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                                      ABSTRACT 

In this work, the signals at the output of a wireless channel in the presence of inter-

symbol interference were visualized using Self-Organizing Maps with the aim of discovering 

their properties which can then be used to mitigate the effects of inter-symbol interference on 

signals sent over a wireless channel. The research tried to find out if there are certain properties 

in an interfering wireless channel output which can be exploited to mitigate the effects of inter-

symbol interference and then it was demonstrated how the found properties can be used in the 

mitigation. To achieve these objectives, simulations were carried out. Gray coded 16-QAM 

symbols were transmitted over a channel which introduces severe inter-symbol interference. The 

in-phase and quadrature components of the channel output were then used to train a self-

organizing map. The fully trained map was used to make observations about the general structure 

of channel output and how it relates to the transmitted constellation. It was found that the 

channel output resembles a rotated input constellation. Furthermore, some symbols were found 

in clusters belonging to other constellation points other than their own. An attempt was then 

made to classify the channel output using the trained map and an analysis was then done on the 

misclassified symbols to determine what constellation points that symbols from each of the 16 

constellation points is likely to be misclassified to. It was found that a symbol is likely to be 

misclassified to those symbols whose gray codes differ from its own by one bit. Thus the 

accuracy of gray codes for the used channel was verified. 

An examination of the self-organizing map component planes for the in-phase and 

quadrature components revealed how the classification of the symbols belonging to each of the 

16 constellation points is influenced by the value of their in-phase and quadrature components. It 

was found that the classification of symbols belonging to certain constellation points is strongly 

affected by the values of their in-phase or quadrature components. The classification of symbols 

belonging to certain constellation points is found to be weakly dependent on the values of their 

in-phase or quadrature components while the classification of symbols belonging to certain 

constellation points is moderately affected by the values of their in-phase or quadrature 

components. This result can be used for example to minimize the number of symbol 

classification errors that result when the energy of transmitted signals is reduced. It is 

demonstrated how this can be done by essentially reducing the magnitude of in-phase or 
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quadrature components for the constellation points whose classification is weakly and 

moderately dependent on the value of their in-phase or quadrature components. The results show 

that the symbol classification error obtained is less than that obtained when the energy of all 

constellation points is reduced indiscriminately.  
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CHAPTER 1  

                                  INTRODUCTION 

1.1 Background 

The wireless channel is a hostile medium of communications because its characteristics 

change over time and frequency thereby impacting the signal sent over it. The received signal 

strength varies over time and frequency, a phenomenon called fading. Multipath fading occurs 

due to the constructive and destructive interference of the multiple signal paths between the 

transmitter and receiver. Multipath fading results in time-dispersion of received signal. This time 

dispersion can be characterized by a measure called the delay spread. Wireless channel can be 

classified as experiencing either flat-fading or frequency-selective fading depending on delay 

spread. If delay spread is much smaller than the symbol time then flat fading occurs. If delay 

spread is much larger than symbol time then frequency-selective fading occurs. Frequency-

selective fading causes severe inter-symbol interference. Inter-symbol interference is a hurdle in 

achieving the target of high data rate and reliable communication systems whose magnitude 

renders channel noise insignificant by comparison [1].  ISI can cause an irreducible error floor 

when the modulation symbol time is on the same order as the channel delay spread. Before 

discussing the techniques commonly used to mitigate ISI, we will define another measure of 

channel characteristics which determine if it is appropriate to use a particular technique to 

mitigate ISI. Coherence time is a statistical measure of the time duration over which the channel 

impulse response is essentially time invariant. If the symbol period of the baseband signal is 

greater than the coherence time of the channel then the channel will change during the 

transmission of the signal and the channel is said to experience fast fading. On the other hand, if 

the symbol period is less than the coherence time then the channel is said to experience slow 

fading. Signal processing provides a powerful mechanism to counteract ISI. Equalization in a 

broad sense can be defined as any technique used to counteract ISI. The term equalization  is 

however mostly associated with a particular  technique used to alleviate the ISI problem caused 

by delay spread by estimating the channel impulse response and then cancelling its effect on the 

received signal. In this project we use the term equalization in its broad sense unless stated 

otherwise. 
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1.2 Quadrature Amplitude Modulation 

Quadrature Amplitude Modulation (QAM) is a passband digital transmission method that 

impresses two separate �-bit symbols onto the quadrature carriers ���(2��	
) and ��
(2��	
) 
respectively, where �	 is the carrier frequency. The general M-ary QAM signal constellation is 

represented by the finite symbol set ��� = 	�� + 	�������� . Alternatively, a QAM symbol can 

be represented in polar notation as ������ , where �� = ��� + ��  and !� = 
�
"�(�� ��⁄ ). 
The modulated passband signal �(
) is defined as 

 s(t) = ℜ(A*(t)e,( -./0123(0))4													 (1.1)  

where ℜ�. � represents the real part of a complex number. The modulated signal �(
) is referred 

to as the narrow-band bandpass signal since �	 ≫ 6	where 6 is the bandwidth. The narrow-band 

bandpass signal can be translated to an equivalent baseband signal by expanding (1.1) as follows 

 		s(t) = A*(t) cos9θ*(t); cos(2πf>t) − A*(t) sin9θ*(t); cos	(2πf>t)									 (1.2)  

	= uC cos(2πf>t) − uDsin	(2πf>t)						 
where EF = ��(
)���	(!�(
)) and EG = ��(
)��
	(!�(
)) are the in-phase and quadrature 

components of �(
), respectively. The complex bandpass envelope is given by  

 					u(t) = uC(t) + juD(t) = A*(t)e,23(0)									 (1.3)  

which when substituted into (1.1) allows �(
)to be re-written as  

 					s(t) = ℜ(u(t)e,( -./0)4 
									 

(1.4)  

This implies that the knowledge of E(
) and �	  uniquely describes the modulated �(
), 
where E(
) contains all the useful information. 

1.3 Self-Organizing Maps 

The self-organizing map is a neural network model and algorithm that implements a 

characteristic nonlinear projection from the high dimensional space of sensory or other input 

signals onto a low dimensional array of neurons. The SOM is able to map a structured, high-
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dimensional signal manifold onto a much lower dimensional network in an orderly manner. The 

mapping usually preserves the topological relationships of the signal domains. Due to this order, 

the image of the signal space tends to manifest clusters of input information and their 

relationships on the map.  

Accordingly, the most important applications of the SOM are in the visualization of high 

dimensional systems and processes and discovery of categories and abstractions from raw data 

[2]. The later operation is called the exploratory data analysis or “data mining.” 

1.4 Problem Statement 

The use of self-organizing maps to visualize and explore the characteristics of a wireless 

channel output has not been done yet such a process could potentially yield hitherto unknown 

characteristics and relationships in the wireless channel output data. Such information could 

potentially be used to compensate for channel imperfections. 

The findings in this report indicate that indeed interesting relationships exist in the output 

of an interfering channel output and that such relationships could be used to mitigate inter-

symbol interference. 

1.5 Objectives 

1.5.1 Main Objective 

To perform channel equalization using self-organizing maps 

1.5.2 Specific Objectives 

1) To visualize the output of an interfering channel in a digital communication system using 

self-   organizing maps. For this purpose the digital modulation of choice is 16-QAM. 

2) To establish the various characteristics and relationships in the output of an interfering 

channel with an aim of using such characteristics and relationships to mitigate inter-

symbol interference. 

3) To demonstrate how the findings in 2 above can be used to mitigate inter-symbol 

interference  
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CHAPTER 2  

                             LITERATURE REVIEW 

2.1 Artificial Neural Networks 

2.1.1 Introduction 

The immense capabilities of the human brain in processing information and making 

instantaneous decisions, even under very complex circumstances and under uncertain 

environments, have inspired researchers in studying and possibly mimicking the computational 

abilities of this wonder. What a human can achieve in a very short time span, for instance in 

terms of pattern recognition and obstacle avoidance within an unknown environment, would take 

very expensive computer resources and much longer to get comparable results. This is mainly 

due to the way humans process information. Indeed researchers have shown for many years that 

brains make computations in a radically different manner to that done by digital computers. 

Unlike computers which are programmed to solve problems using sequential algorithms, the 

brain makes use of a massive network of parallel and distributed computational elements called 

neurons. The large number of connections linking these elements provides humans with the very 

powerful capability of learning. Motivated by this very efficient computational biological model, 

scientists have for the last few decades attempted to build computational systems, which can 

process information in a similar way [3]. Such systems are called artificial neural networks 

(ANN) or connectionist models. They are composed of a large number of highly interconnected 

processing elements analogous in functionality to biological neurons and are tied together with 

weighted connections corresponding to brain synapses. 

2.1.2 Features of Artificial Neural Networks 

As mentioned previously, an artificial neural network (ANN) is typically composed of a 

set of parallel and distributed processing units, called nodes or neurons. These are usually 

ordered into layers, appropriately interconnected by means of unidirectional (or bidirectional in 

some cases) weighted signal channels, called connections or synaptic weights, as shown in 

Figure.2.1 below. 
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 Figure 2-1: Typical representation of a feedfoward (unidirectional) artificial neural 

network with three inputs and two outputs 

The internal architecture of ANN provides powerful computational capabilities, allowing 

for the simultaneous exploration of different competing hypotheses. Massive parallelism and 

computationally intensive learning through examples make them suitable for application in 

nonlinear functional mapping, speech and pattern recognition, categorization, data compression, 

and many other applications characterized by complex dynamics and possibly uncertain 

behavior. Neural networks gather their knowledge through detection of patterns and relationships 

found in the data provided to them. Three important features generally characterize an artificial 

neural network: the network topology, the network transfer functions, and the network learning 

algorithm. 
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2.1.3 Neural network topologies 

These correspond to the ordering and organization of the nodes from the input layer to 

the output layer of the network. In fact, the way the nodes and the interconnections are arranged 

within the layers of a given ANN determines its topology. The choice for using a given topology 

is mainly dictated by the type of problem being considered. Some neural networks designers 

classify ANN according to how the nodes are organized and hence how data is processed 

through the network. The two well known ANN topologies are the feedfoward and the recurrent 

architectures. 

2.1.3.1 The feedfoward topology 

A network with a feedfoward (FF) architecture has its nodes hierarchically arranged in 

layers starting with the input layer and ending with the output layer. In between, a number of 

internal layers, also called hidden layers, provide most of the network computational power. The 

nodes in each layer are connected to the next layer through unidirectional paths starting from one 

layer (source) and ending at the subsequent layer (sink). This means that the outputs of a given 

layer feed the nodes of the following layer in a forward path as shown below. Because of their 

structure, such networks are termed as feedfoward networks. They are also occasionally called 

open-loop networks given the absence of feedfoward flow of information in their structure.  

