erent authors in

least squares regression, multivariate analysis and other areas (Rousseeuw (1984),

Rousseeuw & van Driessen (1999), where additional mentions can be obtained ). It

appears attractive to apply trimming also in logistic regression to �nd outliers and

to control their in�uences
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When trimming, a subset of the data which is extremely probable to be free from

the outliers is essential and a method is required to choose such a subset. One option

is to employ maximum likelihood considerations, but this method has the tendency

to run into the separation problem. This challenge is that those observations which

are thought of as outliers are mostly the same observations which will give some

overlap in the data.

Thus, trimming these observations eliminates the overlap and can lead to the in-

determinacy of the maximum likelihood estimator (MLE) applied to the remaining

data as indicated by Christmann & Rousseeuw (2001). They gave a procedure to

evaluate this overlap, allowing the user to decide the closeness to indeterminacy. In

complement Rousseeuw & Christmann (2003) overpowered the non-existence chal-

lenge by proposing the hidden logistic regression model with an associated estimator

referred to as the maximum estimated likelihood (MEL) estimator which always ex-

ists even in absence of overlap in the data.

They also introduced a robusti�ed system of the (MEL) estimator, denoted the

weighted maximum estimated likelihood (WEMEL) estimator. But WEMEL in-

stead of trimming, downweights leverage points, where the selection of leverage

points is focused on the robust distances in the regressor space. They prove from a

simulation study that WEMEL behaves extremely well as a robust method compared

to its competitors. WEMEL does not consider outliers in the response direction;

it is not an outlier detection technique in the sense that it gives a subset of the

observations that can be considered as outliers.

On the other hand, the outlier can disturb statistical models and results in an

expected model di�er signi�cantly from the exact one. Outliers in LR may occur

in the Y -space called misclassi�cation-type error (Copas, 1988), the X-space con-
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sidered as leverage points or in both spaces. Outlying cases in this work are only

focused on the covariate corruptions.

In this study, the robust logistic regression is based on the approach of trimming

probability whose estimation procedure is related to the Bayesian inference using

Gibbs sampler and Metropolis-Hastings Algorithm.

2.6 Estimation using Bayesian Approach

Consider the set of observations denoted by x with x = (x1, . . . , xn). In other words,

we have a sample of size n, where the observations xi are considered as realization

of random variables denoted Xi.

Priori information on the parameter θ means any available information on θ

apart from the one brought by the observations. This contained uncertainty, oth-

erwise the parameter θ would be known with certainty and we would not estimate

it. It is natural to model this information through a probability distribution, called

prior. Its density is denoted by π(θ).

In Bayesian statistical approach, one needs the prior distribution and the obser-

vation distribution which is the conditional distribution of X given θ. Its density is

denoted by f(x|θ), for the random variable X either discrete or continuous. If X is

discrete, f(x|θ) represents Pr(X = x|θ). Consider the hypothesis where, knowing

θ, the variables Xi are independent. In other words, we have

f(x|θ) =
n∏
i=1

f(xi|θ). (2.27)

Posterior distribution: it is the conditional of θ knowing x. Its density function
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is denoted π(θ|x). Using the Bayes formula, we have

π(θ|x) =
f(x|θ)π(θ)∫

Θ
f(x|θ)π(θ) dθ

, (2.28)

with Θ the parametric space.

The couple distribution (θ,X): its density is denoted

h(θ, x) = f(x|θ)π(θ)

The marginal distribution of X: its density is denoted

m(x) =
∫

Θ
f(x|θ)π(θ) dθ

2.6.1 Bayesian philosophy

In classical statistics, the parameters in the models are considered to be �xed, while

in Bayesian analysis, the parameters are treated as random variables. The parame-

ters being random variables, they are given distributions. Prior distribution of the

parameters is one before data is collected while posterior distribution is one realized

after scaling the prior distribution with new information obtained. The posterior can

be interpreted as the summary (in a probabilistic sense) of the available information

on θ, once x is observed. The Bayesian approach realizes somewhat the updating of

prior information by observation of x, through π(θ|x) (Tanner & Wong (2010)).

