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ABSTRACT

In this work, the signals at the output of a wisslechannel in the presence of inter-
symbol interference were visualized using Self-@rgag Maps with the aim of discovering
their properties which can then be used to mitigh&eeffects of inter-symbol interference on
signals sent over a wireless channel. The resd¢aechto find out if there are certain properties
in an interfering wireless channel output which banexploited to mitigate the effects of inter-
symbol interference and then it was demonstrated the found properties can be used in the
mitigation. To achieve these objectives, simulaiorere carried out. Gray coded 16-QAM
symbols were transmitted over a channel which duces severe inter-symbol interference. The
in-phase and quadrature components of the chanutputowere then used to train a self-
organizing map. The fully trained map was used aix@observations about the general structure
of channel output and how it relates to the trattschi constellation. It was found that the
channel output resembles a rotated input consteilaFurthermore, some symbols were found
in clusters belonging to other constellation poioter than their own. An attempt was then
made to classify the channel output using the @édimap and an analysis was then done on the
misclassified symbols to determine what constelfagoints that symbols from each of the 16
constellation points is likely to be misclassified It was found that a symbol is likely to be
misclassified to those symbols whose gray codeferdifom its own by one bit. Thus the

accuracy of gray codes for the used channel waseger

An examination of the self-organizing map componplanes for the in-phase and
guadrature components revealed how the classdicatf the symbols belonging to each of the
16 constellation points is influenced by the vabtfigheir in-phase and quadrature components. It
was found that the classification of symbols beingdo certain constellation points is strongly
affected by the values of their in-phase or quadeatomponents. The classification of symbols
belonging to certain constellation points is fouade weakly dependent on the values of their
in-phase or quadrature components while the cleasdn of symbols belonging to certain
constellation points is moderately affected by tr@ues of their in-phase or quadrature
components. This result can be used for examplemioimize the number of symbol
classification errors that result when the enerdytransmitted signals is reduced. It is

demonstrated how this can be done by essentiatlycieg the magnitude of in-phase or



guadrature components for the constellation powtsose classification is weakly and
moderately dependent on the value of their in-ploasgiadrature components. The results show
that the symbol classification error obtained issl¢han that obtained when the energy of all

constellation points is reduced indiscriminately.
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CHAPTER 1
INTRODUCTION

1.1 Background

The wireless channel is a hostile medium of comuations because its characteristics
change over time and frequency thereby impactiegsignal sent over it. The received signal
strength varies over time and frequency, a phenomealled fading. Multipath fading occurs
due to the constructive and destructive interfezeat the multiple signal paths between the
transmitter and receiver. Multipath fading resuitsime-dispersion of received signal. This time
dispersion can be characterized by a measure dhiéedelay spread. Wireless channel can be
classified as experiencing either flat-fading cginency-selective fading depending on delay
spread. If delay spread is much smaller than timebsy time then flat fading occurs. If delay
spread is much larger than symbol time then frequaelective fading occurs. Frequency-
selective fading causes severe inter-symbol intenfee. Inter-symbol interference is a hurdle in
achieving the target of high data rate and relialdemxmunication systems whose magnitude
renders channel noise insignificant by comparisin [SI can cause an irreducible error floor
when the modulation symbol time is on the same roedethe channel delay spread. Before
discussing the techniques commonly used to miti¢tewe will define another measure of
channel characteristics which determine if it iprapriate to use a particular technique to
mitigate 1SI. Coherence time is a statistical measid the time duration over which the channel
impulse response is essentially time invarianthé symbol period of the baseband signal is
greater than the coherence time of the channel thenchannel will change during the
transmission of the signal and the channel is sa&kperience fast fading. On the other hand, if
the symbol period is less than the coherence thma the channel is said to experience slow
fading. Signal processing provides a powerful madm to counteract ISI. Equalization in a
broad sense can be defined as any technique ussmlieract ISI. The term equalization is
however mostly associated with a particular teghaiused to alleviate the ISI problem caused
by delay spread by estimating the channel impwspanse and then cancelling its effect on the
received signal. In this project we use the termaéigation in its broad sense unless stated

otherwise.



1.2 Quadrature Amplitude Modulation

Quadrature Amplitude Modulation (QAM) is a passbdigital transmission method that
impresses two separakebit symbols onto the quadrature carriets (27f,t) andsin(2nf,t)
respectively, wherg. is the carrier frequency. The general M-ary QANNnsil constellation is

represented by the finite symbol §et, = a,, + jb,}M-,. Alternatively, a QAM symbol can
be represented in polar notationggse/?, where4,, = /a2, + b2, andé,, = tan~'(b,,/an).

The modulated passband sige@é) is defined as
S(t) — ER{Am(t)ej(anct-'—em(t))} (11)

whereR{.} represents the real part of a complex number.rmbeulated signad(t) is referred
to as the narrow-band bandpass signal sfipce B whereB is the bandwidth. The narrow-band

bandpass signal can be translated to an equivadseband signal by expanding (1.1) as follows
s(t) = An(t) cos(em(t)) cos(2mf.t) — Ay (Y) sin(em(t)) cos (2mf.t) (12
= uj cos(2mf.t) — ugsin (2mfct)

where u; = Ap,(t)cos (6,,(t)) and uy = Ay (t)sin (6,,(t)) are the in-phase and quadrature

components of(t), respectively. The complex bandpass envelope endny
u(® = u(t) + jug(®) = Ay (H)e¥n® (13)
which when substituted into (1.1) allow§&)to be re-written as

s(t) = R{u(D)el @) (L4)

This implies that the knowledge af(t) and f. uniquely describes the modulate@),
whereu(t) contains all the useful information.
1.3 Sdf-Organizing Maps

The self-organizing map is a neural network model algorithm that implements a
characteristic nonlinear projection from the higmensional space of sensory or other input

signals onto a low dimensional array of neuronse HOM is able to map a structured, high-

2



dimensional signal manifold onto a much lower disienal network in an orderly manner. The
mapping usually preserves the topological relatipssof the signal domains. Due to this order,
the image of the signal space tends to manifesstaaisl of input information and their

relationships on the map.

Accordingly, the most important applications of @M are in the visualization of high
dimensional systems and processes and discovargtefories and abstractions from raw data

[2]. The later operation is called the exploratdeya analysis or “data mining.”

1.4 Problem Statement

The use of self-organizing maps to visualize analaee the characteristics of a wireless
channel output has not been done yet such a prooeds potentially yield hitherto unknown
characteristics and relationships in the wireldsanael output data. Such information could

potentially be used to compensate for channel ifapgons.

The findings in this report indicate that indeeteiasting relationships exist in the output
of an interfering channel output and that suchtieiahips could be used to mitigate inter-

symbol interference.

15 Objectives
15.1 Main Objective

To perform channel equalization using self-orgargainaps
15.2 Specific Objectives

1) To visualize the output of an interfering chanme&idigital communication system using
self- organizing maps. For this purpose the digitodulation of choice is 16-QAM.

2) To establish the various characteristics and aahips in the output of an interfering
channel with an aim of using such characteristiod eelationships to mitigate inter-
symbol interference.

3) To demonstrate how the findings in 2 above can eduo mitigate inter-symbol

interference



CHAPTER 2
LITERATURE REVIEW

2.1 Artificial Neural Networks
2.1.1 Introduction

The immense capabilities of the human brain in @ssmg information and making
instantaneous decisions, even under very complegurostances and under uncertain
environments, have inspired researchers in studgnthpossibly mimicking the computational
abilities of this wonder. What a human can achieve very short time span, for instance in
terms of pattern recognition and obstacle avoidavitén an unknown environment, would take
very expensive computer resources and much lormggett comparable results. This is mainly
due to the way humans process information. Indesdarchers have shown for many years that
brains make computations in a radically differerdanmer to that done by digital computers.
Unlike computers which are programmed to solve gk using sequential algorithms, the
brain makes use of a massive network of paralldldistributed computational elements called
neurons. The large number of connections linkiregé¢helements provides humans with the very
powerful capability of learning. Motivated by thiery efficient computational biological model,
scientists have for the last few decades attemiatdaliild computational systems, which can
process information in a similar way [3]. Such sys$ are called artificial neural networks
(ANN) or connectionist models. They are composed t#rge number of highly interconnected
processing elements analogous in functionalityitdobical neurons and are tied together with

weighted connections corresponding to brain syrapse
2.1.2 Featuresof Artificial Neural Networks

As mentioned previously, an artificial neural netlw@ANN) is typically composed of a
set of parallel and distributed processing unitled nodes or neurons. These are usually
ordered into layers, appropriately interconnectedneans of unidirectional (or bidirectional in
some cases) weighted signal channels, called cbangcor synaptic weights, as shown in
Figure.2.1 below.
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Figure 2-1: Typical representation of a feedfoward (unidirectional) artificial neural

networ k with three inputs and two outputs

The internal architecture of ANN provides powerdoimputational capabilities, allowing
for the simultaneous exploration of different comnpg hypotheses. Massive parallelism and
computationally intensive learning through exampheake them suitable for application in
nonlinear functional mapping, speech and pattecogeition, categorization, data compression,
and many other applications characterized by complgnamics and possibly uncertain
behavior. Neural networks gather their knowledgeugh detection of patterns and relationships
found in the data provided to them. Three importaatures generally characterize an artificial
neural network: the network topology, the netwadasfer functions, and the network learning

algorithm.



2.1.3 Neural network topologies

These correspond to the ordering and organizatidgheonodes from the input layer to
the output layer of the network. In fact, the whg hodes and the interconnections are arranged
within the layers of a given ANN determines itsdatqgy. The choice for using a given topology
is mainly dictated by the type of problem being sidared. Some neural networks designers
classify ANN according to how the nodes are orgashiand hence how data is processed
through the network. The two well known ANN topaleg are the feedfoward and the recurrent

architectures.

2.1.3.1 Thefeedfoward topology

A network with a feedfoward (FF) architecture hessnodes hierarchically arranged in
layers starting with the input layer and endinghwtihe output layer. In between, a number of
internal layers, also called hidden layers, proviaest of the network computational power. The
nodes in each layer are connected to the next tayengh unidirectional paths starting from one
layer (source) and ending at the subsequent |ayak)( This means that the outputs of a given
layer feed the nodes of the following layer in axfard path as shown below. Because of their
structure, such networks are termed as feedfowandanks. They are also occasionally called

open-loop networks given the absence of feedfowlavd of information in their structure.

The feedfoward topology has been very popular dudtst association with a quite
powerful and relatively robust learning algorithnmokvn as the backpropagation learning
algorithm (BPL). The multilayer perceptron netwaikd the radial basis function network are

among the well-known networks using the feedfowapblogy.
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(c) multi-input, multi-output, one hidden layer

2.1.3.2 Therecurrent topology

Unlike feedfoward networks, recurrent networks (Rillpw for feedback connections
among their nodes as illustrated in Figure 2.3 Wweldbhey are structured in such a way as to
permit storage of information in their output nodleough dynamic states, hence providing the
network with some sort of “memory”, while FF netismap input into output and are static in
the sense that the output of a given pattern aftss independent of the previous state of the
network, recurrent networks map states into stabelsas such are very useful for modeling and
identifying dynamic systems. This means that thediback available for a given input node
allows it to pass to another state as soon as tputlas been delivered at the other end of the
network. Several well-known neural networks haverbelesigned based on the recurrent
topology. Such networks include the Hopfield netwand the time delayed neural networks
(TDNN).