The feedfoward topology has been very popular due to its association with a quite 

powerful and relatively robust learning algorithm known as the backpropagation learning 

algorithm (BPL). The multilayer perceptron network and the radial basis function network are 

among the well-known networks using the feedfoward topology. 
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Figure 2-2 A typical structure of neural networks with feedfoward topology, (a) 

multi-input single output, no hidden layer, (b) multi-input, single output, one hidden layer, 

(c) multi-input, multi-output, one hidden layer 

2.1.3.2 The recurrent topology 

Unlike feedfoward networks, recurrent networks (RN) allow for feedback connections 

among their nodes as illustrated in Figure 2.3 below. They are structured in such a way as to 

permit storage of information in their output nodes through dynamic states, hence providing the 

network with some sort of “memory”, while FF networks map input into output and are static in 

the sense that the output of a given pattern of inputs is independent of the previous state of the 

network, recurrent networks map states into states and as such are very useful for modeling and 

identifying dynamic systems. This means that the feedback available for a given input node 

allows it to pass to another state as soon as an output has been delivered at the other end of the 

network. Several well-known neural networks have been designed based on the recurrent 

topology. Such networks include the Hopfield network and the time delayed neural networks 

(TDNN).   
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Figure 2-3: A typical neural network with recurrent topology 

2.1.4 Neural network activation functions 

The basic elements of the computational engine for a neural network are the neurons. 

These are sorts of simple processors which take the weighted sum of their inputs from other 

nodes and apply to them a nonlinear mapping (not necessarily linear) called an activation 

function before delivering the output to the next neuron, see figure below. The output �J of a 

typical neuron �	having	K	inputs is given as: 

 				LM = NOPQRMSRT − UMV 

										 
(2.1)  

 

where � is the node’s activation function, W�, W , … , WY are the node’s inputs, Z�J, Z J, … , ZYJ are 

the connection weights, and !J is the node’s threshold. The processing activity within a given 

layer is done simultaneously, hence providing the neural network with the powerful capability of 

parallel computing. The bias effect (threshold value) is intended to occasionally inhibit the 

activity of some nodes. As neural networks may vary in terms of their structure as described 

previously, they may as well vary in terms of their activation function. 
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Depending on the problem at hand and on the location of the node within a given layer, 

the activation functions can take different forms: sigmoid mapping, signum function, step 

function or linear correspondence. The mathematical representation for some of these mappings 

is given below: 

 		sigmoid(x) = 11 + exp	(−x)										 (2.2)  

 							signum(x) = a 1	if	x > 00	if	x = 0−1	if	x < 0e							 
(2.3)  

 						step(x) = f 1	if	x > 00	otherwisee	
								 

(2.4)  

 

Figure 2.4 below illustrates the profile of six activation functions commonly used in 

implementations of neural networks. 
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Figure 2-4: Typical profiles of six activation functions 

2.1.5 Neural networks learning algorithms 

Learning algorithms are used to update the weight parameters at the interconnection level 

of the neurons during the training process of the network. While some designers have classified 

neural networks according to topologies or architectures, others have classified them according 

to the learning algorithm used by the network. The three well known and most often used 

learning mechanisms are the supervised, unsupervised (or self-organized) and the reinforced. 

2.1.5.1 Supervised learning 

The main feature of the supervised (or active) learning mechanism (see Figure 2.5 below) 

is learning by examples. This means that an external teacher provides the network with a set of 

input stimuli for which the output is a priori known. During the training process, the output 

results are continuously compared with the desired data. An appropriate learning rule uses the 
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error between the actual output and the target data to adjust the connection weights so as to 

obtain, after a number of iterations, the closest match between the target output and the actual 

output. Supervised learning is particularly useful for feedfoward networks. A number of 

supervised learning algorithms have been suggested in the literature. The backpropagation 

algorithm, first developed by Werbos in 1974[4] which is also based on the gradient descent 

optimization technique and the least mean square algorithm [5] are among the most commonly 

used supervised learning rules. 

 

Figure 2-5: Schematic representation of supervised learning 

2.1.5.2 Unsupervised learning 

Unlike supervised learning, unsupervised or self-organized learning (Figure 2.6 below) 

does not involve an external teacher and relies instead upon local information and internal 

control. The training data and input patterns are presented to the system and through predefined 

guidelines, the system discovers emergent collective properties and organizes the data into 

clusters or categories. Because of the way the network adjusts its connection weights in response 

to the presented input data, unsupervised learning algorithms have been known as open-loop 

adaptation learning schemes. An unsupervised learning scheme operates as follows. A set of 

training data is presented to the system at the input layer level. The network connection weights 

are then adjusted through some sort of competition among the nodes of the output layer, where 
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the successful candidate will be the node with the highest value. In the process, the algorithm 

strengthens the connection between the incoming pattern at the input layer and the node output 

corresponding to the winning candidate. In addition to the strengthening of the connections 

between the input layer and the winning output node, the unsupervised learning scheme may be 

used for adjusting the weights of the connections leading to the neighboring nodes at the output 

layer. This is controlled by what is referred to as the neighborliness parameter,  and it has the 

major property of making groups of output nodes behave as single entities with particular 

features. 

 

Figure 2-6: Schematic representation of unsupervised learning 

2.1.5.3 Reinforcement learning 

Reinforcement learning (see Figure 2.7 below) also known as graded learning, has been 

receiving an increased interest lately because of its many attractive learning features, which 

mimic in a way the adjusting behavior of humans when interacting with a given physical 

environment. This is another type of learning mechanism by means of which the network 

connections are modified according to feedback information provided to the network by its 

environment. This information simply instructs the system on whether or not a correct response 

has been obtained. In the case of a correct response, the corresponding connections leading to 
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that output are strengthened, otherwise they are weakened. This type of learning strategy based 

on the reward/penalty paradigm has several similarities with the biological learning system. 

Unlike supervised learning, reinforcement learning (LR) does not get information on what the 

output should be when the network is presented with a given input pattern. 

 

Figure 2-7: Schematic representation of reinforcement learning 

Reinforcement learning also differs from unsupervised learning (UL) in that UL doesn’t 

provide the network with information on whether the output is correct or not, but rather operates 

on the premises of finding pattern regularity among the exemplars provided to the network. 

Given the nature of this learning scheme, random search strategies have been used to attain the 

correct output every time the system is presented with an excitation from its environment. This 

explorational aspect of learning ultimately leads to an improved capability of the system to 

deliver the expected output every time the system is presented with an input pattern.  

2.1.6 Perceptron 

Perceptron is an example of an ANN developed as a trainable model of an artificial 

neuron using a supervised learning procedure in which the system adjusts its weights in response 

to a comparative signal computed between the actual output and the target output. The 
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perceptron was designed for the purpose of pattern classification of linearly separable sets [6]. 

By definition, sets are linearly separable if there exists a hyperplanar multidimensional decision 

boundary that classifies the data input into two classes. 

In terms of architecture, the perceptron is composed of a hierarchical three-level 

structure. The topology of the perceptron includes an input level corresponding to the sensory 

unit or retina; a second-level unit, also called a feature detector unit, involving nodes connected 

to the input but with fixed connection weights and thresholds; and a third level unit involving the 

output layer composed of one single node but with adjustable connection weights. The structure 

is shown in Figure 2.8 below 

 

 

Figure 2-8: Representation of the perceptron 

The activation function used by Rossenblatt in the perceptron is the step or the hard 

limiting activation function, and the learning algorithm used to adjust the weights is the 
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perceptron learning rule. It was shown (perceptron convergence theorem [6]) that as long as the 

patterns used to train the perceptron are linearly separable, the learning algorithm should 

converge in a finite number of steps. The steps used to train a perceptron are outlined below: 

Initialize weights and thresholds to small random values 

Choose an input-output pattern from the training input-output data set 9W(J), 
(J); 
Compute the actual output � = �9∑ ZkWkYk�� − !; 
Adjust the weights according to the perceptron learning rule: 

∆Zk = m n
 − � OPZkWkk − !VoWk  
In case the weights do not reach state-state values pZk = 0, repeat starting from step 2 

and choose another training pattern. This is known as epoch training. This learning procedure is 

very similar to the Hebbian learning rule [6], with the difference that the connection weights 

there are not updated if the network responds correctly. 

 

2.1.7 Back-propagation network 

2.1.7.1  Background 

When an ANN is presented with data, the output will not be the desired output since the 

network has not undergone training. Since the network weights are initially random, it is likely 

that the initial output value will be very far from the desired output. To improve the behavior of 

the network and to know which connection weights need modification and by how much so as to 

achieve the objective, an algorithm commonly used is the back-propagation algorithm. This is 

simply a gradient descent method of minimizing the total squared error of the output computed 

by the network. The principal advantages of back-propagation are simplicity and reasonable 

speed. Back-propagation is well suited to pattern recognition problems. 

The network learns a predefined set of input-output example pairs by using a two-phase 

propagate-adapt cycle. An input pattern is applied as a stimulus to the first layer of network 

units. It is propagated through each upper layer until an output is generated. The output is then 

compared to desired output. The error is transmitted backward from output layer to each node in 
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the intermediate layer that contributes directly to the output. Each unit in the intermediate layer 

receives only a portion of the error signal. This process repeats itself layer by layer until each 

node in the network has received an error signal that describes its relative contribution to the 

total error. One of the significant features of back-propagation is that intermediate layers 

organize themselves such that different nodes learn to recognize different features of the input 

space. After training, when presented with arbitrary input patterns that are noisy or incomplete, 

the units in the hidden layers of the network will respond with an active output if the new input 

contains a pattern that resembles the feature the individual units learned to recognize during 

training. 

Hidden layers inhibit their outputs if the input pattern does not contain the features they 

were trained to recognize. Upper layer patterns can be thought of as a pattern with features that 

can be recognized by units in the subsequent layer. The output pattern generated can be thought 

of as a feature map that provides an indication of the presence or absence of many different 

feature combinations at the input. 

BPN provides an effective means of allowing a computer system to examine data patterns 

that may be incomplete or noisy, and to recognize subtle patterns from the partial input. BPN 

will classify these previously unseen inputs according to the features they share with the training 

examples. 

2.1.7.2 Selection and preparation of training data 

A neural network is not useful if it only sees one example of a matching input/output 

pair. It cannot infer the characteristics of the input data that one is looking for from only one 

example. Therefore many examples are required. This is analogous to how a child learns the 

difference between say different types of animals. The child needs to see several examples of 

each to be able to classify an arbitrary animal. The same is true with neural networks. The best 

approach to training is to compile a wide range of examples which exhibit all the different 

characteristics the user is interested in. Adding some noise or other randomness to your example 

(such as a random scaling factor) prior to training helps to account for noise and natural 

variability in real data, and tends to produce a more reliable network [7]. 

If you are using a standard sigmoid node transfer function (not scaled), please note that 

the desired output must never be set exactly to 0 and 1. This is because the asymptotic values of 
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the hidden layers are set between 0 and 1. This would then mean more data and weights are 

required to reach the desired output. Again the limits cannot be exceeded. To avoid this 

limitation, the desired output can be lowered to say 0.9 for the network to reach and even 

overshoot. The network will converge relatively quickly. It cannot be overemphasized that a 

neural network is only as good as the training data. Poor training data inevitably leads to an 

unreliable and unpredictable network. 

2.1.7.3 Modification of the neuron connection weights 

Consider the example in Figure 2.9 below 

 

 

 

 

 

 

 

 

Figure 2-9: 2-Input 2-Output ANN 

If q�,q  are the inputs, r�	r  the hidden layer outputs and s�, s  are the output layer 

outputs respectively then: 

Outputs of Hidden Node 1 and 2 are given by [8], [9] 

 			H� = sgmOPIvwv�w
 
v�� V									 (2.5)  

 

and 

Input 1 
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Input 
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Output 1 

Output 2 
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 				H = sgmOPIvwv w
 
v�� V		 (2.6)  

where  

 	sgm(x) = 11 + e"z	
										 

(2.7)  

Output-layer outputs are given by:  

 	O� = sgmOP H*w*�| 
*�� V									 (2.8)  

and  

 	O = sgmOP H*w* |
 

*�� V											 (2.9)  

 

From equations (2.8) and (2.9), we can calculate the output given a particular set of 

inputs. This allows us to calculate the mean squared error (MSE) between the actual output and 

the desired output for the given input in this training example. This gives us the average of what 

we want and what we got. 