It is sometimes possible to avoid the computation of
∫

Θ
f(x|θ)π(θ) dθ. In fact, if

we let f and g be two real functions de�ned on the same space U . We say f and g

are proportional, denoted f ∝ g , if there exists a constant a such that f(y) = ag(y)

for all y ∈ U . It is clear that the relationship ∝ is a relationship of equivalence. In
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particular, if f ∝ g and g ∝ h, then f ∝ h.

In Bayesian context, we have, π(θ|x) ∝ f(x|θ)π(θ). As a function of θ, both

expressions π(θ|x) and f(x|θ) are e�ectively proportional. The constant a which

appeared in the earlier de�nition is equal to 1
m(x)

here. Note that, this quantity is a

constant in the sense that it does not depend on θ. The notation π(θ|x) ∝ f(x|θ)π(θ)

is often written as π(θ|x) ∝ L(θ;x)π(θ), where L(θ;x) denotes the Likelihood. Recall

that L(θ;x) = f(x|θ) (by de�nition).

2.6.2 Bayesian Estimation

Bayes estimator in one-dimension

We assume that the parameter θ is real. Recall that π(θ|x)) is interpreted as a

summary of the available information once observed. To have an estimate of the

parameter θ, one usually retains the average of the posterior distribution. Therefore

by de�nition, the Bayesian estimation of the parameter θ, is the mean of the posterior

distribution. This mean is denoted E[θ|x]. Formally, we have

E[θ|x] =

∫
Θ

θπ(θ|x) dθ =

∫
Θ
θf(x|θ)π(θ) dθ∫

Θ
f(x|θ)π(θ) dθ

. (2.29)

with θ̂, the estimator of θ de�ned by θ̂ = E[θ|x].

Bayes estimator in multi-dimension

In the multi-dimensional case where θ = (θj, j = 1, . . . , J), the posterior mean E[θ|x]

is equal to the vector (E[θj|x], j = 1, . . . , J) with,

E[θj|x] =

∫
Θj

θjπ(θj|x) dθj. (2.30)

π(θj|x) is obtained by integrating π(θ|x) on all components of θ other than θj.
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Most often, Bayes estimators of θj can not be computed explicitly and we have

to obtain them using the Monte Carlo simulation method, where computation of

Bayes estimators does not pose great di�culty.

2.6.3 Gibbs Sampler

Introduced by Geman and Geman(1984) within the framework of the image restora-

tion, this algorithm can be seen as an extension of the Tanner and Wong's algorithm.

The principle is still based on a decomposition of the general problem (simulating

following a certain distribution) into a series of basic problems (simulating following

conditional distributions). Consider the density f(x, y1, . . . , yp). We are interested

in the marginal distribution:

f(x) =

∫
...

∫
f(x, y1, ..., yp) dy1...dyp. (2.31)

In particular, one wishes to obtain the mathematical expectation and variance.

Evaluating this integral can be di�cult and complicated to evaluate. However, it is

assumed that the conditional densities are available. The Gibbs sampler allows us

to generate x following f(x) directly without using its expression which is thought

di�cult to handle, but by using conditional densities. Thus by producing a sam-

ple (x1, . . . , xm) large enough we can approximate the mean, variance, and other

characteristics using a law of large numbers,

lim
m→+∞

1

m

m∑
i=1

g(xi) = E[g(x)]. (2.32)

2.6.4 Principle of Gibbs Sampler

Consider the basic case of f(x, y). Assume f(x|y) and f(y|x) available. We can then

generate what we call a Gibbs sequence by starting from a value x0, and generating

y0 with π(.|x0), then x1 with π(.|y0), and y1 with π(.|x1) and so on.
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AfterM iterations of this scheme, we obtain a sequence (x0, y0, x1, y1, . . . , xM , yM).

For M large enough, xM is a realization of X.

In the Bayesian framework, the Gibbs algorithm will allow us to obtain a realiza-

tion of the parameter θ = (θ1, . . . , θm) following the posterior distribution π(θ|x) as

soon as one is capable of expressing the conditional distributions: π(θi|θj;x), j 6= i.

Thus, Gibbs sampling involves starting from an initial vector θ(0) = (θ
(0)
1 , . . . , θ

(0)
m ).