Input} %, Output

Figure 2-3: A typical neural network with recurrent topology
2.1.4 Neural network activation functions
The basic elements of the computational engineaforeural network are the neurons.
These are sorts of simple processors which takevthghted sum of their inputs from other
nodes and apply to them a nonlinear mapping (neessarily linear) called an activation
function before delivering the output to the neguron, see figure below. The outpyt of a
typical neuronk having!l inputs is given as:

op=f (Z Wi X; — ek)
7

21

wheref is the node’s activation function,, x,, ..., x; are the node’s inputg;; ., wyy, ..., Wy, are
the connection weights, arfj is the node’s threshold. The processing activiithiw a given
layer is done simultaneously, hence providing theral network with the powerful capability of
parallel computing. The bias effect (threshold ealis intended to occasionally inhibit the
activity of some nodes. As neural networks may viaryerms of their structure as described
previously, they may as well vary in terms of thastivation function.



Depending on the problem at hand and on the latatidhe node within a given layer,
the activation functions can take different fornssggmoid mapping, signum function, step
function or linear correspondence. The mathemateaesentation for some of these mappings

is given below:

. 2.2)
Slngld(X) = HT[)(—X)
1ifx>0 2.3)
signum(x) =4 0ifx =0
—1ifx<0
_( 1ifx>0 (2.4)
step(x) = {0 otherwise

Figure 2.4 below illustrates the profile of six imation functions commonly used in

implementations of neural networks.
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Figure 2-4: Typical profilesof six activation functions

Neural networks learning algorithms

Learning algorithms are used to update the weighdrpeters at the interconnection level

of the neurons during the training process of taevork. While some designers have classified

neural networks according to topologies or architexs, others have classified them according

to the learning algorithm used by the network. Theee well known and most often used

learning mechanisms are the supervised, unsupdriaseelf-organized) and the reinforced.

2151 Supervisad learning

The main feature of the supervised (or active)liegyr mechanism (see Figure 2.5 below)

is learning by examples. This means that an extéeaaher provides the network with a set of

input stimuli for which the output is a priori knowDuring the training process, the output

results are continuously compared with the desil&@d. An appropriate learning rule uses the

10



error between the actual output and the target ttatdjust the connection weights so as to
obtain, after a number of iterations, the closeatcim between the target output and the actual
output. Supervised learning is particularly usefoi feedfoward networks. A number of
supervised learning algorithms have been suggesteithie literature. The backpropagation
algorithm, first developed by Werbos in 1974[4] etniis also based on the gradient descent
optimization technique and the least mean squ@eritim [5] are among the most commonly

used supervised learning rules.

/.

Supervised based Cumulative
weight updating error

4

)

Input
signal

. J

Figure 2-5: Schematic representation of supervised lear ning

2.1.5.2 Unsupervised learning

Unlike supervised learning, unsupervised or sajfaaized learning (Figure 2.6 below)
does not involve an external teacher and relietedas upon local information and internal
control. The training data and input patterns aesgnted to the system and through predefined
guidelines, the system discovers emergent collectikoperties and organizes the data into
clusters or categories. Because of the way thearktadjusts its connection weights in response
to the presented input data, unsupervised learaiggrithms have been known as open-loop
adaptation learning schemes. An unsupervised legrecheme operates as follows. A set of
training data is presented to the system at thetilyer level. The network connection weights

are then adjusted through some sort of competamong the nodes of the output layer, where

11



the successful candidate will be the node withHhighest value. In the process, the algorithm
strengthens the connection between the incomingrpaat the input layer and the node output
corresponding to the winning candidate. In additionthe strengthening of the connections
between the input layer and the winning output nolde unsupervised learning scheme may be
used for adjusting the weights of the connecti@asling to the neighboring nodes at the output
layer. This is controlled by what is referred totlhs neighborliness parameter, and it has the
major property of making groups of output nodesavehas single entities with particular
features.

/.

Unsupervised based
weight updating

S
|

e

a N

&{O\ \

4
Input =
signal SN D.utput
signal
A /

Figure 2-6: Schematic representation of unsupervised learning

2.1.5.3 Reinforcement learning

Reinforcement learning (see Figure 2.7 below) &lsmwvn as graded learning, has been
receiving an increased interest lately becausasomiany attractive learning features, which
mimic in a way the adjusting behavior of humans nvlieteracting with a given physical
environment. This is another type of learning medra by means of which the network
connections are modified according to feedbackrmmégion provided to the network by its
environment. This information simply instructs thestem on whether or not a correct response

has been obtained. In the case of a correct regptims corresponding connections leading to
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that output are strengthened, otherwise they askeveed. This type of learning strategy based
on the reward/penalty paradigm has several siméariwith the biological learning system.
Unlike supervised learning, reinforcement learn{bR) does not get information on what the

output should be when the network is presented avgiven input pattern.

Reinforcement
signal :i
/.

Reinforcement based
weight updating

X/

a )
Ipput Qutput
signal signal
- /

Figure 2-7: Schematic r epresentation of reinfor cement learning

Reinforcement learning also differs from unsupedisearning (UL) in that UL doesn’t
provide the network with information on whether theput is correct or not, but rather operates
on the premises of finding pattern regularity amahg exemplars provided to the network.
Given the nature of this learning scheme, randoancbestrategies have been used to attain the
correct output every time the system is presentiéddl an excitation from its environment. This
explorational aspect of learning ultimately leadsan improved capability of the system to

deliver the expected output every time the sysgepresented with an input pattern.
2.1.6 Perceptron

Perceptron is an example of an ANN developed asiaable model of an artificial
neuron using a supervised learning procedure ichwtiie system adjusts its weights in response

to a comparative signal computed between the aatugput and the target output. The
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perceptron was designed for the purpose of patiassification of linearly separable sets [6].
By definition, sets are linearly separable if therésts a hyperplanar multidimensional decision
boundary that classifies the data input into tvasses.

In terms of architecture, the perceptron is comg@osé a hierarchical three-level
structure. The topology of the perceptron includesinput level corresponding to the sensory
unit or retina; a second-level unit, also callei@ature detector unit, involving nodes connected
to the input but with fixed connection weights dhcesholds; and a third level unit involving the
output layer composed of one single node but wdflasaable connection weights. The structure
is shown in Figure 2.8 below

i s

Input pattern Wo =-0
(retina)
Layer of Bi
fixed weights /* ~ as
] X | w
h
T o f/Xz Wa
— ] - Actual
r\/ © Xiq Wil - output
R ~ Activation
’é x |w | / function

/ Learning

—— mechanism —)=
(Hebbian rule)

Target
output

Figure 2-8: Representation of the perceptron

The activation function used by Rossenblatt in pleeceptron is the step or the hard
limiting activation function, and the learning atgbm used to adjust the weights is the
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perceptron learning rule. It was shown (perceptrmmvergence theorem [6]) that as long as the
patterns used to train the perceptron are lineadparable, the learning algorithm should

converge in a finite number of steps. The stepd tsérain a perceptron are outlined below:
Initialize weights and thresholds to small randcatues

Choose an input-output pattern from the trainingiroutput data sétc®®, ¢ (©)
Compute the actual outpat= f(¥i_, w;x; — 0)

Adjust the weights according to the perceptronrigay rule:

e

In case the weights do not reach state-state values= 0, repeat starting from step 2
and choose another training pattern. This is knawepoch training. This learning procedure is
very similar to the Hebbian learning rule [6], withe difference that the connection weights

there are not updated if the network responds cthyre

2.1.7 Back-propagation network

2.1.7.1 Background

When an ANN is presented with data, the output moll be the desired output since the
network has not undergone training. Since the nétweights are initially random, it is likely
that the initial output value will be very far frothe desired output. To improve the behavior of
the network and to know which connection weightschmodification and by how much so as to
achieve the objective, an algorithm commonly usethe back-propagation algorithm. This is
simply a gradient descent method of minimizing tii@al squared error of the output computed
by the network. The principal advantages of baakppgation are simplicity and reasonable

speed. Back-propagation is well suited to pattecognition problems.

The network learns a predefined set of input-ougx@mple pairs by using a two-phase
propagate-adapt cycle. An input pattern is appéeda stimulus to the first layer of network
units. It is propagated through each upper laydit an output is generated. The output is then
compared to desired output. The error is transchiteckward from output layer to each node in
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the intermediate layer that contributes directlftite output. Each unit in the intermediate layer
receives only a portion of the error signal. Thisgess repeats itself layer by layer until each
node in the network has received an error sigratl describes its relative contribution to the
total error. One of the significant features of lpcopagation is that intermediate layers
organize themselves such that different nodes leanecognize different features of the input
space. After training, when presented with arbytiaput patterns that are noisy or incomplete,
the units in the hidden layers of the network wekpond with an active output if the new input
contains a pattern that resembles the featurentigidual units learned to recognize during

training.

Hidden layers inhibit their outputs if the inputtigsan does not contain the features they
were trained to recognize. Upper layer patternsbeathought of as a pattern with features that
can be recognized by units in the subsequent |18y .output pattern generated can be thought
of as a feature map that provides an indicatiorthef presence or absence of many different

feature combinations at the input.

BPN provides an effective means of allowing a corapsystem to examine data patterns
that may be incomplete or noisy, and to recogni#gtls patterns from the partial input. BPN
will classify these previously unseen inputs acoaydo the features they share with the training

examples.

2.1.7.2 Selection and preparation of training data

A neural network is not useful if it only sees ogeample of a matching input/output
pair. It cannot infer the characteristics of thpunhdata that one is looking for from only one
example. Therefore many examples are required. iShaalogous to how a child learns the
difference between say different types of anim@tse child needs to see several examples of
each to be able to classify an arbitrary animak $ame is true with neural networks. The best
approach to training is to compile a wide rangeewdmples which exhibit all the different
characteristics the user is interested in. Addmmes noise or other randomness to your example
(such as a random scaling factor) prior to trainhegdps to account for noise and natural

variability in real data, and tends to produce aenweliable network [7].

If you are using a standard sigmoid node transfaction (not scaled), please note that
the desired output must never be set exactly tod0la This is because the asymptotic values of
16



the hidden layers are set between 0 and 1. Thiddwben mean more data and weights are
required to reach the desired output. Again thetdincannot be exceeded. To avoid this
limitation, the desired output can be lowered ty 60 for the network to reach and even
overshoot. The network will converge relatively ady. It cannot be overemphasized that a
neural network is only as good as the training .dBtzor training data inevitably leads to an

unreliable and unpredictable network.

2.1.7.3 Madification of the neuron connection weights

Consider the example in Figure 2.9 below

Input

Hidden Layer Output Layer

Output 1

Figure 2-9: 2-Input 2-Output ANN

If 1,,I, are the inputsH, H, the hidden layer outputs ar@@j, 0, are the output layer

outputs respectively then:

Outputs of Hidden Node 1 and 2 are given by [g], [9

2
H; = sgm (Z IIWH>
1=1

(25)

and
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(2.6)

2
H, = sgm (Z Ilwg>
1=1

where

@7

sem() = 1=

Output-layer outputs are given by:

2 (2.8)
0, = sgm(z HmWr?u)
m=1

and

2 (2.9)
0, = sgm(Z Hmwr%2>

m=1

From equations (2.8) and (2.9), we can calculage dbitput given a particular set of
inputs. This allows us to calculate the mean squareor (MSE) between the actual output and
the desired output for the given input in thisrirag example. This gives us the average of what

we want and what we got.