The error function can be written as:  

 	E = P(D� − O�)  
��� 												 (2.10)  

where �� is the 
��desired output. or, using (2.5) and (2.8)  

 E = P�D� − sgmOP sgmOPIvwv*w
 
v�� V 

*�� w*�| V�
  

���  

(2.11)  
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For a given training the minimum error would be the best target to our training. To find 

this point, the gradient of the error function with respect to each network weight would be 

calculated. Adjustments of the weights would then follow the opposite to the gradient. 

The gradient is fairly straightforward to calculate, due to the convenient fact that the 

derivative of the sigmoid function can be expressed in terms of the function itself:  

 			 ddx � 11 + e"z� = e"z(1 + e"z) = 91 − sgm(x);sgm(x)							 (2.12)  

 

The gradient is defined as the vector of partial derivatives of the multivariate function 

with respect to each of variable. The error function for each network output is calculated as a set 

of partial derivatives with respect to each associated connection weight. All other variables 

except one are held constant when we calculate the partial derivative. 

 						 ∂O�∂w*�� = ∂∂w*�� Pw��� H�
 

��� = H*						 (2.13) 

 

The gradient of the error function can be calculated as: 

 

���Z��y = ��Z��y P(�� − s�)  
��� 	

= −2(�� − s�) ���y ���(�y) ��y�Z��y 	
 							= −2(D� − O�)(91 − sgm(S�);sgm(S�))H*					 (2.14) 

where �y = ∑ Z��y J�� . 

The expression ′− 2(�� − s�)(91 − ���(�y);���(�y))r�′	is denoted as ��y. 

The new values for the network weights are calculated by multiplying the negative 

gradient with a step size parameter called the learning rate and adding the resultant vector to the 



20 

 

vector of network weights attached to the current layer. This change does not take place, 

however, until after the middle-layer weights are updated as well, since this would corrupt the 

weight update procedure for the middle layer [10]. 

For the middle layer, a new gradient is derived, but this time the output weights are 

treated as constants rather than the hidden-layer weights.  

 		 ∂E∂wv*w = (�1 − sgm9Sw;� sgm9Sw;)P δ��w*�� Iv 
���  

(2.15) 

The middle weights are updated using the same procedure as for the output layer, and the 

output layer weights are updated as well. This is a complete training cycle for one piece of 

training data. The input layer is treated as a buffer for holding the input vector hence has no 

weights that need modifications. 

The sample considered is a (2, 2, 2) network. Larger networks would have longer 

summations though the learning principle is the same. 

2.1.7.4 Repetition 

The above procedure causes the output to move a small step towards the desired state of a 

minimized error. The procedure must be repeated many times until the MSE drops below a 

specified value. When this happens, the network is performing satisfactorily, and this training 

session for this particular example has been completed. 

Training will be said to be successful when random data is applied to the input terminals 

repeatedly for many times depending on the application and complexity of the data and other 

parameters. After training the network, real data new to the network is presented to the input for 

classification, compression or processing. 

A consequence of the BPN algorithm is that there are situations where it can get stuck to 

‘local minima’ that traps the algorithm and prevents it from dropping to the actual minimum. If 

such a situation arises hidden layers can be added or reduced, nodes can be reduced or increased 

or try another starting point (randomize the network again). Other approaches to the BPN 

problem are based on alternative determination of MSE (least squares approximation and 

steepest-descent technique) [11], [12]  
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2.2 Competitive Learning 

The basic idea underlying what is called competitive learning [13] is roughly as follows. 

Assume a sequence of statistical samples of a vectorial observable = S(
) ∈ ℝ� , where 
 is the 

time coordinate, and a set of variable reference vectors ��k(
): �k ∈ ℝ� , � = 1,2, … , ��. Assume 

that the �k(0) have been initialized in some proper way; random selection will often suffice. If 

S(
) can somehow be simultaneously compared with each �k(
) at each successive instant of 

time, taken here to be an integer 
 = 1,2,3, …, then the best matching �k(
)is to be updated to 

match even more closely the current S(
). If the comparison is based on some distance measure 

�(S, �k), altering �k must be such that, if � = � is the index of the best matching reference 

vector, then �(S, �	) is decreased, and all the other reference vectors �k  with � ≠ � are left 

intact. In this way the different reference vectors tend to become specifically “tuned” to different 

domains of the input variable S. It will be shown below that if � is the probability density 

function of the samples S, then the �k tend to be located in the input space ℝ� in such a way that 

they approximate to � in the sense of some minimal residual error. 

2.3 Learning Vector Quantization 

Is a classical method, that produces an approximation to a continous probability density 

function �(W) of the vectorial input variable W using a finite number of codebook vectors 

�k , � = 1,2, … , �. Once the “codebook” is chosen, the approximation of W involves finding the 

reference vector �	 closest to W.  One kind of optimal placement of the �k minimizes �, the 

expected �th power of the reconstruction error:  

          E = �‖x − m>‖¡p(x)dx        (2.16) 

where �W is the volume differential in the W space, and the index � = �(W) of the best-matching 

codebook vector (“winner”) is a function of the input vector W:  

   ‖x − m>‖ = min  �¢x − m,¢�
i  

(2.17) 

In general no closed-form solution for the optimal placement of the �k is possible, and 

iterative approximation schemes must be used.  
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Using the square-error criterion (� = 2), it can also be shown that the following step-

wise “delta-rule,” in the discrete time formalism (
 = 0,1,2, … ),defines the optimal values 

asymptotically. Let �	 = �	(
) be the closest code-book vector to W = W(
) in the Euclidean 

metric. The steepest-descent gradient-step optimization of �in the �	 space yields the sequence. 

�	(
 + 1) = �	(
) + £(
)¤W(
) − �	(
)¥, 
  m¦(t + 1) = m¦(t) for i ≠ c            (2.18) 

with £(
) being a suitable, monotonically decreasing sequence of scalar-valued gain coefficients, 

0 < £(
) < 1. This then is the simplest analytical description of competitive learning. 

2.4 Kohonen Self-Organizing Maps 

Kohonen Self-Organizing Maps (or just Self-Organizing Maps, or SOM’s for short) are a 

type of neural network. They were developed in 1982 by Teuvo Kohonen, a professor emeritus 

of the Academy of Finland. Self-Organizing Maps are called “Self organizing” because no 

supervision is required. SOM’s learn on their own through unsupervised competitive learning. 

They are known as “Maps” because they attempt to map their weights to conform to the given 

input data. The nodes in a SOM network learn in the sense that they attempt to become like the 

inputs presented to them. They can also be called “Feature Maps” as in Self-Organizing Feature 

Maps. Retaining principle “features” of the input data is a fundamental principle of SOM’s, and 

one of the things that make them so valuable. Specifically, the topological relationships between 

input data are preserved when mapped to a SOM network. This has a pragmatic value of 

representing complex data. 



23 

 

 

Figure 2-10: A map of the world quality of life 

 Figure 2.10 is a map of the world quality of life. Yellows and oranges represent wealthy 

nations while purples and blues are the poorer nations. From this view, it can be difficult to 

visualize the relationships between countries. However, when represented by SOM as shown in 

Figure.2.11 below, it becomes easier to see what is going on. 
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Figure 2-11: SOM representation of world quality of life 

In figure 2.11 we can see the wealthiest countries i.e United States, Canada and Western 

European countries on the left side of the network while the poorest countries can be found on 

the opposite side of the map (at the point furthest away from the richest countries), represented 

by the purples and the blues. 

Figure.2.11 is a hexagonal grid. Each hexagon represents a node in the neural network. 

This is typically called a unified or u-matrix and is probably the most popular method of 

displaying SOMs. Another intrinsic property of SOM’s is known as vector quantization. This is a 

data compression technique. SOMs provide a way of representing multi-dimensional data in 

much lower dimensional space-typically one or two dimensions. This aides in their visualization, 

as humans are more proficient at comprehending data in lower dimensions than higher 

dimensions as can be seen in the comparison of Figure 2.10 to Figure 2.11. 

2.4.1 Structure of a Self-Organizing Map 

The structure of a SOM is fairly simple and is best understood through the use of an 

illustration as shown in Figure 2.12 below 
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Figure 2-12: Structure of the self-organizing map 

Figure.2.12 is a 4× 4 SOM network (4 nodes down, 4 nodes across). It is easy to 

overlook this structure as being trivial but there are a few key things to notice. First, each map 

node is connected to each input node. For this small 4 × 4 network, that is 4× 4 × 3 = 48 

connections. Secondly, notice that map nodes are not connected to each other. The nodes are 

organized in this manner of a 2-D grid as it makes it easy to visualize the results. This 

representation of the map is by the SOM algorithm. In the drawn configuration, each map node 

has a unique (i,j) coordinate. This makes it easy to reference a node in the network and to 

calculate the distances between nodes. Because of the connections only to the input nodes, the 

map nodes are oblivious as to what values their neighbors have. A map node will only update it’s 

weights (explained next) based on what the input vector tells it. 
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The following relationships describe what a node essentially is: 

1.
�
Z��� ⊂ ���©��� ⊂ �K��
	Z���ℎ
�[
E�«���ℎ
�]	
2.�
�E
¬��
��� ⊂ �
�E
¬��
�� ⊂ �K��
	Z���ℎ
�[
E�«���ℎ
�]	
1 says that the network (the 4× 4 grid above) contains map nodes. A single map node 

contains an array of floats, or it’s weights. numWeights will become more apparent during 

application discussion. The only other common item that a map node should contain is it’s (i,j) 

position in the network. 2 says that the collection of input vectors (or input nodes) contains 

individual input vectors. Each input vector contains an array of float’s or its weights. Note that 

numWeights is the same for both weight vectors. The weight vectors must be the same for map 

nodes and input vectors or the algorithm will not work. 

2.4.2 The SOM algorithm 

The Self-Organizing Map algorithm [14] can be broken up into 6 steps 

1) Each nodes weights are initialized. 

2) A vector is chosen at random from the set of training data and presented to the network 

3) Every node in the network is examined to calculate which one’s weights are most like the 

input vector. The winning node is commonly known as 

the	6��
	­�
�ℎ�
�	®
�
	(6­®). 
4) The radius of the neighborhood of the BMU is calculated. This value starts large and is 

typically set to be the radius of the network, diminishing each time step. (2.20, 2.21). 

5) Any nodes found within the radius of the BMU, calculated in 4), are adjusted to make 

them more like the input vector (2.22, 2.23). The closer a node is to the BMU, the more 

its weights are altered (2.24). 

6) Repeat 2) for N iterations 

The equations utilized by the algorithm are as follows: 

Equation (2.19)-Calculate the BMU.  

 	distFromInput =P(I¦ −W¦) �
¦�± 											 (2.19) 

q = �E���

	�
�E
	²��
��	
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« = 
����	Z���ℎ
	²��
��	

 = 
E����	��	Z���ℎ
�	

Equation (2.20)-Radius of the neighborhood.  