At the (p+ 1)th step, with the vector θ(p) = (θ
(p)
1 , . . . , θ

(p)
m ), simulating

θ
(p+1)
1 = π(θ1|θ(p)

2 , θ
(p)
2 , . . . , θ(p)

m ;x)

θ
(p+1)
2 = π(θ2|θ(p+1)

1 , θ
(p)
3 , . . . θ(p)

m ;x)

. . .

θ(p+1)
m = π(θm|θ(p+1)

1 , θ
(p)
2 , . . . , θ

(p)
m−1;x)

(2.33)

Successive iterations of this algorithm successively generate the states of a Markov

chain {θp, p > 0} for values ℵ⊗m. The transition probability from θ
′
to θ is expressed

as:

K(θ
′
, θ) = K1(θ

′
, θ)×K2(θ

′
, θ) (2.34)

where:
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K1(θ
′
, θ) = π(θ1|θ

′

2, . . . , θ
′

m)× π(θ2|θ1, θ
′

3, . . . , θ
′

m)

K2(θ
′
, θ) = π(θ3|θ1, θ2, θ

′

4, . . . , θ
′

m)× . . .× π(θm|θ1, . . . , θm−1).

(2.35)

This shows that the chain admits an invariant measure which is the posterior.

For a su�ciently large number of iterations, the vector θ thus obtained may be con-

sidered as a realization of the posterior (Albert & Chib (1993)).

2.6.5 Metropolis-Hastings Algorithm

Originally developed in 1953 for the treatment of physical problems by Metropolis,

this algorithm was thereafter used extensively in statistical physics to simulate com-

plex systems. Currently, in the statistical literature, this algorithm is presented as

a method for producing a Markov chain which has been assigned stationary law π.

Its implementation has the advantage of not requiring the de�nition of π as a nearly

constant (Tanner & Wong (2010)).

From the target density π(x) (possibly large), one chooses a conditional density

q(x, y) = q(y|x) from which it is quite easy to simulate. Starting with a value x0

(possibly vector), the algorithm passes through the following steps at each iteration.

Knowing that the chain is in the state xt at the t
th iteration,

• Generating yt+1 ∼ q(xt)
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• Calculating the probability of acceptance

α(xt, yt+1) = min

{
π(yt+1)q(yt+1, xt)

π(xt)q(xt, yt+1)
, 1

}
(2.36)

• Taking

xt+1 =

 yt+1, with probability α

xt, with probability 1− α

• Repeating these steps for t going from 0 to N3.
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Chapter 3

METHODOLOGY

3.1 Proposed Model

In this work, we improve the model of Andrew Gelman (2004) by developing a self-

selecting robust logistic regression. Suppose y = (y1, y2, . . . , yn) are n independent

observations where yi are binary responses data de�ned as:

yi =

 1 if success

0 otherwise

Binary regression models assume that yi ∼ Ber (πi) with πi = Pr(yi = 1) the prob-

ability of success for each observation.

From that, the robust model we are developing is as follows:

SsRLR : πi = α + (1− 2α)logit−1(XTβ) (3.1)

where X is a vector of p independent variables, β is a p dimensional vector of re-

gression coe�cients for the predictor variables and α the random chance.

As opposed to other studies where the value of α is set beforehand by the statis-

tician, we allow this to be determined from the data itself. In particular since we are

working in the Bayesian paradigm, we give this value α a uniform prior distribution.
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3.2 Parameters Estimation

This section provides estimation procedure for our model. That is, we derive esti-

mates of the parameters β, α and σ.

In this study, we use logistic regression which is a particular model when one deals

binary response data. A full Bayesian approach in estimation is used to minimize

risk estimation and to obtain the optimal estimates. To proceed to the Bayesian

inference for logistic analysis, we follow the usual pattern for all Bayesian analyses

by writing down the likelihood function of the data, forming a prior distribution over

all unknown parameters and using Bayes theorem to �nd the posterior distribution

over all parameters:

Likelihood function

In particular , once the probability of success ( which depends on the covariates) is

obtained, the likelihood function is given by

L(β, α|X, y) =
n∏
i=1

[(πi)
yi(1− πi)1−yi ] (3.2)

where πi represents the probability of success and yi the binary responses data.