The error function can be written as:

2
E= E(Dn - On)z
n=1

whereD,, is then"desired output. or, using (2.5) and (2.8)

2 2 2 z
E= Z D, — sgm (Z sgm( Ilwll'r’n> ng>
n=1 m=1 I=1

(2.10)

(2.12)
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For a given training the minimum error would be Hest target to our training. To find
this point, the gradient of the error function witlspect to each network weight would be

calculated. Adjustments of the weights would thatofv the opposite to the gradient.

The gradient is fairly straightforward to calculathie to the convenient fact that the

derivative of the sigmoid function can be expressedrms of the function itself:

d 1 X '
&(1 T e—x) = (1 -fe—X)Z = (1 - sgm(x))sgm(x) (2.12)

The gradient is defined as the vector of partiaivdéives of the multivariate function
with respect to each of variable. The error funcfior each network output is calculated as a set
of partial derivatives with respect to each asdediaconnection weight. All other variables

except one are held constant when we calculatpatiml derivative.

2
90, 0 (213)
Iwe = Iw?e Z ngnHk = Hm
mn mn k=1
The gradient of the error function can be calcuas:
JE I~
= D, — 0,)?
owo, owd, Z( n = On)
n=1
0 2S°
=—-2(D,, — 0,,)) —sgm(5°)
n = /G505 Wi
= —2(D, — 0,)((1 — sgm(S°))sgm(S°)Hp, (2.14)

whereS°® = Y2_ wg,,.
The expressioh— 2(D,, — 0,)((1 — sgm(5°))sgm(S°))H,," is denoted asg.

The new values for the network weights are caledlaby multiplying the negative

gradient with a step size parameter called theniegrrate and adding the resultant vector to the
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vector of network weights attached to the currexytef. This change does not take place,
however, until after the middle-layer weights apsated as well, since this would corrupt the

weight update procedure for the middle layer [10].

For the middle layer, a new gradient is derived;, this time the output weights are
treated as constants rather than the hidden-lagiyhis.

OF (2.15)

2
= (1 - sgm(s™)) sgm(s") ) 83wial
n=1

Im

The middle weights are updated using the same guoeeas for the output layer, and the
output layer weights are updated as well. This omplete training cycle for one piece of
training data. The input layer is treated as adyufér holding the input vector hence has no

weights that need modifications.

The sample considered is a (2, 2, 2) network. Larggworks would have longer
summations though the learning principle is theesam

2.1.74 Repetition

The above procedure causes the output to move laggeatowards the desired state of a
minimized error. The procedure must be repeatedyntiames until the MSE drops below a
specified value. When this happens, the netwonersorming satisfactorily, and this training
session for this particular example has been caexble

Training will be said to be successful when randtata is applied to the input terminals
repeatedly for many times depending on the apjpdicaind complexity of the data and other
parameters. After training the network, real daga o the network is presented to the input for

classification, compression or processing.

A consequence of the BPN algorithm is that theees#tuations where it can get stuck to
‘local minima’ that traps the algorithm and pregeittfrom dropping to the actual minimum. If
such a situation arises hidden layers can be aoidestiuced, nodes can be reduced or increased
or try another starting point (randomize the netwvagain). Other approaches to the BPN
problem are based on alternative determination &EMleast squares approximation and
steepest-descent technique) [11], [12]
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2.2 Competitive Learning

The basic idea underlying what is called compaetitearning [13] is roughly as follows.
Assume a sequence of statistical samples of avalctdservable= x(t) € R" , wheret is the
time coordinate, and a set of variable referenctove{m,;(t):m; € R",i = 1,2, ..., k}. Assume
that them,;(0) have been initialized in some proper way; randetaction will often suffice. If
x(t) can somehow be simultaneously compared with emgl) at each successive instant of
time, taken here to be an integer 1,2,3, ..., then the best matching;(t)is to be updated to
match even more closely the currerit). If the comparison is based on some distance measu
d(x,m;), alteringm; must be such that, if = ¢ is the index of the best matching reference
vector, thend(x,m.) is decreased, and all the other reference veagraiith i = c are left
intact. In this way the different reference vectiersd to become specifically “tuned” to different
domains of the input variable. It will be shown below that ip is the probability density
function of the samples, then than,; tend to be located in the input sp&®€in such a way that

they approximate tp in the sense of some minimal residual error.

2.3 Learning Vector Quantization

Is a classical method, that produces an approximdt a continous probability density
function p(x) of the vectorial input variable using a finite number of codebook vectors
m;, i = 1,2,...,k. Once the “codebook” is chosen, the approximatibr emvolves finding the
reference vectom, closest tax. One kind of optimal placement of the; minimizeskE, the

expected-th power of the reconstruction error:

E = f Ix — mell"p()dx (219)

wheredx is the volume differential in the space, and the index= c(x) of the best-matching

codebook vector (“winner”) is a function of the utvectorx:

[|x — m.|| = min {||X - m]-||} (2.17)
i

In general no closed-form solution for the optirpcement of then; is possible, and

iterative approximation schemes must be used.
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Using the square-error criterigir = 2), it can also be shown that the following step-
wise “delta-rule,” in the discrete time formalisfm = 0,1,2,...),defines the optimal values
asymptotically. Letn, = m.(t) be the closest code-book vectorxe= x(t) in the Euclidean

metric. The steepest-descent gradient-step optiiloizaf Ein them, space yields the sequence.
me(t + 1) = m:(0) + a(®)[x() —m (O],
m;(t+ 1) = m;(t) fori # ¢ (2.18)

with a(t) being a suitable, monotonically decreasing sequehscalar-valued gain coefficients,

0 < a(t) < 1. This then is the simplest analytical descriptibeampetitive learning.

2.4 Kohonen Self-Organizing Maps

Kohonen Self-Organizing Maps (or just Self-OrgamigMaps, or SOM’s for short) are a
type of neural network. They were developed in 1BgZeuvo Kohonen, a professor emeritus
of the Academy of Finland. Self-Organizing Maps asdled “Self organizing” because no
supervision is required. SOM’s learn on their owrotigh unsupervised competitive learning.
They are known as “Maps” because they attempt tp thair weights to conform to the given
input data. The nodes in a SOM network learn insiirgse that they attempt to become like the
inputs presented to them. They can also be caledttire Maps” as in Self-Organizing Feature
Maps. Retaining principle “features” of the inpwtal is a fundamental principle of SOM’s, and
one of the things that make them so valuable. Spalty, the topological relationships between
input data are preserved when mapped to a SOM netiidis has a pragmatic value of

representing complex data.
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Figure 2-10: A map of theworld quality of life

Figure 2.10 is a map of the world quality of liféellows and oranges represent wealthy
nations while purples and blues are the pooreonstiFrom this view, it can be difficult to
visualize the relationships between countries. Hamewhen represented by SOM as shown in

Figure.2.11 below, it becomes easier to see wigdiigy on.

23



Figure 2-11: SOM representation of world quality of life

In figure 2.11 we can see the wealthiest countreef/nited States, Canada and Western
European countries on the left side of the netweanke the poorest countries can be found on
the opposite side of the map (at the point furtlaesy from the richest countries), represented

by the purples and the blues.

Figure.2.11 is a hexagonal grid. Each hexagon septe a node in the neural network.
This is typically called a unified or u-matrix ansl probably the most popular method of
displaying SOMs. Another intrinsic property of SGMS known as vector quantization. This is a
data compression technique. SOMs provide a wayepfesenting multi-dimensional data in
much lower dimensional space-typically one or twoehsions. This aides in their visualization,
as humans are more proficient at comprehending datéower dimensions than higher

dimensions as can be seen in the comparison ofé-iyt0 to Figure 2.11.
241 Structureof a Self-Organizing Map

The structure of a SOM is fairly simple and is besterstood through the use of an

illustration as shown in Figure 2.12 below
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Figure 2-12: Structure of the self-organizing map

Figure.2.12 is a 44 SOM network (4 nodes down, 4 nodes across). kasy to
overlook this structure as being trivial but thare a few key things to notice. First, each map
node is connected to each input node. For thislsial4 network, that is & 4x 3 =48
connections. Secondly, notice that map nodes areomnected to each other. The nodes are
organized in this manner of a 2-D grid as it makegasy to visualize the results. This
representation of the map is by the SOM algorithmthe drawn configuration, each map node
has a unique (i,j) coordinate. This makes it easyeference a node in the network and to
calculate the distances between nodes. Becaude a@onnections only to the input nodes, the
map nodes are oblivious as to what values theghters have. A map node will only update it's

weights (explained next) based on what the inpatordells it.
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The following relationships describe what a nodgeasally is:
1l.network c mapNode c float weights[numWeights]
2.inputVectors c inputVector c float weights[numWeights]

1 says that the network (thex44 grid above) contains map nodes. A single map node

contains an array of floats, or it's weights. numitiés will become more apparent during

application discussion. The only other common iteiat a map node should contain is it's (i,))

position in the network. 2 says that the collectadninput vectors (or input nodes) contains

individual input vectors. Each input vector contaan array of float’s or its weights. Note that

numWeights is the same for both weight vectors. Whight vectors must be the same for map

nodes and input vectors or the algorithm will notrkv
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1)
2)
3)

4)

5)

6)

The SOM algorithm
The Self-Organizing Map algorithm [14] can be broks into 6 steps

Each nodes weights are initialized.

A vector is chosen at random from the set of trgjrdata and presented to the network
Every node in the network is examined to calculetech one’s weights are most like the
input vector. The winning node IS commonly known as
theBest Matching Unit (BMU).

The radius of the neighborhood of the BMU is cated. This value starts large and is
typically set to be the radius of the network, dirsihing each time step. (2.20, 2.21).

Any nodes found within the radius of the BMU, cddtad in 4), are adjusted to make
them more like the input vector (2.22, 2.23). Theser a node is to the BMU, the more
its weights are altered (2.24).

Repeat 2) for N iterations
The equations utilized by the algorithm are asfed:

Equation (2.19)-Calculate the BMU.

n (2.19)
distFromInput? = Z(Ii — W)?
i=0

I = current input vector
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W = nodes weight vector
n = number of weights

Equation (2.20)-Radius of the neighborhood.
o(t) = o,e A

t = current iteration
A = time constant (Equation 2b)
0, = radius of the map

Equation (2.21)-Time constant
A = numlterations/mapRadius
Equation (2.22)-New weight of a node
W+ 1) =W() + )L A) —W()
Equation (2.23)-Learning rate
L(t) = Loe™2
Equation (2.24)-Distance from BMU

(_distFromBMUZ)
o) = 20°0

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

There are some things to note about these form{®a%9) is simply the Euclidean

expensive square root operation for every nodeemetwork.

distance formula squared. It is squared becausargv@ot concerned with the actual numerical
distance from input. We just need some sort ofarnifscale in order to compare each node to

the input vector. This equation provides that, telisiinating the need for the computationally

Equations (2.20) and (2.21) utilize exponential ayecAt t = 0 they are at their

maximum. As (t =the current iteration number) increases, they apgraero. This is exactly
what we want. In (2.20) the radius should startasuthe radius of the lattice, and approach zero

at which time the radius is simply the BMU node2(9 is almost arbitrary. Any constant value
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can be chosen. This provides a good value, thagh,depends directly on the map size and the

number of iterations to perform.