 		σ(t) = σ�e"0/µ									 (2.20) 


 = �E���

	�
���
��
	
¶ = 
���	��
�
�

	(�·E�
��
	2�)	

¸y = ����E�	��	
ℎ�	���	
Equation (2.21)-Time constant  

 			λ = numIterations/mapRadius								 (2.21) 

Equation (2.22)-New weight of a node  

 	W(t + 1) = W(t) + Θ(t)L(t)(I(t) −W(t))										 (2.22) 

Equation (2.23)-Learning rate  

 			L(t) = L�e"0/µ										 (2.23) 

Equation (2.24)-Distance from BMU  

 			Θ(t) = e("¾¦¿0À¡�*ÁÂÃÄ ÅÄ(0) )										 (2.24) 

There are some things to note about these formulas. (2.19) is simply the Euclidean 

distance formula squared. It is squared because we are not concerned with the actual numerical 

distance from input. We just need some sort of uniform scale in order to compare each node to 

the input vector. This equation provides that, thus eliminating the need for the computationally 

expensive square root operation for every node in the network.  

Equations (2.20) and (2.21) utilize exponential decay. At 
 = 0 they are at their 

maximum. As ( 
 =the current iteration number) increases, they approach zero. This is exactly 

what we want. In (2.20) the radius should start out as the radius of the lattice, and approach zero 

at which time the radius is simply the BMU node. (2.21) is almost arbitrary. Any constant value 
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can be chosen. This provides a good value, though, as it depends directly on the map size and the 

number of iterations to perform. 

Equation (2.22) is the main learning function. «(
 + 1) is the new ‘educated’ weight 

value of a given node. Over time, this equation essentially makes a given node weight more like 

the currently selected input vector,	q. A node that is very different from the current input vector 

will learn more than a node very similar to the current input vector. The difference between the 

node weight and the input vector are then scaled by the current learning rate of the SOM, and 

by	Æ(
). 
Æ(
),	Equation (2.24), is used to make nodes closer to the BMU learn more than nodes on 

the outskirts of the current neighbourhood radius. Nodes outside of the neighbourhood radius are 

skipped completely. ���
Ç���6­®	is the actual number of nodes between the current node and 

the BMU, easily calculated as:  

 	distFromBMU = (bmuI − nodeI) + (bmuJ − nodeJ) 												 (2.25) 

 

This can be done since the node network is just a 2-D grid of nodes. With this in mind, 

nodes on the fringe of the neighborhood radius will learn some fraction less than 1.0. As ���
Ç���6­® decreases, Æ(
) approaches 1.0. The BMU itself will have a ���
Ç���6­® 

equal to 0, which gives Æ(
) its maximum value of 1.0. Again, this Euclidean distance remains 

squared to avoid the square root operation. 

There exists a lot of variation regarding the equations used with the SOM algorithm. 

There is also a lot of research being done on the optimal parameters. Some things of particularly 

heavy debate are the number of iterations, the learning rate and the neighborhood radius. 

Kohonen himself has suggested however that the training should be split into two phases. In 

phase 1 the learning coefficient is reduced from 0.9 to 0.1 and the neighborhood radius from half 

the diameter of the lattice to the immediately surrounding nodes. In phase 2 the learning rate is 

reduced from 0.1 to 0.0 but over double or more the number of iterations in phase 1. In phase 2, 

the neighborhood radius value should remain fixed at 1 (the BMU only). Phase 1 allows the 

network to quickly fill out the space, while Phase 2 performs the ‘fine tuning’ of the network to a 

more accurate representation. 
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2.4.3 Applications 

2.4.3.1 Color Classification 

The color classification SOM is used as the primary example in most tutorials published 

on SOM’s. This is for a very good reason. By going through this example, the concept of SOMs 

can be solidly grasped. The reason color classification is fairly easy to understand is because of 

the relatively small amount of data utilized, as well as the visual aspect of the data. 

Color classification SOMs only use three weights per map and input nodes. These 

weights represent the (r,g,b) triplet for the color. For example, colors may be presented to the 

network as (1,0,0) for red,(0,1,0) for green, etc. The goal for the network here, is to learn how to 

represent all of these input colors on it’s 2-D grid while maintaining the intrinsic properties of a 

SOM such as retaining the topological relationships between input vectors. With this in mind, if 

light blue and dark blue are presented to the SOM, they should end up next to each other on the 

network grid. 

To illustrate the process, we will step through the algorithm for the color classification 

algorithm. Step 1 is the initialization of the network. Figure 2.13 shows a newly initialized 

network where each square is a node in the network. 

 

Figure 2-13: Newly initialized color classification SOM 
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The initialization method used here is to assign a random value between 0.0 and 1.0 for 

each component (r, g, and b) of each node. Step 2 is to choose a vector at random from the input 

vectors. Eight input vectors are used in this example, ranging from red to yellow to dark green. 

Next, step three goes through every node and finds the BMU, as described earlier. Figure 2.14 

shows the BMU being selected in the 4× 4 network. Step 4 of the algorithm calculates the 

neighborhood radius. This is also shown in Figure 2.14. All the nodes tinted red are within the 

radius. Step 5 then applies the learning functions to all these nodes. It is based on their distance 

from the BMU. The BMU (dark red) learns the most while nodes on the outskirts of the radius 

(light pink) learn the least. Nodes outside of the radius (white) don’t learn at all. 

 

Figure 2-14: Illustration of BMU and neighboring nodes for color classification 

SOM 

We then go back to step 2 and repeat. Figure 2.15 shows a trained SOM, representing all 

eight input colors. Notice how light green is next to dark green, red is next to orange. An ideal 

map would probably have light blue next to dark blue. This is where the error map comes in, 

which is described next. 
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Figure 2-15: Trained color classification SOM 

Each time a SOM is trained, it can produce a completely different result given the same 

input data. This is because the network is initialized with random colours, presenting a unique 

set-up prior to each training session. Also, this occurs because input vectors to be presented to 

the network are chosen at random. With this in mind, some SOM’s may turn out to be ‘better’ 

than others where ‘better’ is a measure of how well the topological data is preserved. One 

method for gauging the superiority of one SOM over another is to calculate the error map. This 

will give us some numeric value. SOMs with lower values can be said to be ‘better’ mappings. A 

SOM with a value of zero would be a perfect mapping where the entire network is the exact 

same color. 

To calculate an error map, loop through every map node of the network. Add up the 

distance (not the physical distance but the weight distance. This is exactly the same as how the 

BMU is calculated) from the node we’re currently evaluating, to each of it’s neighbours. 

Average this distance. Multiply this by 3 (the number of weights used), assuming no square root 

is used to calculate the distance between adjacent nodes. If the square root operation is used, 

multiply by √3 instead. Assign this value to the node. This gives each map node a nice value 

between 0.0 and 1.0. These values can then be used as the grayscale values for each square of the 

Error map window. Pure white represents the maximum possible distance between adjacent 
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nodes, while black shows that adjacent nodes are of the same colour. Shades of gray in between 

give an even finer explanation, with darker grays being a better map than a map with light grays. 

Figure 2.16 shows an example. Notice the lines and how they line up with Figure 2.15. 

 

Figure 2-16: Error map for color classification SOM 

2.4.4 Batch SOM 

An important variant of the basic SOM is the batch algorithm in which the whole training 

set is gone through at once and only after this the map is updated with the net effect of all 

samples. This algorithm executes much faster in software than the normal sequential algorithms, 

and the results are typically just as good or even better [15]. The learning steps are defined as 

follows: 

1) For the initial reference vectors, take for instance the first Î	training samples. Where	Îis 

the number of reference vectors. 

2) For each map unit �, collect a list of copies of all those training samples W whose nearest 

reference vector belongs to the topological neighbourhood set ©k of unit �. 
3) Take for each new reference vector the mean over the respective list. 

4) Repeat from 2 a few times 
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This algorithm is particularly effective if the initial values of the reference vectors are 

already roughly ordered, even though they would not yet approximate to the distribution of the 

samples [16]. It should be noticed that the above algorithm contains no learning rate parameter; 

therefore it seems to yield stabler asymptotic values for the �k than the original SOM. 

Definition of the size of the neighborhood set ©k can be similar as in the basic SOM 

algorithms. “Shrinking” of ©k in this algorithm means that the neighbourhood size is decreased 

while the steps 2 and 3 are repeated. At the last iteration ©k may contain the element � only. 

2.4.5  SOM simulations 

The self-organizing map is a sheet-like artificial neural network, the cells of which 

become specifically tuned to various input signal patterns or classes of patterns through an 

unsupervised learning process. In the basic version only one cell or local group of cells at a time 

gives the active response to the current input. The locations of the responses tend to become 

ordered as if some meaningful coordinate system for different input features were being created 

over the network. The spatial location or coordinates of a cell in the network then corresponds to 

a particular domain of input signal patterns. SOM can thus be used to visualize metric ordering 

relations of input samples. A typical application of SOM is in the analysis of complex 

experimental vectorial data such as process states, where the data elements may even be related 

to each other in a highly nonlinear fashion. Here we define the process of creating a SOM as 

contained in [17]. 

2.4.5.1  Data pre-processing 

Sometimes there is missing data to complete each input vector. However, such 

incomplete training examples still contain useful information. The distribution statistics of the 

available vector components can still be determined from partial data, for example. Using the 

self-organizing map algorithm one can easily utilize partial training data [18], [19]. For 

incomplete input data vectors the SOM_PAK has the possibility to mark the missing values by a 

pre-defined string which is ‘x’ by default. The SOM_PAK routines will compute the distance 

calculations and reference vector modification steps using the available data components. 

The input data should also be scaled so that corresponding components have 

approximately the same dynamic range. This assures that for each component, the difference 
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between two samples contribute approximately an equal amount to the summed distance measure 

between an input sample and codebook vector. 

2.4.5.2  Initialization 

Kohonen presents three different types of network initializations: random, initial samples, 

and linear initialization. 

Random initialization 

Random initialization means that random values are assigned to codebook vectors. This 

is particularly useful if nothing or little is known about the input data at the time of initialization. 

Initial samples initialization 

Initial samples of the input data set can be used for codebook vector initialization. This 

has the advantage that the points automatically lie in the same part of the input space with the 

data. 

Linear initialization 

The codebook vectors are initialized to lie in the same input space that is spanned by two 

eigenvectors corresponding to the largest eigenvalues of the input data. This has the effect of 

stretching the SOM to the same orientation as the input data. 

2.4.5.3 Map topology 

Refers to the locations of units in the possible topological structures. Two topologies are 

used in SOM_PAK namely the rectangular and hexagonal topologies as illustrated in Figure 2.17 

below. The choice of a topology is a matter of taste [17] but the hexagonal topology is more 

effective for visual display. 
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Figure 2-17: SOM topologies 

The distance between two units in the map is computed as an Euclidean distance in the 

(two dimensional) map topology. 