In our model we have:

πi = α + (1− 2α)
eβ0+β1Xi1+...+βpXip

1 + eβ0+β1Xi1+...+βpXip
(3.3)

Hence the likelihood function of the binary responses data of n independent obser-

vations is:

L(β, α, σ|X, y) =
n∏
i=1

AiBi (3.4)
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where:

Ai =

[
α + (1− 2α)

eβ0+β1Xi1+...+βpXip

1 + eβ0+β1Xi1+...+βpXip

]yi

Bi =

[
1−

(
α + (1− 2α)

eβ0+β1Xi1+...+βpXip

1 + eβ0+β1Xi1+...+βpXip

)]1−yi
.

Prior distributions

For the prior distribution, we assign the normal distribution for the logistic re-

gression parameters, says β ∼ N(0, σ), where σ is assigned inverse gamma prior

distribution.

The parameter under study α is given the uniform prior distribution U [a, b].

Posterior distribution

To derive the posterior distribution, we multiply the prior distribution over all pa-

rameters by the likelihood function. Thus we have:

Ppost(θ|X, y) = L(βj, α, σ|X, y)Ppri(βj)Ppri(α) (3.5)

where:

Ppri(βj) =

p∏
j=0

1√
2πσj

exp

[
−1

2

(
βj
σj

)2
]

(3.6)

Ppri(α) =
1

b− a
, a ≤ α ≤ b (3.7)

are β and α prior distributions respectively.

Inferences under the model are carried out using Bayesian approach implemented

in WinBUGS to obtain the marginal posterior distributions for each parameter. The

model will be well speci�ed in the simulation study.
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Chapter 4

SIMULATION RESULTS

4.1 Methodology

4.1.1 Introduction

This section presents simulation of the contaminated binary response data. We

then simulate by using the data to illustrate estimation of the models, and getting

summary statistics to make inference.

4.1.2 Simulation Set up

We carried out a simulation study to investigate the robustness of the three models

namely: the Self-Selecting Robust Logistic Regression (SsRLR) model, Gelman's

Robust Logistic Regression (GRLR) model and the ordinary Logistic Regression

(LR) model .

Following the work of (Croux, 2003), a logistic regression model is generated with

two independent normally distributed covariates. The additive noise εi is drawn from

a logistic distribution de�ned as:

logit(πi) = β0 + β1Xi1 + β2Xi2 + (εi ≥ 0) (4.1)

The true parameter values are β = (0, 2, 2) with sample size n = 200. The study

was based under a variety of situation. First, we considered data without contam-

ination with two independent normally distributed covariates with zero mean and

unit variance.
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Second, to examine the robust properties of all models, we introduced outliers

by contaminating the data similarly to the idea proposed by (Victoria-Feser, 2002).

We generated the outliers in R software by corrupting the covariates. This consists

of randomly choosing a certain t proportion (3%, 5%, 7%) from both covariates and

replace them with a sample Xi drawn from N(t, 10, 2). The response variable for

each proportion was then generated from the new corrupted covariates. Further

details are given in the appendix.

Finally the generated binary response data was contaminated under di�erent

percentages of leverage points. Thereafter, the three logistic models were applied to

these data generated.

The proposed self-selecting robust logistic regression model with the ordinary

one as described in the previous chapter and Gelman's robust model are:

LR : π = logit−1(XTβ) (4.2)

GRLR : π = 0.01 + 0.98logit−1(XTβ) (4.3)

SsRLR : π = α + (1− 2α)logit−1(XTβ), (4.4)

where X is a vector of p independent variables, β is a p dimensional vector of

regression coe�cients for the predictor variables, 0.01 and 0.98 are the �xed alpha

probability value that Gelman introduced, to �t his robust model to binary response

data in the presence of outliers.

In order to better handle those outliers, our robust model proposed to the con-

taminated binary data response itself to select the value of the probability alpha.

After getting that signi�cant alpha value for the robust model, we compared the
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goodness of �t of the three logistic regression models.

To carry out that model estimation, Bayesian approach was used. All parameters

in the models were assigned prior distributions. In this analysis, a non informative

normal prior was assigned to the regression coe�cients β, the α interest parame-

ter was assigned Uniform prior depending on the percentage of contamination; the

variance parameters were assigned inverse gamma distributions. The models were

implemented using WinBUGS version 1.4.