Equation (2.22) is the main learning functidfi(t + 1) is the new ‘educated’ weight
value of a given node. Over time, this equatioreesally makes a given node weight more like
the currently selected input vectdr A node that is very different from the currentuhpector
will learn more than a node very similar to thereat input vector. The difference between the

node weight and the input vector are then scalethbycurrent learning rate of the SOM, and
by O(t).

O(t), Equation (2.24), is used to make nodes closera®iU learn more than nodes on
the outskirts of the current neighbourhood radimdes outside of the neighbourhood radius are

skipped completelydistFromBMU is the actual number of nodes between the curme and

the BMU, easily calculated as:

distFromBMU? = (bmul — nodel)? + (bmu] — node])? (2.25)

This can be done since the node network is jusDageid of nodes. With this in mind,
nodes on the fringe of the neighborhood radius Vei#lrn some fraction less than 1.0. As
distFromBMU decreases®(t) approaches 1.0. The BMU itself will havedéstFromBMU
equal to 0, which give@(t) its maximum value of 1.0. Again, this Euclideastdnce remains

squared to avoid the square root operation.

There exists a lot of variation regarding the et used with the SOM algorithm.
There is also a lot of research being done on piienal parameters. Some things of particularly
heavy debate are the number of iterations, thenilegrrate and the neighborhood radius.
Kohonen himself has suggested however that thaiigaishould be split into two phases. In
phase 1 the learning coefficient is reduced frodnt0.0.1 and the neighborhood radius from half
the diameter of the lattice to the immediately sunding nodes. In phase 2 the learning rate is
reduced from 0.1 to 0.0 but over double or morentimaber of iterations in phase 1. In phase 2,
the neighborhood radius value should remain fixed &he BMU only). Phase 1 allows the
network to quickly fill out the space, while Ph&gperforms the ‘fine tuning’ of the network to a

more accurate representation.
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24.3 Applications

2.4.3.1 Color Classification

The color classification SOM is used as the primatgmple in most tutorials published
on SOM'’s. This is for a very good reason. By gdimgpugh this example, the concept of SOMs
can be solidly grasped. The reason color classificas fairly easy to understand is because of
the relatively small amount of data utilized, adlwas the visual aspect of the data.

Color classification SOMs only use three weights pep and input nodes. These
weights represent the (r,g,b) triplet for the coléor example, colors may be presented to the
network as (1,0,0) for red,(0,1,0) for green, &tee goal for the network here, is to learn how to
represent all of these input colors on it's 2-Ddgnihile maintaining the intrinsic properties of a
SOM such as retaining the topological relationshigsveen input vectors. With this in mind, if
light blue and dark blue are presented to the Stb®ly should end up next to each other on the
network grid.

To illustrate the process, we will step through #hgorithm for the color classification
algorithm. Step 1 is the initialization of the netk. Figure 2.13 shows a newly initialized

network where each square is a node in the network.

Figure 2-13: Newly initialized color classification SOM

29



The initialization method used here is to assigaralom value between 0.0 and 1.0 for
each component (r, g, and b) of each node. Stefgddhoose a vector at random from the input
vectors. Eight input vectors are used in this examanging from red to yellow to dark green.
Next, step three goes through every node and timeldBMU, as described earlier. Figure 2.14
shows the BMU being selected in the<4 network. Step 4 of the algorithm calculates the
neighborhood radius. This is also shown in Figudet2All the nodes tinted red are within the
radius. Step 5 then applies the learning functiorall these nodes. It is based on their distance
from the BMU. The BMU (dark red) learns the mostileimodes on the outskirts of the radius
(light pink) learn the least. Nodes outside of theius (white) don't learn at all.

Figure 2-14: lllustration of BMU and neighboring nodesfor color classification
SOM

We then go back to step 2 and repeat. Figure hawsa trained SOM, representing all
eight input colors. Notice how light green is néxtdark green, red is next to orange. An ideal
map would probably have light blue next to darkebl@ihis is where the error map comes in,

which is described next.
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Figure 2-15: Trained color classification SOM

Each time a SOM is trained, it can produce a coteplalifferent result given the same
input data. This is because the network is ingedi with random colours, presenting a unique
set-up prior to each training session. Also, tldsuos because input vectors to be presented to
the network are chosen at random. With this in mmgaine SOM’s may turn out to be ‘better’
than others where ‘better’ is a measure of how W topological data is preserved. One
method for gauging the superiority of one SOM camother is to calculate the error map. This
will give us some numeric value. SOMs with lowelwss can be said to be ‘better’ mappings. A
SOM with a value of zero would be a perfect mappiigere the entire network is the exact

same color.

To calculate an error map, loop through every magenof the network. Add up the
distance (not the physical distance but the weiligteince. This is exactly the same as how the
BMU is calculated) from the node we'’re currentlyaksating, to each of it's neighbours.
Average this distance. Multiply this by 3 (the nwenbf weights used), assuming no square root
is used to calculate the distance between adjatmies. If the square root operation is used,
multiply by V3 instead. Assign this value to the node. This gisash map node a nice value
between 0.0 and 1.0. These values can then beasgbé grayscale values for each square of the

Error map window. Pure white represents the maxinpossible distance between adjacent
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nodes, while black shows that adjacent nodes atieeo$§ame colour. Shades of gray in between
give an even finer explanation, with darker gragmg a better map than a map with light grays.

Figure 2.16 shows an example. Notice the lineshavdthey line up with Figure 2.15.

Figure 2-16: Error map for color classification SOM

244 Batch SOM

An important variant of the basic SOM is the batdorithm in which the whole training
set is gone through at once and only after thisniag is updated with the net effect of all
samples. This algorithm executes much faster itwsoé than the normal sequential algorithms,
and the results are typically just as good or dwetter [15]. The learning steps are defined as

follows:

1) For the initial reference vectors, take for instatiee firstK training samples. Wheréis
the number of reference vectors.

2) For each map unit, collect a list of copies of all those trainingrgdesx whose nearest
reference vector belongs to the topological neighbaod setV; of uniti.

3) Take for each new reference vector the mean oeeretdpective list.

4) Repeat from 2 a few times
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This algorithm is particularly effective if the tral values of the reference vectors are
already roughly ordered, even though they wouldyabtapproximate to the distribution of the
samples [16]. It should be noticed that the abdgerdhm contains no learning rate parameter;

therefore it seems to yield stabler asymptotic eslior them; than the original SOM.

Definition of the size of the neighborhood 9ét can be similar as in the basic SOM
algorithms. “Shrinking” ofN; in this algorithm means that the neighbourhooé &zdecreased

while the steps 2 and 3 are repeated. At thetiasttionN; may contain the elemenbnly.
245 SOM simulations

The self-organizing map is a sheet-like artificredural network, the cells of which
become specifically tuned to various input signattgrns or classes of patterns through an
unsupervised learning process. In the basic vermniynone cell or local group of cells at a time
gives the active response to the current input. [Doations of the responses tend to become
ordered as if some meaningful coordinate systendifferent input features were being created
over the network. The spatial location or coordesatf a cell in the network then corresponds to
a particular domain of input signal patterns. SO thus be used to visualize metric ordering
relations of input samples. A typical applicatioh ®OM is in the analysis of complex
experimental vectorial data such as process statese the data elements may even be related
to each other in a highly nonlinear fashion. Heee define the process of creating a SOM as

contained in [17].

2451 Datapre-processing

Sometimes there is missing data to complete eaght ivector. However, such
incomplete training examples still contain usefifiormation. The distribution statistics of the
available vector components can still be determiimeoh partial data, for example. Using the
self-organizing map algorithm one can easily wilipartial training data [18], [19]. For
incomplete input data vectors the SOM_PAK has tesibility to mark the missing values by a
pre-defined string which is ‘X’ by default. The SORIAK routines will compute the distance

calculations and reference vector modification Steging the available data components.

The input data should also be scaled so that qwneng components have

approximately the same dynamic range. This asghagsfor each component, the difference
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between two samples contribute approximately amlegmount to the summed distance measure

between an input sample and codebook vector.

2.45.2 Initialization

Kohonen presents three different types of netwontkalizations: random, initial samples,

and linear initialization.
Random initialization

Random initialization means that random valuesaasagned to codebook vectors. This

is particularly useful if nothing or little is knowabout the input data at the time of initializatio
Initial samplesinitialization

Initial samples of the input data set can be usedddebook vector initialization. This
has the advantage that the points automaticallinliae same part of the input space with the

data.
Linear initialization
The codebook vectors are initialized to lie in Hane input space that is spanned by two

eigenvectors corresponding to the largest eigeegatd the input data. This has the effect of

stretching the SOM to the same orientation asrtpatidata.

24.5.3 Map topology

Refers to the locations of units in the possibf@togical structures. Two topologies are
used in SOM_PAK namely the rectangular and hexddopalogies as illustrated in Figure 2.17
below. The choice of a topology is a matter ofeéd4df7] but the hexagonal topology is more

effective for visual display.
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Figure 2-17: SOM topologies

The distance between two units in the map is coetpas an Euclidean distance in the

(two dimensional) map topology.

In section 2.4.5, it was pointed out that in theMs@lgorithm, after the Best Matching
Unit has been found, then a neighborhagdt) function is used to determine the nodes in the
neighborhood of the BMU which should be updateavo Types of neighborhood functions are
available: bubble and Gaussian. Let the BMU berredeto by the index and its neighborhood
by N, (which is time variable and hence denotedNyyt)). See Figure 2.18 below for an
illustration of neighborhoods of varying sizes abihve BMU. In the bubble functioh,; = a(t)
if node indexi € N, andh, = 0 if node indexi & N., wherea(t) is some monotonically

decreasing function of tim@ < a(t) < 1). In gaussian function

llre — rjll? (2.26)

e = a(0).exp (~ o)

wherer, € 9t? andr; € :t? are the radius vectors of nodeandi respectivelya(t) is another
scalar-valued “learning rate” and the paramet@r) defines the width of the kernel. The latter

corresponds to the radius if above.
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[a] Hexagonal grid

Figure 2-18: Neighborhoods (size 1, 2 and 3) of the unit marked with black dot: (a)
hexagonal lattice, (b) rectangular lattice.

2.4.5.4 Quality of learning

Very different learning processes can be definedrtisg with different initial
valuesm,(0), and applying different sequences of the trainingaesx(t) and different learning
parameters. As such, it is clear that some optimeg for the same input data must exist. /
when comparing maps that have the same “stiffnésaheh,;), the best map is expected
yield the smallest average quantization r because it is then fitted best to the same ddte
average quantization error or the mea ||x — m.|| defined via inputting the training data or
again is then a useful performance index. Theredarappreciable number (say, several ten:
random initializations of then; (0) should be tried, and the map with the minimum gazation

error selected.