In section 2.4.5, it was pointed out that in the SOM algorithm, after the Best Matching 

Unit has been found, then a neighborhood ℎ	k(
) function is used to determine the nodes in the 

neighborhood of the BMU which should be updated.  Two types of neighborhood functions are 

available: bubble and Gaussian. Let the BMU be referred to by the index � and its neighborhood 

by ©	 (which is time variable and hence denoted by ©	(
)). See Figure 2.18 below for an 

illustration of neighborhoods of varying sizes about the BMU. In the bubble function, ℎ	k = £(
) 

if node index � ∈ ©	  and ℎ	k = 0 if node index  � ∉ ©	 , where £(
) is some monotonically 

decreasing function of time (0 < £(
) < 1). In gaussian function  

     h>¦ = α(t). exp (− ‖r> − r¦‖ 
2σ (t) )          (2.26) 

where �	 ∈ Ñ  and �k ∈ Ñ  are the radius vectors of nodes � and � respectively. £(
) is another 

scalar-valued “learning rate” and the parameter ¸(
) defines the width of the kernel. The latter 

corresponds to the radius of ©	 above. 

 

 



 

Figure 2-18: Neighborhoods (size 1, 2 and 3) of the u

hexagonal lattice, (b) rectangular lattice.

2.4.5.4 Quality of learning 

Very different learning processes can be defined starting with different initial 

values	�k(0�, and applying different sequences of the training vectors 

parameters. As such, it is clear that some optimal map for the same input data must exist. Also 

when comparing maps that have the same “stiffness” (same 

yield the smallest average quantization erro

average quantization error or the mean of

again is then a useful performance index. Therefore an appreciable number (say, several tens) of 

random initializations of the �
error selected. 

2.4.5.5 SOM visualization 

U-matrix 

U-matrix (unified distance matrix) representation of the Self

the distances between the neurons. The distance between the adjacent neurons is calculated and 

presented with different colorings. A dark colo

distance and thus a gap between the codebook values in the input space. A light coloring 

between the neurons signifies that the codebook vectors are close to each other in the input 

space. Consequently, light areas can be thought as clusters and dark areas as cluster separators. 

This presentation can be helpful when one tries to find clusters in the input data without having 

any a priori information about the clusters.

: Neighborhoods (size 1, 2 and 3) of the unit marked with black dot: (a) 

hexagonal lattice, (b) rectangular lattice. 

 

Very different learning processes can be defined starting with different initial 

and applying different sequences of the training vectors W�
�
parameters. As such, it is clear that some optimal map for the same input data must exist. Also 

when comparing maps that have the same “stiffness” (same ª	k), the best map is expected to 

yield the smallest average quantization error because it is then fitted best to the same data. The 

average quantization error or the mean of	‖W ? �	‖	defined via inputting the training data once 

again is then a useful performance index. Therefore an appreciable number (say, several tens) of 

�k�0� should be tried, and the map with the minimum quantization 

 

matrix (unified distance matrix) representation of the Self-Organizing Map visualizes 

the distances between the neurons. The distance between the adjacent neurons is calculated and 

presented with different colorings. A dark coloring between the neurons corresponds to a large 

distance and thus a gap between the codebook values in the input space. A light coloring 

between the neurons signifies that the codebook vectors are close to each other in the input 

areas can be thought as clusters and dark areas as cluster separators. 

This presentation can be helpful when one tries to find clusters in the input data without having 

any a priori information about the clusters. 
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between the neurons signifies that the codebook vectors are close to each other in the input 
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This presentation can be helpful when one tries to find clusters in the input data without having 



 

Figure 2-19

In Figure 2.19 above, the neurons of the network are marked as black dots. The diagram 

reveals that there is a separate cluster in the upper right corner. The present cluste

by a dark gap. Teaching a SOM and representing it with the U

get insight of the data distribution.

U-matrix algorithm 

Let 
	be a neuron on the map, Z(
) the weight vector associated with neuron 

 				U −

where �(W, Ò� is the distance used in the SOM algorithm to construct the map. The U

display of the U-heights on top of the grid positions of the neurons on the map. An U

usually displayed as a grey level picture or as a three dimensional landscape

Component planes 

Is a map imaging of the values of a selected component of the som in grayscale, i.e an 

imaging of corresponding components of the final map node vectors. It can thus be thought of as 

a sliced version of the self-organizing map. In graysc

relatively small values while white values represent relatively large values. We can see if two 

components relate by comparing component planes. If the outlook is similar, the components 

strongly correlate. 

 

19: U-matrix representation of the Self-Organizing Map

In Figure 2.19 above, the neurons of the network are marked as black dots. The diagram 

reveals that there is a separate cluster in the upper right corner. The present cluste

by a dark gap. Teaching a SOM and representing it with the U-matrix thus offers a fast way to 

get insight of the data distribution. 

 

be a neuron on the map, ©©�
�	be the set of immediate neighbors on the map and

the weight vector associated with neuron 
, then  

? height�n� � P d�w�n� ? w�m��
*∈ÓÓ���

									 
is the distance used in the SOM algorithm to construct the map. The U

heights on top of the grid positions of the neurons on the map. An U

usually displayed as a grey level picture or as a three dimensional landscape

Is a map imaging of the values of a selected component of the som in grayscale, i.e an 

imaging of corresponding components of the final map node vectors. It can thus be thought of as 

organizing map. In grayscale representation, dark values represent 

relatively small values while white values represent relatively large values. We can see if two 

components relate by comparing component planes. If the outlook is similar, the components 
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Organizing Map 

In Figure 2.19 above, the neurons of the network are marked as black dots. The diagram 

reveals that there is a separate cluster in the upper right corner. The present clusters are separated 

matrix thus offers a fast way to 

e the set of immediate neighbors on the map and 

(2.27) 

is the distance used in the SOM algorithm to construct the map. The U-matrix is a 

heights on top of the grid positions of the neurons on the map. An U-matrix is 

usually displayed as a grey level picture or as a three dimensional landscape. 

Is a map imaging of the values of a selected component of the som in grayscale, i.e an 

imaging of corresponding components of the final map node vectors. It can thus be thought of as 

ale representation, dark values represent 

relatively small values while white values represent relatively large values. We can see if two 

components relate by comparing component planes. If the outlook is similar, the components 
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2.5 Applications of self-organizing maps to telecommunications 

Modern telecommunications can benefit from neural networks in many ways. The SOM 

principle has been used to improve the separability of quantized signal states [20], to equalize 

channel properties [21], to compress information [22] and to reduce co-channel interference [23]. 

Other applications are in bandwidth compression [24] and adaptive equalization of PAM and 

QAM signals [25]. SOM has also been used for clone detection [26], [27] and complexity 

analysis [28] of telecommunications software. Configuration and monitoring of 

telecommunication traffic networks is a particularly suitable application area for SOM [29], [30], 

[31] [32].  

In this work, SOM has been used to gain insights into the structure of an interfering 

wireless channel output and to utilize the information gained in mitigating inter-symbol 

interference. 

2.5.1 Wireless Channel Fading 

In this section we will describe wireless channel fading with the aim of understanding the 

specific types of fading, namely: frequency-selective and slow fading, for which equalization is a 

suitable mitigating technique. 

A characteristic of the wireless channel is the presence of many different paths between 

the transmitter and the receiver (See Figure 2.20). 
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Figure 2-20: Multipath channel in wireless communications 

Basic Electromagnetic (EM) wave propagation phenomena such as scattering that occurs 

along these paths further increases the number of the paths between the communicators. 

Common propagation phenomena encountered are: 

1) Reflection: EM waves are reflected when impinging on objects in their paths if the 

physical size of the objects are much greater than the wavelength of the EM waves. 

2) Diffraction: Characterized as the sharp changes in the propagation path of EM waves that 

occur when they hit an obstacle with surface irregularities such as sharp edges. 

3) Scattering: Occurs when EM waves visit a cluster of objects smaller in size than the 

wavelength, such  as water vapor and foliage. Scattering causes many copies of the EM 

wave to propagate in various directions. 

The signal power in a wireless channel varies over time and over frequency. The 

variations are of two types 

1) Large-scale fading, due to path loss of signal as a function of distance and shadowing by 

large objects such as buildings and hills. This fading occurs as the mobile moves through 

a distance of the order of the cell size, and is typically frequency dependent. 
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2) Small-scale fading, due to the constructive and destructive interference of the multiple 

signal paths between the transmitter and receiver. Small scale fading occurs at distances 

of the order of the carrier wavelength and is frequency dependent. 

We will focus on small scale fading rather than large scale fading for the reason that 

small scale fading is more relevant to the design of reliable wireless transmission, the objective 

of this research. Large scale fading is more relevant to telecommunication network planning. 

2.5.1.1 Small-scale Fading 

Due to multipath propagation, more than one version of the transmitted signal arrive at 

the mobile receiver at slightly different times. The interference induced by these multiple copies, 

also known as multipath waves, has become the most significant cause of distortion known as 

fading and Inter-Symbol Interference (ISI). The radio signal experiences rapid changes of its 

amplitude over a relatively short period of time. 

The waves travelling different paths, therefore travelling different distances, sum up at 

the receiver antenna (or antenna array in some cases) to generate ISI of such a magnitude that the 

effects of large scale path loss can be completely ignored by comparison. 

There are a variety of ways to statistically model the wireless channels in order to 

represent the random behavior of multipath fading. One simple and popular model represents the 

fading channel with a linear and time-varying Channel Impulse Response (CIR) denoted by the 

function ℎ(
, Ô) 

 

Figure 2-21: Channel modeling by impulse response 
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Time Dispersion Parameters 

A perfect channel from a communications point of view is one that has a constant gain 

and a linear phase response, or at least possesses these features over a desired frequency range or 

bandwidth. Such a frequency range should be larger than the frequency spectrum of the 

transmitted signal to preserve the signal spectral characteristics. Consequently, such an ideal 

channel can be symbolically shown as ℎ(
, Ô) = �y�(
) with �y as a constant 

 

Figure 2-22: An ideal channel impulse response 

Such channel impulse response implies only one received signal (delayed by), causing no 

ISI even when the gain varies with time as the varying CIR of ℎ(
, Ô) = �(
)�(Ô) where �(
) is 

a relatively slowly varying function of time and in general may be complex-valued .If we assume 

that the multipath channel includes N different paths and let the power and delay of ��� path be 

given by ÕJ and ÔJ respectively, then the weighted average delay (also known as mean excess 

delay) is defined as :  

 			τ× � ∑ g� τ�Ó���
∑ g� Ó���

						 (2.28) 

 

The second statistical moment of the delay may also be computed by:  

 	τ Ø � 	∑ g� τ� Ó���
∑ g� Ó���

											 (2.29) 
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The channel delay spread, that is the rms value of the delay is given by:  

 			σÙ �	Úτ Ø ?	�τ×� 								 (2.30) 

The channels with time-dependent response (CIR) given by ℎ�
, Ô) will have time-

dependent frequency response r(Û, 
) (In fact, as will be stressed later, the CIRs change very 

slowly with respect to time in most practical cases) with  

 		H�ω, t) = � h(τ, t)e",ÝÙdτ
1Þ

"Þ
									 (2.31) 

To determine the wireless channel characteristics in the frequency domain we first need 

to determine the correlation coefficient or factor of the channel frequency response, based on a 

change in frequency of the size ∆Û or 2�∆�. 