For each model, we ran 10,000 Markov chain Monte Carlo (McMC) iterations,

with the initial 1,000 discarded to cater for the burn-in period and thereafter keep-

ing every tenth sample value. McMC convergence of all models parameters were

accessed by checking trace plots and autocorrelation plots of the McMC output.

The WinBUGS code used during the analysis is detailed in the appendix.

4.1.3 Model diagnostics

The models goodness of �t were compared using the Deviance Information Criterion

(DIC) as suggested by Spiegelhalter (2002). The best �tting model is one with the

smallest DIC. The DIC value is given by DIC = D(θ)+pD, where D is the posterior

mean of the deviance that measures the goodness of �t, and pD gives the e�ective

number of parameters in the model which penalizes for complexity of the model.

However, several authors have stated that a di�erence in DIC of 3 between two

models can not be distinguished while a di�erence between 3 and 7 can be weakly

di�erentiated.

For further model assessment, we used the Bayesian Information Criterion (BIC).

In statistic, the Bayesian information criterion or Schwarz criterion is a criterion for

32



model selection among a �nite set of models and the model with the lowest BIC is

preferred (Schwarz. 1978). It is based, in part, on the likelihood function and it

is closely related to the Akaike Information Criterion (AIC). BIC value is given by

BIC = D̂+ 2p log(n) where D̂ = −2 logL(θ∗|y) with L(θ∗|y), the likelihood of each

model, p the number of parameters and n the sample size.

4.2 Results

4.2.1 Introduction

The speci�c purpose of these simulations is to analyze the robustness of the previous

logistic regression models under di�erent contamination proportions of the binary

data. For each simulated data set, we estimated and recorded the parameters β and

α. In particular we focus on investigating how much each model performs in pres-

ence of leverage points in the binary response data. In assessing that performance,

we compute and compare their DIC and BIC.

4.2.2 Model assessment and Comparison

The �rst �nding involved the classical LR model. In fact, the generated outliers

values between 5 and 10 caused the LR not to run, giving "Trap Message" and

no output while the SsRLR model takes care of the leverage points without any

problem. We got output and summary statistics by using a Restricted Logistic Re-

gression (RLR) model de�ned as:

yi ∼Ber(π1)

RLR : logit(π) = β0 + β1X1 + β2X2 (4.5)
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π1= min(1,max(0.001,π))

It can be deduced that �tting ordinary logistic regression with outliers can get

"Trap Message" and no output without using Minmax in WinBUGS. Figure 4.1-5

show a visual representation of the distribution of the data set. It is clearly con�rmed

in the �gure 4.2 and 4.4 the presence of outliers localized between 5 and 10 as earlier

said .

Figure 4.1: Histogram of X1

Table 4.2-3 show the simulated results of all the �tted models for data with var-

ious percentages of leverage points. In absence of outliers (0% of lev pt), it can be

observed that, there is no a signi�cant di�erence between the restricted logistic and

the robust models based on the DIC value. But the SsRLR model seems to give

better estimated values of the parameters.
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Figure 4.2: Histogram of X1 with outliers

The Restricted LR model was immediately a�ected by 3% of leverage points

giving the highest DIC value. Gelman's model was in�uenced as well showing pa-

rameter estimates which were not stronger than the expected one, while the SsRLR

model let the data itself to select 2.664E-5 alpha value that improved the parameter

estimated values.

It is interesting to observe that the 5% of leverage points do not have e�ect on

the SsRLR model. This latter con�rms its robustness giving much better simulated

result with the smallest DIC value.

The α values 5.014E-5 and 2.059E-3 respectively self selected in the presence of

outliers (5% and 7% of lev pt) allowed the data to minimize the in�uence of those
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Figure 4.3: Histogram of X2

latter in the parameter estimation.

Based on the criterion that a di�erence in DIC values from 3, 4 between two

models provides a better �t, it can be clearly concluded that the best �tting model

is the Self Selecting Robust Logistic Regression (SsRLR) model with small DIC

value when there is presence of outliers in the binary response data.