2455 SOM visualization
U-matrix

U-matrix (unified distance matrix) representationtled Sel-Organizing Map visualize
the distances between the neurons. The distaneedetthe adjacent neurons is calculated
presented with different colorings. A dark cring between the neurons corresponds to a |
distance and thus a gap between the codebook valudse input space. A light colorir
between the neurons signifies that the codebookoke@re close to each other in the ir
space. Consequently, lighteas can be thought as clusters and dark arezgsésr separator
This presentation can be helpful when one trientb clusters in the input data without havi
any a priori information about the clust:
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Figure 2-19: U-matrix representation of the Self-Organizing Map

In Figure 2.19 above, the neurons of the netwoeknaarked as black dots. The diagr
reveals that there is a separate cluster in therupght corner. The present clus are separated
by a dark gap. Teaching a SOM and representingglit te L-matrix thus offers a fast way
get insight of the data distributic

U-matrix algorithm

Let n be a neuron on the meNN (n) be the set of immediate neighbors on the maj

w(n) the weight vector associated with neun, then

U — height(n) = Z d(w(n) — w(m)) (2.27)

meNN(n)
whered(x, y) is the distance used in the SOM algorithm to cocstthe map. The -matrix is a
display of the UReights on top of the grid positions of the neuronghe map. An -matrix is

usually displayed as a grey level picture or dseet dimensional landsc.
Component planes

Is a map imaging of the values of a selected compoaf the som in grayscale, i.e
imaging of corresponding components of the finabmade vectors. It can thus be thought ¢
a sliced version of the satiganizing map. In grayale representation, dark values repre
relatively small values while white values represetatively large values. We can see if t
components relate by comparing component planethelfoutlook is similar, the componel

strongly correlate.
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25 Applications of self-organizing mapsto telecommunications

Modern telecommunications can benefit from neueivorks in many ways. The SOM
principle has been used to improve the separalgfityuantized signal states [20], to equalize
channel properties [21], to compress informatid?] ghd to reduce co-channel interference [23].
Other applications are in bandwidth compressior] ¥ adaptive equalization of PAM and
QAM signals [25]. SOM has also been used for cldegection [26], [27] and complexity
analysis [28] of telecommunications software. Cgumfation and monitoring of
telecommunication traffic networks is a particastitable application area for SOM [29], [30],
[31] [32].

In this work, SOM has been used to gain insights the structure of an interfering
wireless channel output and to utilize the infolioratgained in mitigating inter-symbol

interference.

251 WireessChannd Fading

In this section we will describe wireless chanrmelifig with the aim of understanding the
specific types of fading, namely: frequency-selexfind slow fading, for which equalization is a

suitable mitigating technique.

A characteristic of the wireless channel is thespnee of many different paths between

the transmitter and the receiver (See Figure 2.20).
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Figure 2-20: Multipath channel in wireless communications

Basic Electromagnetic (EM) wave propagation phenwrgich as scattering that occurs

along these paths further increases the numbéeqgidaths between the communicators.
Common propagation phenomena encountered are:

1) Reflection: EM waves are reflected when impinging abjects in their paths if the
physical size of the objects are much greater thanwvavelength of the EM waves.

2) Diffraction: Characterized as the sharp changekearpropagation path of EM waves that
occur when they hit an obstacle with surface irfagties such as sharp edges.

3) Scattering: Occurs when EM waves visit a clusteolofects smaller in size than the
wavelength, such as water vapor and foliage. &wagf causes many copies of the EM

wave to propagate in various directions.

The signal power in a wireless channel varies awme and over frequency. The

variations are of two types

1) Large-scale fading, due to path loss of signal ametion of distance and shadowing by
large objects such as buildings and hills. Thisngaccurs as the mobile moves through

a distance of the order of the cell size, andpsgcslly frequency dependent.
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2) Small-scale fading, due to the constructive andrdesve interference of the multiple
signal paths between the transmitter and recefmiall scale fading occurs at distances

of the order of the carrier wavelength and is fexgry dependent.

We will focus on small scale fading rather thargéascale fading for the reason that
small scale fading is more relevant to the desigrelaable wireless transmission, the objective

of this research. Large scale fading is more reiet@mtelecommunication network planning.

25.1.1 Small-scale Fading

Due to multipath propagation, more than one versibthe transmitted signal arrive at
the mobile receiver at slightly different times.€eTimterference induced by these multiple copies,
also known as multipath waves, has become the sigsificant cause of distortion known as
fading and Inter-Symbol Interference (ISI). Theioadignal experiences rapid changes of its

amplitude over a relatively short period of time.

The waves travelling different paths, thereforevéiting different distances, sum up at
the receiver antenna (or antenna array in somectsgenerate ISI of such a magnitude that the

effects of large scale path loss can be compl&gelyred by comparison.

There are a variety of ways to statistically motet wireless channels in order to
represent the random behavior of multipath fadge simple and popular model represents the
fading channel with a linear and time-varying Chelnmpulse Response (CIR) denoted by the

functionh(t, 1)

S () —  h(t7) (1)

Figure 2-21: Channel modding by impulse response
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Time Dispersion Parameters

A perfect channel from a communications point awiis one that has a constant gain
and a linear phase response, or at least posshssedeatures over a desired frequency range or
bandwidth. Such a frequency range should be latigen the frequency spectrum of the
transmitted signal to preserve the signal specinakacteristics. Consequently, such an ideal

channel can be symbolically shownids, 7) = g,8(t) with g, as a constant

A gofs(r)

>

Figure 2-22: An ideal channel impulse response

Such channel impulse response implies only onevwedeignal (delayed by), causing no
ISI even when the gain varies with time as the war IR of h(t, ) = g(t)5(t) whereg(t) is
a relatively slowly varying function of time and general may be complex-valued .If we assume
that the multipath channel includes N differenthgaand let the power and delayidf path be
given by P, andt, respectively, then the weighted average delay (a®wn as mean excess

delay) is defined as :

B s e

T=
N 2
Dk=18k

The second statistical moment of the delay may ladscomputed by:

2 _ i 8T 229

2 _
¢ =
N
Yk=1 glz<

41



The channel delay spread, that is the rms valtleeofielay is given by:

,_ 2.30
O¢ = T2 — (‘_[)2 ( :

The channels with time-dependent response (CIR&ngiby h(t,7) will have time-
dependent frequency respori$éw, t) (In fact, as will be stressed later, the CIRs ¢eanery
slowly with respect to time in most practical cgsesh

too (2.31)
H(w,t) = f h(t,t)e 1@Tdt

To determine the wireless channel characteristighe frequency domain we first need
to determine the correlation coefficient or facbérthe channel frequency response, based on a
change in frequency of the sie or 2mAf.

E{H"(w,)H(w + Aw, )}  E{H" (0, )H(w + Aw, t)}
E{H*(w,t)H(w,t)} E{|H(w, t)[?}

P(Aw) =

[ 2 (T, ©)|2eAetdr (2.32)
[ 2 Ih(r, vl2de

The coherence bandwidth is the counterpart of thaydspread in the frequency domain,
and it is the range of frequencies over which thanoel gain remains about the same, or as is
commonly known, over the range of frequencies thia ¢ flat, with a linear phase. Fortunately,
the coherence bandwidth of the channel denotedbyan be approximated based on the
specified correlation coefficient value. The caskew the correlation coefficient is about
zero,(Aw) = 0,Aw = 2nB, . The coherence bandwidth for this case is apprated by
B. = 1/a, , which implies that changing the frequencyRyresults in a completely different
(and statistically independent) gain. For the n@mon value oP(Aw) = 0.5(or 50%), the
coherence bandwidth is estimatedByy~ 1/50, which implies that the channel gaincandw
+ B, are similar. Finally, when considerimfAw) = 0.9(or 90%) the coherence bandwidth
can be approximated #: ~ 1/500;. In this case, the channel gaineais almost exactly the

same as the gain at+ B..
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Based on the value of coherence bandwR}th and given signal bandwidBy , one can
evaluate the channel category. WikRn> Bg, the channel is considered flat or flat fading.
Denoting the symbol time duration iy then the minimum signal bandwidth can be

estimated a8 = T—ls This signal bandwidth therefore has to be quité &bs than the channel

coherence bandwidth so that the channel can benasisto be flat fading. A rule of thumb is
given by

Bom b < 1 ivalently by = < 0.1
5 =T = 10, or equivalently yTS_ .

(2.33)

In the case of a flat fading channel, no compeosaftor the channel distortion is

required. Consequently, the symbol rate in the sekhas an upper bouri} < % . When the

T

above condition is not met, thatBs > B, the ISI exists and the received signal is distbrt

In most common multipath channels the ISI distortieffects are significant and
dominate the channel noise. Such channels aretsdi@ highly dispersive, and engineering
efforts are focused on eliminating ISI by a procksswn as equalization in communication

discipline, or de-convolution in some other appglmas such as geophysics.

In conclusion, we divide the channel behavior wibpect to the signal bandwidth and

according to the channel delay spread as follows:

WhemBs < B, and Ts >» o, the channel is known as flat fading or frequenot~n

selective

WhemBs > B, and Tg < g, the channel is known as non-flat fading or freguyen

selective
Frequency Dispersion Parameters

The mobility of the communicator originates anotparameter known as Doppler shift

in frequency, or simply some change in frequenay tuthe mobile velocity. When denoted by

fa , the Doppler shift is computed fis= -

cos@ in whichv is the relative mobile speeijs the

radio wavelength, and is the angle between the wave direction and thkeilmdirection. The
change in frequency is positive when the mobilera@ghes the transmitter and negative when
the mobile is departing.

43



Radio
Wave

Figure 2-23: Doppler shift geometry

It is obvious that different paths have differenbppler shifts that possess random

natures, as the angbe can be considered random and in most cases omyfalistributed.

There are a number of copies of the transmittedewaat the mobile antenna, each
travelling along different paths, which are chaesieced by various relative speeds and angles.
Moreover, in specific scenarios, the surroundingects might be moving and generating time

varying Doppler shifts on multiple components.

The corresponding random change in frequency casgestral broadening known as
Doppler spread. Doppler spread is therefore defagethe range of frequencies over which the
Doppler shift is not zero. We denote By the maximum Doppler shift or Doppler spread of a

specific wireless channel.

It is possible to categorize the wireless channigh wespect to Doppler sprea); as

follows:

1) If the signal bandwidth is much greater than Doppj#ead, that i85 > B, , the fading
is known as slow fading and, hence, the effec@agpler spread are negligible. In slow
fading, the channel (in particular, CIR) changesaamuch slower rate and can be

assumed to be static over several symbol time idmsat



2) If, on the contrary, the effects of the Doppleresat are significant and cannot be ignored
in the case thaBs < B, , the CIR changes rapidly with respect to the ynibme

duration. Such channel is called fast fading

The time domain properties of the wireless chaael be further specified by defining
another parameter, coherence time, which is thatidar of time in which the CIR is invariant.
Two samples of the channel are highly correlatedhéir time separation is less than the
coherence time. The given definition itself depeondsthe time correlation coefficient. In the

time domain, the correlation coefficient as a fumcof time difference\t is given by:

E{h(t)h*(t + At)} (2.34)

Y = hom

Generally, the coherence time is inversely propasi to the Doppler spread.