Õ�∆Û� � ß{r∗�Û, 
)r(Û + ∆Û, 
)�
ß�r∗(Û, 
)r(Û, 
)� = 	 ß{r∗�Û, 
)r(Û + ∆Û, 
)�

ß�|r(Û, 
)| � 	
 		� â |h(τ, t)| e",∆ÝÙdτ1Þ

"Þ
â |h(τ, t)| dτ1Þ

"Þ
									 (2.32) 

The coherence bandwidth is the counterpart of the delay spread in the frequency domain, 

and it is the range of frequencies over which the channel gain remains about the same, or as is 

commonly known, over the range of frequencies the gain is flat, with a linear phase. Fortunately, 

the coherence bandwidth of the channel denoted by 6ã can be approximated based on the 

specified correlation coefficient value. The case when the correlation coefficient is about 

zero,	�∆Û� ≈ 0, ∆Û = 2�6ã . The coherence bandwidth for this case is approximated by 

6ã ≈ 1/ å̧ , which implies that changing the frequency by 6ã results in a completely different 

(and statistically independent) gain. For the more common value of Õ(∆Û) ≈ 0.5(��	50%�,	the 

coherence bandwidth is estimated by 6ã ≈ 1/5 å̧	which implies that the channel gain at ω and ω 

+	6ã are similar. Finally, when considering Õ�∆Û� ≈ 0.9���	90%� the coherence bandwidth 

can be approximated as 6ã ≈ 1/50 å̧. In this case, the channel gain at ω is almost exactly the 

same as the gain at ω	+	6ã. 
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Based on the value of coherence bandwidth 6ã , and given signal bandwidth 6é , one can 

evaluate the channel category. When	6ã >	6é, the channel is considered flat or flat fading.  

Denoting the symbol time duration by êé then the minimum signal bandwidth can be 

estimated as 6é � �ëì.	This signal bandwidth therefore has to be quite a bit less than the channel 

coherence bandwidth so that the channel can be assumed to be flat fading. A rule of thumb is 

given by  

 	Bí � 1Tí ≤ 110σÙ 	or	equivalently	by	 σÙTí ≤ 0.1												 (2.33) 

In the case of a flat fading channel, no compensation for the channel distortion is 

required. Consequently, the symbol rate in the channel has an upper bound ôé ≤ ±.�õö  . When the 

above condition is not met, that is 6é > 6ã, the ISI exists and the received signal is distorted. 

In most common multipath channels the ISI distortion effects are significant and 

dominate the channel noise. Such channels are said to be highly dispersive, and engineering 

efforts are focused on eliminating ISI by a process known as equalization in communication 

discipline, or de-convolution in some other applications such as geophysics. 

In conclusion, we divide the channel behavior with respect to the signal bandwidth and 

according to the channel delay spread as follows: 

When6é ≪ 6ã and êé ≫ å̧ the channel is known as flat fading or frequency-not-

selective 

When6é > 6ã and êé < å̧ the channel is known as non-flat fading or frequency 

selective 

Frequency Dispersion Parameters 

The mobility of the communicator originates another parameter known as Doppler shift 

in frequency, or simply some change in frequency due to the mobile velocity. When denoted by 

�ø , the Doppler shift is computed as �ø � ùú ���!	in which ² is the relative mobile speed, λ is the 

radio wavelength, and ! is the angle between the wave direction and the mobile direction. The 

change in frequency is positive when the mobile approaches the transmitter and negative when 

the mobile is departing. 
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Figure 2-23: Doppler shift geometry 

It is obvious that different paths have different Doppler shifts that possess random 

natures, as the angle !  can be considered random and in most cases uniformly distributed. 

There are a number of copies of the transmitted waves at the mobile antenna, each 

travelling along different paths, which are characterized by various relative speeds and angles. 

Moreover, in specific scenarios, the surrounding objects might be moving and generating time 

varying Doppler shifts on multiple components. 

The corresponding random change in frequency causes spectral broadening known as 

Doppler spread. Doppler spread is therefore defined as the range of frequencies over which the 

Doppler shift is not zero. We denote by 6ø the maximum Doppler shift or Doppler spread of a 

specific wireless channel. 

It is possible to categorize the wireless channel with respect to Doppler spread 6ø as 

follows: 

1) If the signal bandwidth is much greater than Doppler spread, that is 6é ≫ 6ø , the fading 

is known as slow fading and, hence, the effects of Doppler spread are negligible. In slow 

fading, the channel (in particular, CIR) changes at a much slower rate and can be 

assumed to be static over several symbol time durations. 
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2) If, on the contrary, the effects of the Doppler spread are significant and cannot be ignored 

in the case that 6é < 6û , the CIR changes rapidly with respect to the symbol time 

duration. Such channel is called fast fading 

The time domain properties of the wireless channel can be further specified by defining 

another parameter, coherence time, which is the duration of time in which the CIR is invariant. 

Two samples of the channel are highly correlated if their time separation is less than the 

coherence time. The given definition itself depends on the time correlation coefficient. In the 

time domain, the correlation coefficient as a function of time difference ∆
 is given by:  

 	P�∆t) = ß�h(t)h∗(t + ∆t)�
ß�|h(t)| � 												 (2.34) 

Generally, the coherence time is inversely proportional to the Doppler spread.  

 		Tý ≈ 1B¾ 

 

(2.35) 

If the coherence time for which the time correlation coefficient of (2.28) remains above 

0.5 or 50% it is approximated by:  

 			Tý ≈ 916πB¾									 (2.36) 

As a rule of thumb, the geometric average of (2.29) and (2.30) is used for digital 

communication.  

 	Tý � � 1B¾ . 916πB¾	 ≈ 0.423B¾ 												 (2.37) 

The channel characteristics can be categorized using the coherence time êã , and the 

symbol time duration êé as follows: 

When	êé < êã , the complete signal or symbol is affected similarly by the channel, and 

the channel is known as slow fading. 
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When êé > êã , different parts of a signal are affected differently because the channel 

changes faster compared to a symbol duration. Consequently, the channel is called fast fading 

In summary, wireless channels can be divided into four types. Based on the delay spread, 

the channel is either flat (not frequency selective) or frequency selective, and based on Doppler 

spread (or, equivalently, coherence time) the channel is known as slow or fast fading. 

As we will see, commonly encountered wireless channels in modern mobile 

communication systems are determined to be selective and slow fading. That is, the channels are 

usually highly dispersive. However, the variation of channels is slow with respect to time. 

2.5.2 Adaptive Equalization 

Adaptive equalizers [33] compensate for signal distortion attributed to inter-symbol 

interference (ISI) which is caused by multipath within time-dispersive channels. As shown in 

Figure 2.23 below, there are several methods in which equalizers can achieve adaptation of their 

tap coefficients. These include the transmission of a training sequence and decision- directed 

adaptation 

 

Figure 2-24: Simplified baseband model of a digital communication system 

The basic data communications process can be explained by Figure 2.23. A �-bit binary 

sequence is mapped to a symbol �(
) which is pulse-shape filtered and modulated to a band-

limited communication channel. The received symbol W(
) is corrupted by inter-symbol 
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interference ISI and Gaussian white noise. The equalizer removes the distortion caused by the 

channel by estimating the channel inverse. The equalizer output Ò(
) is sent to a decision device, 

which results in the received symbol estimate �̂(
). The error computation, which determines the 

error signal �(
) used to adjust the equalizer tap coefficients, depends on the equalizer mode of 

operation and the corresponding equalization algorithm employed. For a non-blind adaptive 

equalizer such as those based on the least mean squares (LMS) algorithm, the equalizer will 

initially operate in the training mode. In this mode �(
) is a training sequence known by the 

receiver and �(
) will be calculated using the difference between Ò(
) and �(
). After 

convergence, the equalizer will be switched to the decision-directed (DD) mode where �(
) will 

be computed based on the difference between Ò(
) and the estimated symbol  ��(
). For blind 

adaptive equalizers, there is no training sequence, initially �(
) is a non-linear function of Ò(
). 
After convergence, as for non-blind equalizers, the blind equalizer can be switched to the DD 

mode. 

2.5.2.1 Minimum Mean-Squared-Error Equalization 

The mean squared error and variants of its cost function are widely used used for 

equalizer design [34], [35] due in part to the simplicity of the MSE cost function and its 

unimodal performance surface. The result of minimum mean squared error (MMSE) equalization 

is an exact solution for the equalizer tap coefficients, providing the theoretical minimum for 

MSE based equalization algorithms. The MSE criteria attempts to minimize the expected 

squared magnitude of the recovery error �(
) = �(
) − Ò(
), where �(
) is the desired signal. 

The desired signal is the transmitted signal delayed by � so that �(
) = �(
 − �).The MSE cost 

function is defined as  

  �*¿� = E�e (n)� (2.38) 

= ��� (
) − 2�(
)Ò(
) + Ò (
)� 
= ��� (
) − 2�(
)Që(
)S(
) + Që(
)S(
)Së(
)Q(
)� 

= ��� (
)� − 2���(
)Që(
)S(
)� + ��Që(
)S(
)Së(
)Q(
)�. 
In the equation above Z(
) = ¤Z±(
), Z�(
), … , Z�"�(
)¥ë is an © × 1 vector of 

equalizer tap coefficients where © is the length of the equalizer. 
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S(
) = ¤W±(
), W�(
), … , W�"�(
)¥ is the equalizer input. When the filter coefficients are fixed, 

the cost function in (2.32) is not time-varying and can be re-written as  

 		�*¿� � E{d (n)� − 2�	E�d(n)x(n)� + �	E�x(n)x	(n)��										 (2.39) 

� �{� �
�� ? 2Që
+Që�Q	
where 
 � �{��
�W�
�� is the cross-correlation vector between the desired signal and the input 

signal and � � �{W�
�Wë�
��	is the input correlation matrix. 

The gradient of the MSE cost function with respect to the equalizer tap weights is defined 

as  

 	∇��*¿� � ∂�*¿�
∂� � [∂�*¿�

∂w±
				∂�*¿�

∂w�
	…	 ∂�*¿�

∂wÓ"�
¥											 (2.40) 

� ?2
 + 2�Q	 
The optimal equalizer tap weights Qyrequired to obtain the minimum mean-squared error 

(MMSE) can be determined by equating (2.34) to zero and solving for Qyas follows  

 					0 � 2
�� ? 2� → w� = 
"��									 (2.41) 

where the input correlation matrix 	� is assumed to be invertible. The MMSE, which is denoted 

by ��k� is obtained by substituting (2.35) for Q in (2.33) as follows  

 	ξ*¦� � E{d (n)� − 2��	� + ��	
��											 (2.42) 

� �{� �
�� ? 2[�"�
]ë
+ [�"�
]ë�[�"�
]	
� �{� �
�� ? 2
ë�"�
+ 
ë�"�
	

� �{� �
�� ? 
ë�"�
	
� �{� �
�� ? 
ë�"�
	
� �{� �
�� ? 
ëQy	

Optimal tap coefficients could be obtained by solving (2.35) but it requires the inversion 

of large matrices in practice, which is computationally costly. There are algorithms which can 

search for the near optimal or optimal coefficients in an iterative manner without carrying out the 
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matrix inversion in (2.35). An example of such an algorithm is the method of steepest descent 

which is expressed as  

 			��n + 1) = �(n) + μ(−∇��*¿�)									 (2.43) 

where � is a constant step size. In order to converge the step size is chosen to satisfy the 

following requirement  

 0 < μ < 1λ*�z	 (2.44) 

where ¶��� is the maximum eigenvalue of the input correlation matrix	�. The method of 

steepest descend requires an estimate of the gradient which is not available in practice and thus 

hinders its application. 