Furthermore, based on the BIC, the SsRLR model with the lowest BIC is the

preferred best �tting model (Schwarz. 1978).
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Figure 4.4: Histogram of X2 with outliers

4.2.3 Discussion

This study uses Bayesian techniques to develop robust logistic regression model

when outliers are present in binary response data. The study develops robust logis-

tic model to help improve parameter estimation �tting. In this study, the approach

used in the robust model is based on a trimming value, α chance of random error in

both direction of the interval [0,1].

From the existing contribution of Gelman (2004) that �xed α and (1 − 2α) in

his model, we extended by self selecting theses probability values depending on the

data at hand and gave them a Uniform [a,b] prior distribution.

In this study, we clearly con�rmed that these probability values could also be

37



Figure 4.5: Relationship between Response Variable and Endogenous Variable X
with outliers

determined by the data itself. In other words, depending on the binary data at

hand, this latter could itself select α and (1− 2α).

We found that the smaller the assigned values of a and b , the smaller the self

selected α, and the more e�cient the estimates obtained from simulation results will

be, compared to the ones obtained from both the GRLR and the LR models when

the data is either clean or contaminated.

Another �nding is that the self selecting robust logistic regression model is a bet-

ter �tting model compared to the Restricted LR model based on DIC value using

Bayesian approach implemented in WinBUGS.

The SsRLR model provides a reliable �tting model based on the lowest BIC
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value compared to the RLR and GRLR models.

We also found that the Restricted LR model has minimized the e�ect of the

outliers present in the data and allowed achievement of better results. Despite this,

the Self Selecting Robust Logistic Regression model presented more reliable results

in comparison to the Restricted LR contrary to Gelman's robust logistic regression

model.

Table 4.1: Description of variablesX and assumed values of parameters manipulated
in simulation

Variables and Parameters Assumed values
n 200
x1 x1 ∼ N(n, 0, 1)
x2 x2 ∼ N(n, 0, 1)
β0 0
β1 2
β2 2
α α ∼ U(a, b) with a and b

belonging to [0,1]
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Table 4.2: Simulated results of all models for Data with Leverage Points(0% and
3%)

% of lev pt 0% 3%
Estimate SsRLR GRLR LR SsRLR GRLR RLR
β0 0.1074 0.1261 0.1072 0.02201 -0.05214 0.00607
σ0 0.2237 0.1944 0.223 0.0216 0.2401 0.2034

β1 2.371 2.201 2.363 2.035 1.714 1.875
σ1 0.3139 0.3702 0.3618 0.3101 0.2016 0.3185

β2 2.326 2.107 2.304 2.017 1.556 1.571
σ2 0.2987 0.3731 0.3704 0.3021 0.263 0.3083

α 1.004E-5 0.01 - 2.664E-5 0.01 -
σα 5.835E-6 - - 2.578E-5 - -

Dhat 136.124 135.211 139.987 146.573 147.123 152.890
pD 2.917 2.820 2.978 2.765 2.781 3.061

BIC 154.532 153.619 153.793 164.981 165.531 166.696
DIC 142.208 141.958 143.098 153.624 153.686 157.812

Table 4.3: Simulated results of all models for Data with Leverage Points (5% and
7%)

% of lev pt 5% 7%
Estimate SsRLR GRLR RLR SsRLR GRLR RLR
β0 0.06466 0.02474 0.06374 -0.1779 -0.1898 -0.1183
σ0 0.2315 0.2292 0.2123 0.2202 0.2271 0.2333

β1 2.194 1.859 2.069 2.344 2.198 2.217
σ1 0.3014 0.2943 0.4068 0.3097 0.3634 0.4015

β2 2.289 2.125 2.184 2.25 1.951 2.087
σ2 0.3722 0.3104 0.3841 0.3475 0.3842 0.3907

α 5.014E-5 0.01 - 0.002059 0.01 -
σα 2.888E-5 - - 0.001145 - -

Dhat 125.280 126.038 131.056 113.339 114.058 119.009
pD 2.849 2.898 2.845 2.801 2.943 3.077

BIC 143.688 144.446 144.862 131.747 132.466 132.815
DIC 132.199 132.376 136.645 119.395 119.524 124.164
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Chapter 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusions

This work aims to extend the performance of logistic regression for binary data. Or-

dinary LR with arbitrary outliers was shown to fail. We proposed a robust SsRLR

model that dealt with such contamination. It was also observed that by �xing the

value of alpha, GRLR model was not that robust to the in�uential observations.