1 2.35
T, ~ — (2.35)
Bq

If the coherence time for which the time correlatmpefficient of (2.28) remains above

0.5 or 50% it is approximated by:

9 (2.36)
TC =~
16mBy

As a rule of thumb, the geometric average of (2.289 (2.30) is used for digital

Lo | L9 o042 (230
€~ Bd.16'l'[Bd - Bd

The channel characteristics can be categorizedyubi® coherence tim&. , and the

communication.

symbol time duratiofis as follows:

WhenTs < T, , the complete signal or symbol is affected sirhjldy the channel, and

the channel is known as slow fading.

45



WhenTs > T, , different parts of a signal are affected diffehg because the channel

changes faster compared to a symbol duration. Qoesdy, the channel is called fast fading

In summary, wireless channels can be divided iotw fypes. Based on the delay spread,
the channel is either flat (not frequency selegtimefrequency selective, and based on Doppler

spread (or, equivalently, coherence time) the celisrknown as slow or fast fading.

As we will see, commonly encountered wireless cké&nnin modern mobile
communication systems are determined to be se¢eatid slow fading. That is, the channels are

usually highly dispersive. However, the variatidrclannels is slow with respect to time.

25.2 Adaptive Equalization

Adaptive equalizers [33] compensate for signal adigin attributed to inter-symbol
interference (ISI) which is caused by multipathhivit time-dispersive channels. As shown in
Figure 2.23 below, there are several methods irchvlequalizers can achieve adaptation of their

tap coefficients. These include the transmissiora @faining sequence and decision- directed

adaptation
Noise /
s(n) Channel x(n) F,IR. y(n) > I)CCif‘fij‘m 5(n)
Equalizer Device
Egualizer (J(n) Error
Adjustment Computation
1Trannmg j
Sequence
Decision-Directed
Training Mode Maode
b}mbol
Statistics

Blind Mode

Figure 2-24: Simplified baseband model of a digital communication system

The basic data communications process can be arpldly Figure 2.23. A-bit binary
sequence is mapped to a symbgt) which is pulse-shape filtered and modulated to rdba

limited communication channel. The received symla¢h) is corrupted by inter-symbol
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interference ISI and Gaussian white noise. The leguaremoves the distortion caused by the
channel by estimating the channel inverse. Theleguautputy(n) is sent to a decision device,
which results in the received symbol estimite). The error computation, which determines the
error signak(n) used to adjust the equalizer tap coefficientseddp on the equalizer mode of
operation and the corresponding equalization algoriemployed. For a non-blind adaptive
equalizer such as those based on the least meamesg{LMS) algorithm, the equalizer will
initially operate in the training mode. In this n@osi(n) is a training sequence known by the
receiver ande(n) will be calculated using the difference betweg(m) ands(n). After
convergence, the equalizer will be switched todéeision-directed (DD) mode whe#én) will

be computed based on the difference betwsger) and the estimated symb@k(n). For blind
adaptive equalizers, there is no training sequendally e(n) is a non-linear function gf(n).
After convergence, as for non-blind equalizers, lthed equalizer can be switched to the DD

mode.

25.21 Minimum Mean-Squared-Error Equalization

The mean squared error and variants of its costtifum are widely used used for
equalizer design [34], [35] due in part to the dinify of the MSE cost function and its
unimodal performance surface. The result of minimmean squared error (MMSE) equalization
is an exact solution for the equalizer tap coeffies, providing the theoretical minimum for
MSE based equalization algorithms. The MSE critaat®empts to minimize the expected
squared magnitude of the recovery ew@r) = d(n) — y(n), whered(n) is the desired signal.
The desired signal is the transmitted signal deldyes so thatd(n) = s(n — §).The MSE cost

function is defined as
Jmse = E{e*(n)} (2:39)
= E{d*(n) — 2d(n)y(n) + y>(n)}
= E{d*(n) — 2d(mw’ (Mx(n) + w (Mx(m)x" (Ww(n)}
= E{d*(n)} - 2E{dmw’ m)x(m)} + E{w’ (mx(n)x" (W)w(n)}.
In the equation abovev(n) = [wy(n), w;(n),...,wy_1(n)]T is an N x 1 vector of

equalizer tap coefficients where N is the length of the equalizer.
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x(n) = [xo(n), x;(n), ..., xy_1(n)] is the equalizer input. When the filter coeffidieare fixed,

the cost function in (2.32) is not time-varying arah be re-written as
Jmse = E{d?(n)} — 2wTE{d(n)x(n)} + wTE{x(n)xT(n)}w (2:39)

= E{d*(n)} — 2w'p + w'Rw

wherep = E{d(n)x(n)} is the cross-correlation vector between the désignal and the input

signal andR = E{x(n)x” (n)} is the input correlation matrix.

The gradient of the MSE cost function with resgedhe equalizer tap weights is defined

as
V Jmse _ aJmSe _ aJmSe a(-]mse a(-]mse (240)
w ow ow, 0wy, T Owyn_g
= —2p + 2Rw

The optimal equalizer tap weighig required to obtain the minimum mean-squared error

(MMSE) can be determined by equating (2.34) to z& solving fow,as follows
0=2Rw, —2p—->w,=R71p (2.41)

where the input correlation matriR is assumed to be invertible. The MMSE, which isated
by &, 1S Obtained by substituting (2.35) fwrin (2.33) as follows

Emin = E{d?(n)} — 2w, p + wg Rw, (242)
= E{d*(n)} - 2[R7'p]"p + [R™'p]"R[R""p]
= E{d*(m)} -2p"R'p+p'R7'p
=E{d*(m)} —p"R'p
=E{d*(n)} -p"R™'p
= E{d*(n)} —p"w,

Optimal tap coefficients could be obtained by swdv(2.35) but it requires the inversion
of large matrices in practice, which is computadibncostly. There are algorithms which can

search for the near optimal or optimal coefficidntan iterative manner without carrying out the
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matrix inversion in (2.35). An example of such dgoathm is the method of steepest descent
which is expressed as

w(n +1) = wn) + p(=VyJ ™) (243)

where u is a constant step size. In order to convergestep size is chosen to satisfy the

following requirement

244
o<pu< (249

}\max

where 4,4, IS the maximum eigenvalue of the input correlatioatrixR. The method of
steepest descend requires an estimate of the gtadmch is not available in practice and thus
hinders its application.

25.2.2 Trained Least-Mean-Squares Algorithm

The least-mean-squares algorithm (LMS) is a seangthod whose cost function
simplifies the gradient calculation in (2.34) byplecing the expected values with the
instantaneous values. There are two modes in whiehLMS operates: training and tracking.
The training mode occurs only once during startmppoint-to-point communications and the
desired signal to adapt the equalizer tap coeffisieAfter initialization is complete, the LMS
algorithm switches to the tracking mode, where él@alizer taps are adjusted based on the
difference between the equalizer output and thenastd symbol. The LMS algorithm will now

be derived for both the real-valued and complexiedicases.
Real-Valued LM S
Recall from (2.34) that the gradient®f**¢ is defined as
V,J™¢ = =2p + 2Rw

An estimate of the gradieng, J™°¢ can be obtained by replaci®) andp with their
instantaneous estimatis= x(n)x” (n) andp = d(n)x(n) , respectively. The gradient estimate

v, J™%€ is equivalent to the LMS cost function which idided as
Vwd'™S = —2p + 2Rw(n) (2.45)

= —2(dm)x(n)) + 2(x(W)x" (n))w(n)
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= —2x(n)(d(n) — xT(n)w(n))

Substituting (2.39) into (2.37), the LMS equalizap adjustment algorithm for real-values
signals is defined as

w(n+1) =w(n) + u(d(n) — y(n))x(n) (2.46)
wherey is restricted to the limits defined in (2.38).

Complex-Valued LM S

The LMS cost function for the complex case is dafilas
J™s = le(n)|* = e(n)e*(n) (2.47)

= (d(m) —w' (Mx(n))(d"(n) — w (n)x*(n))
= |d(n)|* = w'(m)x*(m)d(n) — w' (Mx(m)d*(n) + w' (M)x(m)x" (n)w*(n)

= |d(m)|* + wi () (x*(W)d(n) + x(W)d* (n)) — wi () (x(n)d*(n) — x*(n)d(n))
+ wr(x()x” (Mwr () + wi ()x(M)x" (Ww; (n)
where (.)f the complex conjugation and transposition opereowhile (.); and(.),; are the

real and imaginary components of a complex nunriespectively. Taking the gradient of (2.41)

with respect to the real and imaginary components:

. qlms _ ag'"™s _ H v " (2.48)
W = s = 2R ()i () = (¢ (@A) + X))

V. qims — aJlms =2 H . q* “(md (2.49)
W™ = s = XM (W) — @) () ~ X () )

Using (2.42) and (2.43), the complex gradient o412 is defined as
V™S = Vi IR + jVuJi™S (2.50)

= 2x(M)x (M)wr(n) — (x*(n)d(n) + x(n)d*(n)) + j2x()x" (W)w;(n) + (x(n)d*(n)
+ x*(n)d(n))

= 2x()x" () (wr () + jw, () — 2" (R)d (n)
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= 2x(n)x (n)w(n) — 2d(n)x*(n)
= =2(d(n) — w" (m)x(n))x*(n)

The LMS equalizer tap adjustment algorithm is dedias
w(n + 1) = w(n) + p(=V,Jg'™s) (2.51)

=w(n) + u(dm) — ym))x*(n)

where once again is restricted to the limits given in (2.38). Thiere the complex equalizer tap

adjustment algorithm for the method of steepestegsalgorithm is defined as
w(n + 1) = w(n) + pe(n)x*(n) (2.52)
wheree(n) is the error signal of the particular algorithm.

25.3 Symbol classification at the receiver

25.3.1 Principleof digital communication

Consider the communication system shown in Figued ®Below. Every T seconds the
system sendk = log, M bits of information through the channel for a datiz ofR = K /T bits
per second (bps).There am = 2K possible sequences of K bits and we say that edch b
sequence of length K comprises a message; = {by, by, ...bx} EM where
M = {m,, m,, ....mg} is the set of all such messages.The messagephatvability p; of being

selected for transmission whexél; p; = 1.

Suppose message; is to be transmitted over the channel during ihee tinterval
[0,T).Since the channel is analog the message meistmbedded into an analog signal for
channel transmission. Thus, each message M is mapped to a unique analog sigsndt) €

S = {5:(¢t), ..., sy (t)} wheres; (t) is defined on the time interval [0, T) and hasrgpe

T (2.53)
Es, =f s2(Hdt, i=1,..,M
0
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Figure 2-25: Communication system model

Since each message represents a bit sequencesigaals;(t) € S also represents a bit
sequence, and detection of the transmitted sigi@l at the receiver is equivalent to detection of

the transmitted bit sequence.

In the communication system model shown abovetré#msmitted signal is sent through a
channel which introduces inter-symbol interferer@aienr(t) the receiver must determine the
best estimate of whicl;(t) was transmitted during each transmission intefyél, (K +
1)T).This best estimate for;(t) is mapped to a best estimate of the messa@e) € M and the

receiver then outputs this best estimate- {b,, ...., b,} € M of the transmitted bit sequence.