2.5.2.2 Trained Least-Mean-Squares Algorithm 

The least-mean-squares algorithm (LMS) is a search method whose cost function 

simplifies the gradient calculation in (2.34) by replacing the expected values with the 

instantaneous values. There are two modes in which the LMS operates: training and tracking. 

The training mode occurs only once during startup for point-to-point communications and the 

desired signal to adapt the equalizer tap coefficients. After initialization is complete, the LMS 

algorithm switches to the tracking mode, where the equalizer taps are adjusted based on the 

difference between the equalizer output and the estimated symbol. The LMS algorithm will now 

be derived for both the real-valued and complex-valued cases. 

Real-Valued LMS  

Recall from (2.34) that the gradient of ���� is defined as 

���
��� � ?2
 + 2�Q	

An estimate of the gradient,	������	can be obtained by replacing � and 
 with their 

instantaneous estimates �� � W�
�Wë�
�	and 
� � ��
�W�
� , respectively. The gradient estimate  

���
��� is equivalent to the LMS cost function which is defined as  

 			∇��v*¿ � ?2��+ 2
�w(n)									 (2.45) 

� ?29��
�W�
�; + 29W�
�Wë�
�;Q�
�	
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= −2W(
)(�(
) − Wë(
)Q(
)) 
Substituting (2.39) into (2.37), the LMS equalizer tap adjustment algorithm for real-values 

signals is defined as  

   w(n + 1) = w(n) + μ9d(n) − y(n);x(n) (2.46) 

where � is restricted to the limits defined in (2.38). 

Complex-Valued LMS 

The LMS cost function for the complex case is defined as  

   �v*¿ = |e(n)| = e(n)e∗(n)           (2.47) 

= 9�(
) − Që(
)S(
);(�∗(
) − Qx(
)S∗(
)) 
= |�(
)| − Qx(
)S∗(
)�(
) − Që(
)S(
)�∗(
) + Që(
)S(
)Sx(
)Q∗(
) 

= |�(
)| + Q�
ë (
)9S∗(
)�(
) + S(
)�∗(
); − QFë(
)9S(
)�∗(
) − S∗(
)�(
);
+ Q�

ë (
)S(
)Sx(
)Q�(
) + QFë(
)S(
)Sx(
)QF(
) 

where (. )x  the complex conjugation and transposition operator is, while (. )� and (. )F are the 

real and imaginary components of a complex number, respectively. Taking the gradient of (2.41) 

with respect to the real and imaginary components:  

  ∇���v*¿ = ∂�v*¿
∂��(n) = 2 (n) w(n)��(n) − ( ∗(n)d(n) +  (n)d∗(n))            (2.48) 

   ∇��Cv*¿ = ∂�v*¿
∂�C(n) = 2 (n) w(n)�C(n) − j( (n)d∗(n) −  ∗(n)d(n))          (2.49) 

Using (2.42) and (2.43), the complex gradient of (2.41) is defined as  

   ∇��v*¿ = ∇���
v*¿ + j∇��Cv*¿          (2.50) 

= 2S(
)Sx(
)Q�(
) − 9S∗(
)�(
) + S(
)�∗(
); + �2S(
)Sx(
)QF(
) + (S(
)�∗(
)
+ S∗(
)�(
)) 

= 2S(
)Sx(
)9Q�(
) + �QF(
); − 2S∗(
)�(
) 
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= 2S(
)Sx(
)Q(
) − 2�(
)S∗(
) 
= −29�(
) − Që(
)S(
);S∗(
) 

The LMS equalizer tap adjustment algorithm is defined as  

  w(n + 1) = w(n) + μ9−∇��v*¿;             (2.51) 

= Z(
) + �9�(
) − Ò(
);W∗(
) 

where once again � is restricted to the limits given in (2.38). Therefore the complex equalizer tap 

adjustment algorithm for the method of steepest descent algorithm is defined as  

  �(n + 1) = �(n) + μe(n) ∗(n)            (2.52) 

where �(
) is the error signal of the particular algorithm. 

2.5.3 Symbol classification at the receiver 

2.5.3.1 Principle of digital communication 

Consider the communication system shown in Figure 2.24 below. Every T seconds the 

system sends Î = K�� ­ bits of information through the channel for a data rate of ô = Î/ê bits 

per second (bps).There are ­ = 2! possible sequences of K bits and we say that each bit 

sequence of length K comprises a message �k = ���, � , … . �J� ∈ ­ where 

­ = ���, � , … . �!� is the set of all such messages.The messages have probability �k of being 

selected for transmission where ∑ �k = 1�k�� . 

Suppose message �k is to be transmitted over the channel during the time interval 

[0,T).Since the channel is analog the message must be embedded into an analog signal for 

channel transmission. Thus, each message �k ∈ ­ is mapped to a unique analog signal �k(
) ∈
� = ���(
), … , ��(
)� where �k(
) is defined on the time interval [0, T) and has energy  

 E¿" = � s¦ (t)dt,
	

±
    i = 1, … , M             (2.53) 
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Figure 2-25: Communication system model 

Since each message represents a bit sequence, each signal �k(
) ∈ � also represents a bit 

sequence, and detection of the transmitted signal �k(
) at the receiver is equivalent to detection of 

the transmitted bit sequence. 

In the communication system model shown above, the transmitted signal is sent through a 

channel which introduces inter-symbol interference. Given �(
) the receiver must determine the 

best estimate of which �k(
) was transmitted during each transmission interval ¤Îê, (Î +
1)ê).This best estimate for �k(
) is mapped to a best estimate of the message �k(
) ∈ ­ and the 

receiver then outputs this best estimate �� = ��#�, … . , �#J� ∈ ­ of the transmitted bit sequence. 

Intuitively, the receiver minimizes the probability of detection error by decoding the 

received signal as the signal in the set of possible transmitted signals that is closest to the one 

received [36]. Determining the distance between the transmitted and received signals requires a 

metric for the distance between signals. If we could find a way to represent digitally modulated 

signals as vectors in an appropriately defined vector space, then we could analyze signals in 

finite-dimensional vector space using classical notions of distance for vector space instead of 

analyzing signals infinite-dimensional space which is considerably more difficult. In the next 

section we show how to represent digitally modulated signals as vectors in finite dimensional 

space. This is called geometric representation of signals. 

2.5.3.2 Geometric representation of signals 

The basic premise behind a geometric representation of signals is the notion of a basis 

set. Specifically, using a Gram-Schmidt orthogonalization procedure, it can be shown that any 

set of M real energy signals � = (��(
), … . , ��(
)) defined on [0,T) can be represented as a 

linear combination of © ≤ ­ real orthonormal basis functions �∅�(
), … . ,∅�(
)�. We say that 

these basis functions span the set �.Thus we can write each �k(
) ∈ � in terms of its basis 

function representation as  

Transmitter ISI Receiver 

�(
) �(
) ��
= ��

�k 



53 

 

 		s¦�t) = P s¦,∅,(t),
Ó

,��
			0 ≤ t < T												 (2.54) 

where  

 		s¦, � � s¦�t)∅,(t)dt
	

±
									 (2.55) 

is a real coefficient representing the projection of �k�
� onto the basis function ∅��
� and  

 	�∅¦�t)∅,(t)dt = %1		i = j
0			i ≠ je

	
±

												 (2.56) 

For most modulation techniques normally encountered in practice © � 1	��	2 .For the 

case when © � 2	 such as for QAM modulation, the basis set consists of the sine and cosine 

functions:  

 			∅��t) = �2
T cos(2πf>t)								 (2.57) 

and  

 ∅ �t) = −�2
T sin(2πf>t)												 (2.58) 

The Ú ë factor is needed for normalization so that â ∅k ë± �
��
 � 1, � = 1,2. 

We denote the coefficients �k�	in (2.49) above as a vector &k � ��k�, �k , … . . , �k�) ∈ ô�	
which is called the signal constellation point corresponding to the signal �k�
�.	All the 

constellation points {&�, … . . , &�� corresponding to all the ­ messages constitute the signal 

constellation. Given the basis functions �∅�(
), … . ,∅�(
)�	there is a one-to-one correspondence 

between the transmitted signal �k�
� and its constellation point &k . Specifically �k�
�	 can be 

obtained from &k by (2.48) and &k can be obtained from �k�
� by (2.49).Thus it is equivalent to 

characterize the transmitted signal by �k�
� or &k . 
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The representation of �k(
) in terms of its constellation point &k ∈ ô� is called its signal 

space representation and the vector space containing the constellation is called the signal space. 

With this signal space representation we can analyze the infinite-dimensional functions �k(
) as 

vectors &k in finite-dimensional vector space ô . 

2.5.3.3 Received vector 

From the communication system model shown above, the received signal �(
) = �k(
) +

(
), 0 ≤ 
 < ê. Using geometric representation of signal concepts, the received signal can be 

represented by the vector  ' = (�(, … … , ��) where �� = �k� + 
�	, � = 1, … . , ©.  

 				s¦, � � s¦�t)∅,(t)dt
	

±
											 (2.59) 

and  

 			n, = � n(t)∅,(t)dt
	

±
										 (2.60) 

The vector ' is called the received vector and is used at the receiver to determine which 

signal was transmitted. This can be done by mapping ' in the constellation diagram and 

determining which constellation point &k is closest to '.The closest constellation point is then 

taken to correspond to the signal that was transmitted and hence the message that was 

transmitted. 

2.5.3.4 Classification (Detection) of symbols 

In the previous section, it is mentioned that the received vector r is used at the receiver to 

determine the signal that was transmitted. This can be done by mapping ' in the constellation 

diagram and determining which constellation point &J is closest to '.The closest constellation 

point is then taken to correspond to the signal that was transmitted and hence the message that 

was transmitted. A received vector ' corresponds to message �k , � = 1,2, … , ­ if  

 				∑ �r, ? s�,� Ó,�� 				is minimum for k � i								 (2.61) 
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where �� ’s,� = 1, … , © are the components of the received vector ' and �J�’s ,� = 1, … , © are the 

components of the signal constellation point &J , � = 1, … , ­.­ is the number of signals in the 

set of all possible unique signals that can be transmitted. (2.62) can be written as  

 

 ∑ (r, − s�,) Ó,�� = ∑ r, −Ó,�� 2 ∑ r,s�,Ó,�� + ∑ s�, Ó,��                (2.62) 

 

                                         
 

 

 

Thus an equivalent form of the optimum decision rule (2.61) is to choose �� = �k if  

  ∑ r,s�,Ó,�� − �
 E�  is maximum for k = i           (2.63) 

A correlation receiver implements the optimum decision rule of (2.63) by first finding ' 

using the procedure described in section 1.3 and then computing the metric of (2.63) and taking a 

decision in the receiver. The corresponding receiver structure is illustrated in Figure 2.25 below 
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Figure 2-26: Receiver structure 
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CHAPTER 3  

                                      METHODOLOGY 

3.1 Simulations 

3.1.1 Generation of training data 

Un-modulated 16-QAM signals whose gray coded constellation is shown below are 

generated. 