We proposed in this study a novel robust (LR) model to solve this issue. To

proceed, we developed a self selecting robust logistic model, then investigated the

robustness of this latter. We proposed a clear way of specifying the trimming values

as required by the user, as opposed to �xing it.

One �nding indicated across the simulation results that SsRLR model performs

well in its speci�city of letting the binary data itself to select the alpha value neces-

sary to better improve the quality of the parameter estimates. Based on the smallest

DIC and BIC value respectively, our SsRLR model was found to be the best �tting

model under contaminated binary data sets.

We found that as long as the α value is the smallest self selected by the data at

hand, the robustness of the SsRLR model is more improved. That is our contribu-

tion to Gelman's robust logistic regression model.

Inferences under the models are carried out by using Bayesian approach imple-

mented in WinBUGS to obtain the marginal posterior distributions for each pa-

rameter. Another �nding is that, when the covariates are corrupted, the use of the
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Minmax through the Restricted LR model can somewhat help the classical LR to

be robust.
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5.2 Recommendations

Gelman (2004) introduced robust logistic regression model based on the approach of

�xing a trimming probability α value that treats binary response data contaminated

by outliers. In this work, we came up with an extension of that robustness. This

study proposed to develop the robust model by letting the data itself to select the

α value.

The SsRLR model behaved robustly with a lowest self selected α value compared

to the GRLR model with a �xed α value. By carrying out this study, we showed the

insu�ciency contained in the Gelman's model when it comes to dealing with binary

response data in presence of leverage points.

From there, we recommend that statisticians use the SsRLR model when mod-

elling binary data in the case of covariate corruption and to further investigate its

robustness in future research.

We also recommend that future researchers focus more on the robustness of the

GRLR model by studying the behaviour of the trimmed probability α when the

outliers occur in the Y-space called misclassi�cation-type error or in both Y -space

and X-space. The next author can widen this work by discussing the problem of

improper prior of α.
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Appendix A

For further enquiry contact gitawanou@gmail.com

]]]]]]]]]]]]]]]]]]]] Revised R code for simulation of binary response data with

di�erent percentages of contamination.]]]]]]]]]]]]]]]]]]]]

] Simulated binary data without contamination

set.seed(0000)

x1 <- rnorm(200,0,1)

x2 <- rnorm(200,0,1)

z = 2*x1 + 2*x2

pr = 1/(1+exp(-z))

y <- rbinom(200,1,pr)

Data.R=c(x1,x2,y)

hist(x)

plot(x,y)

] Simulated binary data sets with t% of contamination

set.seed(1111)

x1 <- rnorm(200,0,1)

e=sample(1:200,t)

f<-rnorm(t,10,2)

x1[e]=f

x2 <- rnorm(200,0,1)

g=sample(1:200,t)

h <- rnorm(t,10,2)

x2[g]=h
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z = 2*x1 + 2*x2

pr = 1/(1+exp(-z))

y <- rbinom(200,1,pr)

Data.R=c(x1,x2,y)
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Appendix B

]]]]]]]]]]]]]]]]]]]] WinBUGS Codes for all three models. ]]]]]]]]]]]]]]]]]]]]

Summary LR WinBUGS code simulation using data with 0% of contamination

] Ordinary Logistic Regression (LR) model

{

] Likelihood

for (i in 1 : 200)

y[i] ∼ dbern(p[i])

logit(p[i])<-beta0+beta1*x1[i]+beta2*x2[i]

] Prior distributions

beta0 ∼ dnorm(0.0001,0.0001)

beta1 ∼ dnorm(0.0001,0.0001)

beta2 ∼ dnorm(0.0001,0.0001)

] Data

] Initial values

list(beta0=0, beta1=0, beta2=0)

}

Summary RLR WinBUGS code simulation using each of all data sets with 3%,

5% and 7% of contamination

] Restricted Logistic Regression (RLR) model

{

] Likelihood

for (i in 1 : 200)

y[i] ∼ dbern(p1[i])

p1[i]<-min(1,max(0.001,p[i]))
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logit(p[i])<-beta0+beta1*x1[i]+beta2*x2[i]