Intuitively, the receiver minimizes the probabilibf detection error by decoding the
received signal as the signal in the set of posditainsmitted signals that is closest to the one
received [36]. Determining the distance betweenttilesmitted and received signals requires a
metric for the distance between signals. If we ddirld a way to represent digitally modulated
signals as vectors in an appropriately defined arespace, then we could analyze signals in
finite-dimensional vector space using classicalamst of distance for vector space instead of
analyzing signals infinite-dimensional space whishconsiderably more difficult. In the next
section we show how to represent digitally modulagggnals as vectors in finite dimensional

space. This is called geometric representatiomgoibss.

25.3.2 Geometric representation of signals

The basic premise behind a geometric representafi@ignals is the notion of a basis
set. Specifically, using a Gram-Schmidt orthogaraion procedure, it can be shown that any
set of M real energy signals = (s;(t), ...., sy (t)) defined on [0,T) can be represented as a
linear combination ofV < M real orthonormal basis functiof@, (t), ...., @y (t)}. We say that
these basis functions span the Séfthus we can write each(t) € S in terms of its basis

function representation as
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N (2.54)

si(t) = Zsi]-(b]-(t), 0<t<T

j=1
where
T (2.55)

sﬁ=f$@%&Mt

0

is a real coefficient representing the projectibs;¢t) onto the basis functiop;(t) and

(2.56)

T
f@m@mm:ﬁ?i?
0

For most modulation techniques normally encounténedracticeN = 1 or 2 .For the

case whenV = 2 such as for QAM modulation, the basis set consitihe sine and cosine

. (2.57)
@, (t) =\/;cos(21'[fct)

5 (2.58)
?,(t) = —\/;sin(anct)

The\/% factor is needed for normalization so tyi(;T:\wf (Hdt=1,i =1,2.

functions:

and

We denote the coefficients; in (2.49) above as a vectsy = (51, Siz, .-, Siy) € RV
which is called the signal constellation point esponding to the signas;(t). All the
constellation pointysy, ....., sy} corresponding to all th&/ messages constitute the signal
constellation. Given the basis functiofgs (t), ...., @y (t)} there is a one-to-one correspondence
between the transmitted signgl(t) and its constellation poing;. Specifically s;(t) can be
obtained froms; by (2.48) ands; can be obtained fromy(t) by (2.49).Thus it is equivalent to

characterize the transmitted signalshgt) or s;.
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The representation af(t) in terms of its constellation poist € RY is called its signal
space representation and the vector space corgatmenconstellation is called the signal space.
With this signal space representation we can aedlye infinite-dimensional functiorss(t) as

vectorss; in finite-dimensional vector spad.

2.5.3.3 Received vector

From the communication system model shown aboeerdbeived signal(t) = s;(t) +
n(t),0 <t < T. Using geometric representation of signal concepis received signal can be

represented by the vecter= (ry, ... ... ,Tv) Wherer; =s;; +n;,j=1,...,N.

T (2.59)
sy = f s, (09,0 dt

0

and

T (2.60)
n; =fn(t)(2)j(t)dt
0
The vectorr is called the received vector and is used atéheiver to determine which
signal was transmitted. This can be done by mapping the constellation diagram and
determining which constellation poist is closest tar.The closest constellation point is then
taken to correspond to the signal that was tramsthiend hence the message that was

transmitted.

2.5.3.4 Classification (Detection) of symbols

In the previous section, it is mentioned that #éeeived vector r is used at the receiver to
determine the signal that was transmitted. This lmamone by mapping in the constellation
diagram and determining which constellation paiptis closest ta~.The closest constellation
point is then taken to correspond to the signal Wes transmitted and hence the message that

was transmitted. A received vectocorresponds to message, i = 1,2, ..., M if

YN (r; = s1)? isminimumfor k = i (2.61)
j=1\%j Kj



wherer;’s,i = 1,..., N are the components of the received vettands;’s ,j = 1, ..., N are the

components of the signal constellation paiptk = 1, ..., M.M is the number of signals in the

set of all possible unique signals that can bestratted. (2.62) can be written as

N — VN 2 N N 2
izt = si)* = Tjza 1f —2Ejm1 ysig + Ejza i (262

S “

H_}
Independent/ / \

of K, need not Inner product of r  E, energy of kt"signal. For equal
be computed with s, need to be energy pulses this need not be
computed computed. For QAM it will be
compute:

Thus an equivalent form of the optimum decisioe ((@.61) is to choos@ = m; if
Z,N=1 rjSyj — %Ek ismaximumfor k = i (2.63)

A correlation receiver implements the optimum decigule of (2.63) by first finding-
using the procedure described in section 1.3 aml ¢bmputing the metric of (2.63) and taking a

decision in the receiver. The corresponding recestreicture is illustrated in Figure 2.25 below
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CHAPTER 3
METHODOLOGY

3.1 Smulations

3.1.1 Generation of training data

Un-modulated 16-QAM signals whose gray coded cdlasiten is shown below are

generated.
025 T T T T T T T T
02_0010 3 0110 7 1110 15 10100 11
0.15F =
= 01F _
o 0011 4 0111= 8 y’ 16 1011« 12
9 0.05- =
= .
3
o 0
E
£ -0.05 s
© 0001 2 0101« 6 1101« 14 1001« 10
S =01 —
-0.15- =
-0.2- —
oooC 1 0100+ 5 1100 13 1000 9
— 1 1 1

2 1 1 1 1 1
-0.25 -0.2 -015 -0.1 -005 O 005 01 015 0.2 025
in—phase component

Figure 3-1: 16-QAM constellation

The 16 signal constellation points have been shaitim their gray codes to the left and
the decimal equivalent to the right. Each condieltapoint will henceforth be referred to by
their decimal equivalent. In clustering terminologye will refer to each of the constellation
points as a class, so that there are 16 classésefarawn constellation and each class is referred

to by its decimal equivalent. Note that the enavfy specified constellation point is given by
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the length of the vector originating from the omidgjpoint (0, 0)) to the specified point. For
example, the energy of constellation point 16 iseegiby the length of the drawn vector. The
average constellation energy is given by the surthefenergy for all the constellation points

divided by the number of constellation points.

In the second step, a value is randomly generatettieo discrete uniform distribution in
the range 1-16, and then the constellation poitt tie decimal equivalent to this value is sent
over the symbol interval. For the experiments iis fhaper, about 1000 such symbols are sent

over a wireless channel.

The wireless channel used is a 3G wideband CDMAebig37] for a vehicle travelling
at 120 km\hr. This channel introduces severe isyenbol interference. Below (Table 3.1) is a

table of relative powers in dB of the rays of ttlimnnel versus the delay in nanoseconds.

Table 3-1: Specifications of a 3G wideband CDM A channel

Delay(ns) Power (dB)
0 0.0

244 -24

488 -6.5

732 -9.4

936 -12.7
1220 -13.3
1708 -15.4
1953 -25.4

The channel output for the number of transmittadlsyls was then used to train a SOM.
For the complex channel output corresponding td eant symbol, a two component vector is
formed where the first component is the real pdrtthe channel output and the second

component is the imaginary part. A collection dfsalch vectors for the channel output forms
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the training samples. Figure 3.1 below is a plathefin-phase versus the quadrature component
for all channel output. As seen from the plot, dyaamic range of the two components (inphase
and quadrature component) is equal and thus noatization of data before training the SOM is

necessary.

3.1.2 Training the SOM

For training the SOM, the SOM_PAK program packa@8] [was used, SOM_PAK
contains all programs necessary for the correcliGgtipn of the self organizing map algorithm
in the visualization of complex experimental data.

A map was created of 160 units arranged in a rgalantopology with 16 units in the x-
direction and 10 units in the y-direction. Randontialization of the map was used. The training
of SOM was carried out in two phases. In the fifsase the parameter used were: 30,000 steps,
initial learning rate parameter was 0.05 and ihiadius of the training area of SOM was set to 8
units. In the second phase the parameters used We90 steps, initial learning rate parameter
is 0.02 and the initial radius of the training acd&®OM is 2 units.1000 maps were created using
the parameters and the best one was picked as rthewbich gives the lowest average
guantization error. The quantization error is thelilian distance between a reference vector of
the trained map and the input vector which mostrddes it. The training samples are used for
the purpose of computing the average quantizationr.eThe final map picked had a
guantization error of 0.017460.

59



a plot of both the two dimensions
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Figure 3-2: A plot of thetraining data

The trained map was used for the analysis and hzstian of the channel output with

the aim of discovering any properties which maybed to mitigate inter-symbol interference.
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CHAPTER 4
RESULTSAND DISCUSSIONS

4.1 Analysisand visualization of channel output

Self-organizing maps preserve the topological i@tahips in the input data, as such they
can be used to make observations about the steuofuthe input data which in our case is an
interfering channel output. Self-organizing mapsoatan be used to discover categories of data
in the training data and consequently to classifyut data. To classify the wireless channel
output, training data was presented again to tie thained map, an input vector is picked from
the training data and presented to the trained riingm the winning node is computed as the
node whose vector is closest to the input vectbis Pprocedure is repeated for all training data.
Then each node of the trained map is given thel lab¢he class to which majority of the
symbols for which it wins belong. Figure 4.1 belesva map showing the 2-dimensional
locations of the final map vectors and the numeétatzels of each node.
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0.2 11151111
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) 15 12 12
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g 005 7 7 8 16 16 14 9 g il
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Figure4-1: Structure of channel output
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Comparing Figure 4.1 to the 16-QAM constellatiorpnsaown reproduced in Figure 4.2

below for convenience, it is seen that the chaongbut is a rotated version of channel input.

The topological relationships in channel input @neghly maintained.

Next, the trained map is used to classify the cehimput, and the resultant classes are

compared with the known classes of channel inan tmisclassification of symbols is noted.

Then an error analysis is done on the misclassignbols to determine the classes to which a

symbol belonging to a given constellation poiniksly to be misclassified to.

quadrature component

025 T T T T T T T T
02_0010’ 3 0110 7 1110+ 15 1010 11
0.15r —
0.1F —
0011 4 0111= 8 1111 16 1011+ 12
0.05r —
0
-0.05- B
0001 2 0101 6 1101« 14 1001« 10
-0.1+ —
-0.15- ]
-0.2- —
0000 1 0100 5 1100 13 1000 9
— 2 | | | | | | | |
-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 01 015 02 025

in-phase component

Figure4-2: 16-QAM constellation

The results are shown in table below:

62



Table 4-1: Results of symbol misclassification analysis

class likely to be misclassified to
1 25

2 1,4,6

3 4,7

4 3,82

5 1,6,13

6 5,2,14,8

7 3,815

8 4,6,7,16

9 10,13

10 9,12,14

11 12,15

12 10,11,16
13 59,14

14 6,10,13,16
15 7,11,16

16 8,12,14,15

From Table 4.1 it is seen that symbols are likelypé misclassified to those symbols
whose gray codes differ from its own by 1 bit. lther words, the gray coding technique has

been verified.
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4.2 Component Maps

The component maps for the first and second comypooiethe SOM final weights is
illustrated in Figure 4.3 and Figure 4.4 respedyivdso shown is the label of each node
corresponding to the majority of the classes whegpeesentation it wins. The lighter regions
indicate areas where classification of the presksises is strongly dependent on a component of
the reference vectors while the dark regions irtditlae areas where classification of the classes

are weakly dependent on a component of the refereactors

thirteerthirteerthirteerthirteer
en ten  ten thirteen nine thirteerthirteer
ten nine ten nine nine nine thirteer

ten ten nine nine nine nine nine

Figure 4-3: Component map for thefirst component



b, by

Figure 4-4: Component map for the second component

From Figure 4.3, it is seen that the classificatidnclasses 9, 10 and 13 is strongly
dependent on the first component of map weightorsctNote that the first component of the
map weight vectors correspond to the in-phase caemoof channel output which in turn
correspond to the in-phase component of channeit.irgimilarly, the second components of
map weight vectors correspond to the quadraturgpoaent of channel input. In the same Figure
4.3 it is also seen that classes 3, 4 and 7 ar&ydapendent on the real part of the channel
output. Classification of the remaining classebhdage taken to be moderately dependent on the
first component. From Figure 4.4, we see that dlaaton of classes 1, 2, and 5 are least
dependent on the second component of map weigkargewhile classes 11, 12 and 15 are most
strongly dependent on the second component. Thefdéke classes are moderately dependent

on the second component of the map weight vectors.