] Prior distributions

beta0 ∼ dnorm(0.0001,0.0001)

beta1 ∼ dnorm(0.0001,0.0001)

beta2 ∼ dnorm(0.0001,0.0001)

] Data

] Initial values

list(beta0=0, beta1=0, beta2=0)

}

Summary GRLR WinBUGS code simulation using each of all data sets with t%

of contamination

] Gelman Robust Logistic Regression (GRLR) model

{

] Likelihood

for (i in 1 : 200)

y[i] ∼ dbern(NewP[i])

logit(p2[i])<-beta0+beta1*x1[i]+beta2*x2[i]

NewP[i]<-(p2[i]-0.01)/(0.98)

] Prior distributions

beta0 ∼ dnorm(0.0001,0.0001)

beta1 ∼ dnorm(0.0001,0.0001)

beta2 ∼ dnorm(0.0001,0.0001)

] Data

] Initial values

list(beta0=0, beta1=0, beta2=0)

}
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Summary SsRLR WinBUGS code simulation for data sets with 0% of contami-

nation

] Self Selecting Robust Logistic Regression (SsRLR) model

{

] Likelihood

for (i in 1 : 200)

y[i] ∼ dbern(NewP[i])

logit(p2[i])<-beta0+beta1*x1[i]+beta2*x2[i]

NewP[i]<-(p2[i]-alpha)/(1-2*alpha)

] Prior distributions

alpha ∼ dunif(0,0.00002)

beta0 ∼ dnorm(0.0001,0.0001)

beta1 ∼ dnorm(0.0001,0.0001)

beta2 ∼ dnorm(0.0001,0.0001)

] Data ] Initial values

list(beta0=0, beta1=0, beta2=0, alpha=0.00001)

}

Summary SsRLR WinBUGS code simulation for data sets with 3% of contami-

nation

] Self Selecting Robust Logistic Regression (SsRLR) model

{

] Likelihood

for (i in 1 : 200)

y[i] ∼ dbern(NewP[i])

logit(p2[i])<-beta0+beta1*x1[i]+beta2*x2[i]

NewP[i]<-(p2[i]-alpha)/(1-2*alpha)

] Prior distributions
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alpha ∼ dunif(0,0.00007)

beta0 ∼ dnorm(0.0001,0.0001)

beta1 ∼ dnorm(0.0001,0.0001)

beta2 ∼ dnorm(0.0001,0.0001)

] Data ] Initial values

list(beta0=0, beta1=0, beta2=0, alpha=0.00001)

}

Summary SsRLR WinBUGS code simulation for data with 5% of contamination

] Self Selecting Robust Logistic Regression (SsRLR) model

{

] Likelihood

for (i in 1 : 200)

y[i] ∼ dbern(NewP[i])

logit(p2[i])<-beta0+beta1*x1[i]+beta2*x2[i]

NewP[i]<-(p2[i]-alpha)/(1-2*alpha)

] Prior distributions

alpha ∼ dunif(0,0.0001)

beta0 ∼ dnorm(0.0001,0.0001)

beta1 ∼ dnorm(0.0001,0.0001)

beta2 ∼ dnorm(0.0001,0.0001)

] Data

] Initial values

list(beta0=0, beta1=0, beta2=0, alpha=0.000099)

}

Summary SsRLR WinBUGS code simulation for data with 7% of contamination

] Self Selecting Robust Logistic Regression (SsRLR) model
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{

] Likelihood

for (i in 1 : 200)

y[i] ∼ dbern(NewP[i])

logit(p2[i])<-beta0+beta1*x1[i]+beta2*x2[i]

NewP[i]<-(p2[i]-alpha)/(1-2*alpha)

] Prior distributions

alpha ∼ dunif(0,0.004)

beta0 ∼ dnorm(0.0001,0.0001)

beta1 ∼ dnorm(0.0001,0.0001)

beta2 ∼ dnorm(0.0001,0.0001)

] Data

] Initial values

list(beta0=0, beta1=0, beta2=0, alpha=0.00099)

}
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