In summary, it is noted that the classificationvafious classes of channel output is
influenced to varying extent by the value of symhwephase and quadrature component
respectively. Simulations show that if the magrétod the in-phase component of all the classes

of the input 16-QAM constellation is increased,ntheutput symbols corresponding to input
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classes 9,10, and 13 have the most energy incrdaewed by the channel output
corresponding to the classes that are moderatsponsive to the in-phase component. Output
symbols corresponding to classes that are ledsemted by the in-phase component showed the
least energy increase. The Table 4.2 below shogvathrage energy increase per symbol for the
3 categories of channel output when the magnitudéh® in-phase component of all input

symbols is increased by 0.0025.

Table 4-2: Averageincreasein energy per symbol for the symbols whose

misclassification isweakly, moderately and strongly influenced by the value of thein-phase

component
Category Energy increase per symbol
Weak -0.0130
Medium 0.0071
Strong 0.0166

From the above discussion, it is seen that clagdesh are strongly influenced by a
component of the map weight vectors have the mesirable response to a change in that
component in the input symbols whereas classeshwdrie least influenced by a component of
the map weight vectors have the least desirabjgors® to a change in that component in the

input symbols.

In the next section we explore how this result lsarused in the design of a constellation

which minimizes the symbol classification error lghieducing the average constellation energy.

4.3 Design of a 16-QAM constellation

In the previous section a component map for th& @nd second component of map
weight vectors reveals that the classification iffecent classes of channel output is influenced
to varying levels by the value of their in-phasel guadrature components. Starting with 16-
QAM symbols and transmitting them over a channat thtroduces inter-symbol interference, it

was shown for instance that the classificationyoflsols belonging to constellation points 9, 10,
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and 13 is strongly influenced by the value of theiphase component while those belonging to
constellation points 3, 4, and 7 are weakly infeeghby the value of their in-phase component.
The rest of the constellation points are considéondae moderately affected by the value of their
in-phase component. Further, we see that classdicaf classes 1, 2, and 5 are least dependent
on the value of their quadrature component whigedlassification of classes 11, 12 and 15 are
most strongly dependent on the value of their cptade component. The rest of the classes are
moderately dependent on the value of their quadratomponent. A possible application of this
result is in the design of a digital modulation stafiation given the knowledge of the type of
channel likely to be encountered in a digital comroation system. For a digital modulation
constellation, a reduction of the average congiefieenergy results in an increase in the symbol
error rate at the receiver. A simple way to explis is that when the average constellation
energy is reduced, then it becomes more diffiauldistinguish between the different amplitude
levels and phases of the transmitted symbols. Tiestopn we ask and answer is: starting from a
given average constellation energy, what is thariege by which the average constellation
energy can be reduced while at the same time nEmgiithe resultant increase in symbol
classification errors at the receiver?

Beginning with a standard rectangular 16-QAM cdletien, we show how to construct

a constellation with a smaller average energy winileimizing the resulting increase in receiver
symbol error rate. If it is known for instance thhe classification of symbols belonging to
certain constellation points is weakly influencedtbe value of their in-phase component, then
an attempt to reduce energy of transmitted sigisatgest done by reducing the value of the in-
phase component of symbols belonging to those eltetsdn points. The resulting symbol error
rate is then compared to that obtained by a whateseseduction of the energy of all
constellation points such that the average comasi@il energy is the same as that of selective

reduction of the in-phase components of specifitstalation points described above.

For the simulations, we start with a gray codedQ¥dv shown in Figure 4.2. Besides
each constellation point is its 4-digit binary g@de to the left and its decimal equivalent to the
right. A constellation point shall be referred tpits decimal equivalent. The average energy of
the constellation is 0.2118.In the second stepalaevis randomly generated on the discrete
uniform distribution in the range 1:16, then thastellation point with the decimal equivalent to
this value is sent over the symbol interval. 806hssymbols are sent. The symbols are sent over
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a 3G wideband CDMA channel [2] for a vehicle tréimgj at 120 km\hr. This channel introduces
severe inter-symbol interference. In the receivetL®S equalizer is used to remove the inter-
symbol interference. The error incurred after eiga#ibn is about 100 symbols. To achieve the

aims outlined in the previous section, the follogvthree experiments were performed.
Experiment 1

The in-phase components of constellation pointd &nd 7 were reduced by 0.0025,
these are the constellation points whose clasiditais least dependent on the in-phase
component. The quadrature component of constallggants 1, 2 and 5 were also reduced by
the same amount. These are the constellation peimise classification is least affected by the
value of their quadrature components. The in-plaaskquadrature components of constellation
points moderately dependent on in-phase and quadrabmponent were also reduced so as to
maximize the total constellation energy reductionilevnot drastically increasing the symbol
classification errors. The new average constelatioergy is then calculated. Then 800 symbols
are sent over the channel and the number of mgfiks symbols at the receiver is noted. In
order to generalize the results, we repeat theepiwre for 10,000 randomly generated vectors,
each consisting of 800 symbols and the symbol mmsdication is counted for all the 10,000
instances. The results are plotted in Figure.4.5.

Experiment 2

For this experiment, all the constellation poirnts multiplied by a suitable scalar so that
the resulting constellation has an average eneqgpleto that of the constellation used for
experiment 1.In other words, here we have a whidesaduction of the energy of all
constellation points so that the average energgsilting constellation is equal to the case of
experiment 1 where only specific components of esaonstellation points had their magnitude
reduced depending on how they are influenced by#iee of their in-phase and quadrature
components.800 symbols are then sent over the ehand the number of misclassified symbols
is counted. As in experiment 1, we repeat the mhaeefor 10,000 vectors, where each vector

consists of 800 symbols. The result is plottedigufe.4.5.
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Experiment 3

For this experiment, symbols from the original defiation shown in Figure.1l are

transmitted and the resulting symbol misclassiiicatis noted. The result is plotted in

Figure.4.5.
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Figure 4-5: Symbol classification errorsfor experiments1, 2and 3

As shown in Fig.4.5, more symbol errors are inalinnéhen the constellation energy is

reduced homogeneously as in experiment 2 than whnspecified constellation points have

an energy reduction as in experiment 1. This isbse there is a smaller increase in number of

errors when constellation points whose classificats weakly dependent on a component have
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that component reduced than when all constellgtimints have an energy reduction including
the ones whose classification is strongly dependerhe values of their in-phase and quadrature
components. As expected, the least error is induwhen using symbols from the original

constellation point without any energy reduction.

In section 1.1, it was shown through computatiat #ymbols belonging to constellation
points whose classification is weakly dependentaomomponent have the least desirable
response when that component is altered in thetiggmbols and symbols belonging to
constellation points whose classification is sttgndependent on a component have the most
desirable response when that component is alterdidei input symbols. For example, symbols
whose classification is weakly dependent on th@hase component have the least energy
increase when the magnitude of the in-phase conmpaieorresponding constellation points is
increased. The same is true for when the magnifitlee in-phase component is decreased. An
equivalent way to demonstrate this experimentallpishow that when the magnitude of the in-
phase components for symbols whose classificat®nleast dependent on the in-phase
component is reduced, then we have the least isenieasymbol classification errors. That is the

essence of the next experiment
Experiment 4

In this experiment, the aim is to compare the iasesin error per unit reduction of
constellation energy when a reduction of the ingghand quadrature components is done in the
manner of experiment 1 and when in addition, thphiase and quadrature components of the
constellation points most strongly influenced by tmlues of their in-phase and quadrature

components is reduced. The result is plotted inréigt.6.
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Figure 4-6: Comparison of increasein error per unit energy reduction for

experiment 4

In Fig.4.6, it is evident that when constellationimis whose classification is strongly
influenced by the in-phase or quadrature compohent the magnitude of that component
reduced, then there is a drastic increase in nuwibgymbol errors than when only components
that are weakly or moderately influenced by in-ghas quadrature components have their

magnitudes decreased.
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CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Visualization and analysis of an interfering wisdechannel output using self-organizing
maps was done. Using 16-QAM symbols as the inptitéavireless channel, then visualization
of the output using a trained SOM revealed thatdbgut is a rotated version of the input
constellation. The SOM was also used to classigydhannel output and an error analysis was
then done on the misclassified symbols to determihieh constellation points that an output
symbol belonging to a given constellation poinlikely to be misclassified to. It was found that
a symbol is likely to be misclassified to those bpis belonging to constellation points whose
gray codes differ from that of the symbol under sidaration by one bit. In other words, the
validity of the gray coding for the wireless chahuased is verified. A component map analysis
of the SOM map reveals how the classification ofiotess classes of channel outputs is
influenced by the values of their in-phase and catade components. It is found that the
classification of symbols belonging to constellatpmints 9, 10, and 13 is strongly influenced by
the value of their in-phase component while thoslermging to constellation points 3, 4, and 7
are weakly influenced by the value of their in-ghasmponent. The rest of the constellation
points are considered to be moderately affectedhieyvalue of their in-phase component.
Further, we see that classification of classes &anéd 5 are least dependent on the value of their
quadrature component while the classification afssés 11, 12 and 15 are most strongly
dependent on the value of their quadrature comporidm rest of the classes are moderately
dependent on the value of their quadrature compondsing this result, a technique was
demonstrated on how to reduce the average corgirlinergy for an interfering channel while
minimizing the resulting increase in symbol classifion errors. Thus a method is found to

mitigate inter-symbol interference.
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5.2 Contribution of thiswork

The study has extended the application of SOM thw visualization and analysis of
wireless communication channels.The findings docugtkin this report and summarized in the
preceding section shows new insights into the &iracof a wireless channel output as well as
establishing how the classification of symbolsffe@ed by the values of two parameters namely
their in-phase and quadrature components. Alsaepted is a technique demonstrating how this

knowledge can be used to design an energy effidigital modulation constellation.

5.3 Recommendations for further research work

Visualization and analysis was done for an outdué garticular wireless channel. It
would be interesting to see how the results tutnfaua practical situation in which the channel
varies over time. Also as has been demonstratédorganizing maps can be used to gain
valuable insight about the wireless channel ougmnat so the tool is recommended as a way of
gaining additional insights on the output of a \W&ss channel, which may lead to discovery of

properties which could be utilized to mitigate agaichannel imperfections.
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