 

 

Figure 3-1: 16-QAM constellation 

The 16 signal constellation points have been shown with their gray codes to the left and 

the decimal equivalent to the right. Each constellation point will henceforth be referred to by 

their decimal equivalent. In clustering terminology we will refer to each of the constellation 

points as a class, so that there are 16 classes for the drawn constellation and each class is referred 

to by its decimal equivalent. Note that the energy of a specified constellation point is given by 
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the length of the vector originating from the origin (point (0, 0)) to the specified point. For 

example, the energy of constellation point 16 is given by the length of the drawn vector. The 

average constellation energy is given by the sum of the energy for all the constellation points 

divided by the number of constellation points. 

In the second step, a value is randomly generated on the discrete uniform distribution in 

the range 1-16, and then the constellation point with the decimal equivalent to this value is sent 

over the symbol interval. For the experiments in this paper, about 1000 such symbols are sent 

over a wireless channel. 

The wireless channel used is a 3G wideband CDMA channel [37] for a vehicle travelling 

at 120 km\hr. This channel introduces severe inter-symbol interference. Below (Table 3.1) is a 

table of relative powers in dB of the rays of this channel versus the delay in nanoseconds. 

Table 3-1: Specifications of a 3G wideband CDMA channel 

Delay(ns) Power(dB) 

0 0.0 

244 -2.4 

488 -6.5 

732 -9.4 

936 -12.7 

1220 -13.3 

1708 -15.4 

1953 -25.4 

 

The channel output for the number of transmitted symbols was then used to train a SOM. 

For the complex channel output corresponding to each sent symbol, a two component vector is 

formed where the first component is the real part of the channel output and the second 

component is the imaginary part. A collection of all such vectors for the channel output forms 
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the training samples. Figure 3.1 below is a plot of the in-phase versus the quadrature component 

for all channel output. As seen from the plot, the dynamic range of the two components (inphase 

and quadrature component) is equal and thus no normalization of data before training the SOM is 

necessary. 

3.1.2 Training the SOM 

For training the SOM, the SOM_PAK program package [18] was used, SOM_PAK 

contains all programs necessary for the correct application of the self organizing map algorithm 

in the visualization of complex experimental data.   

A map was created of 160 units arranged in a rectangular topology with 16 units in the x-

direction and 10 units in the y-direction. Random initialization of the map was used. The training 

of SOM was carried out in two phases. In the first phase the parameter used were: 30,000 steps, 

initial learning rate parameter was 0.05 and initial radius of the training area of SOM was set to 8 

units. In the second phase the parameters used were: 70,000 steps, initial learning rate parameter 

is 0.02 and the initial radius of the training area of SOM is 2 units.1000 maps were created using 

the parameters and the best one was picked as the one which gives the lowest average 

quantization error. The quantization error is the Euclidian distance between a reference vector of 

the trained map and the input vector which most resembles it. The training samples are used for 

the purpose of computing the average quantization error. The final map picked had a 

quantization error of 0.017460. 
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Figure 3-2: A plot of the training data 

The trained map was used for the analysis and visualization of the channel output with 

the aim of discovering any properties which may be used to mitigate inter-symbol interference. 
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CHAPTER 4  

                           RESULTS AND DISCUSSIONS 

4.1 Analysis and visualization of channel output  

Self-organizing maps preserve the topological relationships in the input data, as such they 

can be used to make observations about the structure of the input data which in our case is an 

interfering channel output. Self-organizing maps also can be used to discover categories of data 

in the training data and consequently to classify input data. To classify the wireless channel 

output, training data was presented again to the fully trained map, an input vector is picked from 

the training data and presented to the trained map, then the winning node is computed as the 

node whose vector is closest to the input vector. This procedure is repeated for all training data. 

Then each node of the trained map is given the label of the class to which majority of the 

symbols for which it wins belong. Figure 4.1 below is a map showing the 2-dimensional 

locations of the final map vectors and the numerical labels of each node. 

 

Figure 4-1: Structure of channel output 
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Comparing Figure 4.1 to the 16-QAM constellation map shown reproduced in Figure 4.2 

below for convenience, it is seen that the channel output is a rotated version of channel input. 

The topological relationships in channel input are roughly maintained. 

Next, the trained map is used to classify the channel input, and the resultant classes are 

compared with the known classes of channel input, then misclassification of symbols is noted. 

Then an error analysis is done on the misclassified symbols to determine the classes to which a 

symbol belonging to a given constellation point is likely to be misclassified to. 

 

Figure 4-2: 16-QAM constellation 

The results are shown in table below: 
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Table 4-1: Results of symbol misclassification analysis 

class likely to be misclassified to 

1 2,5 

2 1,4,6 

3 4,7 

4 3,8,2 

5 1,6,13 

6 5,2,14,8 

7 3,8,15 

8 4,6,7,16 

9 10,13 

10 9,12,14 

11 12,15 

12 10,11,16 

13 5,9,14 

14 6,10,13,16 

15 7,11,16 

16 8,12,14,15 

 

From Table 4.1 it is seen that symbols are likely to be misclassified to those symbols 

whose gray codes differ from its own by 1 bit. In other words, the gray coding technique has 

been verified. 
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4.2 Component Maps 

The component maps for the first and second component of the SOM final weights is 

illustrated in Figure 4.3 and Figure 4.4 respectively. Also shown is the label of each node 

corresponding to the majority of the classes whose representation it wins. The lighter regions 

indicate areas where classification of the present classes is strongly dependent on a component of 

the reference vectors while the dark regions indicate the areas where classification of  the classes 

are weakly dependent on a component of the reference vectors 

 

Figure 4-3: Component map for the first component 
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Figure 4-4: Component map for the second component 

From Figure 4.3, it is seen that the classification of classes 9, 10 and 13 is strongly 

dependent on the first component of map weight vectors. Note that the first component of the 

map weight vectors correspond to the in-phase component of channel output which in turn 

correspond to the in-phase component of channel input. Similarly, the second components of 

map weight vectors correspond to the quadrature component of channel input. In the same Figure 

4.3 it is also seen that classes 3, 4 and 7 are weakly dependent on the real part of the channel 

output. Classification of the remaining classes is here taken to be moderately dependent on the 

first component. From Figure 4.4, we see that classification of classes 1, 2, and 5 are least 

dependent on the second component of map weight vectors while classes 11, 12 and 15 are most 

strongly dependent on the second component. The rest of the classes are moderately dependent 

on the second component of the map weight vectors. 

In summary, it is noted that the classification of various classes of channel output is 

influenced to varying extent by the value of symbol in-phase and quadrature component 

respectively. Simulations show that if the magnitude of the  in-phase component of all the classes 

of the input 16-QAM constellation is increased, then output symbols corresponding to input 
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classes 9,10, and 13 have the most energy increase, followed by the channel output 

corresponding to the classes that are moderately responsive to the in-phase component. Output 

symbols corresponding to classes that are least influenced by the in-phase component showed the 

least energy increase. The Table 4.2 below shows the average energy increase per symbol for the 

3 categories of channel output when the magnitude of the in-phase component of all input 

symbols is increased by 0.0025. 

Table 4-2: Average increase in energy per symbol for the symbols whose 

misclassification is weakly, moderately and strongly influenced by the value of the in-phase 

component 

Category Energy increase per symbol 

Weak -0.0130 

Medium 0.0071 

Strong 0.0166 

 

From the above discussion, it is seen that classes which are strongly influenced by a 

component of the map weight vectors have the most desirable response to a change in that 

component in the input symbols whereas classes which are least influenced by a component of 

the map weight vectors have the least desirable response to a change in that component in the 

input symbols. 

In the next section we explore how this result can be used in the design of a constellation 

which minimizes the symbol classification error while reducing the average constellation energy. 

4.3 Design of a 16-QAM constellation 

In the previous section a component map for the first and second component of map 

weight vectors reveals that the classification of different classes of channel output is influenced 

to varying levels by the value of their in-phase and quadrature components.  Starting with 16-

QAM symbols and transmitting them over a channel that introduces inter-symbol interference, it 

was shown for instance that the classification of symbols belonging to constellation points 9, 10, 
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and 13 is strongly influenced by the value of their in-phase component while those belonging to 

constellation points 3, 4, and 7 are weakly influenced by the value of their in-phase component. 

The rest of the constellation points are considered to be moderately affected by the value of their 

in-phase component. Further, we see that classification of classes 1, 2, and 5 are least dependent 

on the value of their quadrature component while the classification of classes 11, 12 and 15 are 

most strongly dependent on the value of their quadrature component. The rest of the classes are 

moderately dependent on the value of their quadrature component.  A possible application of this 

result is in the design of a digital modulation constellation given the knowledge of the type of 

channel likely to be encountered in a digital communication system. For a digital modulation 

constellation, a reduction of the average constellation energy results in an increase in the symbol 

error rate at the receiver. A simple way to explain this is that when the average constellation 

energy is reduced, then it becomes more difficult to distinguish between the different amplitude 

levels and phases of the transmitted symbols. The question we ask and answer is: starting from a 

given average constellation energy, what is the technique by which the average constellation 

energy can be reduced while at the same time minimizing the resultant increase in symbol 

classification errors at the receiver? 

Beginning with a standard rectangular 16-QAM constellation, we show how to construct 

a constellation with a smaller average energy while minimizing the resulting increase in receiver 

symbol error rate. If it is known for instance that the classification of symbols belonging to 

certain constellation points is weakly influenced by the value of their in-phase component, then 

an attempt to reduce energy of transmitted signals is best done by reducing the value of the in-

phase component of symbols belonging to those constellation points. The resulting symbol error 

rate is then compared to that obtained by a wholesome reduction of the energy of all 

constellation points such that the average constellation energy is the same as that of selective 

reduction of the in-phase components of specific constellation points described above. 

For the simulations, we start with a gray coded 16-QAM shown in Figure 4.2. Besides 

each constellation point is its 4-digit binary gray code to the left and its decimal equivalent to the 

right. A constellation point shall be referred to by its decimal equivalent. The average energy of 

the constellation is 0.2118.In the second step, a value is randomly generated on the discrete 

uniform distribution in the range 1:16, then the constellation point with the decimal equivalent to 

this value is sent over the symbol interval. 800 such symbols are sent. The symbols are sent over 
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a 3G wideband CDMA channel [2] for a vehicle travelling at 120 km\hr. This channel introduces 

severe inter-symbol interference. In the receiver an LMS equalizer is used to remove the inter-

symbol interference. The error incurred after equalization is about 100 symbols. To achieve the 

aims outlined in the previous section, the following three experiments were performed. 

Experiment 1 

The in-phase components of constellation points 3, 4 and 7 were reduced by 0.0025, 

these are the constellation points whose classification is least dependent on the in-phase 

component. The quadrature component of constellation points 1, 2 and 5 were also reduced by 

the same amount. These are the constellation points whose classification is least affected by the 

value of their quadrature components. The in-phase and quadrature components of constellation 

points moderately dependent on in-phase and quadrature component were also reduced so as to 

maximize the total constellation energy reduction while not drastically increasing the symbol 

classification errors. The new average constellation energy is then calculated. Then 800 symbols 

are sent over the channel and the number of misclassified symbols at the receiver is noted. In 

order to generalize the results, we repeat the procedure for 10,000 randomly generated vectors, 

each consisting of 800 symbols and the symbol misclassification is counted for all the 10,000 

instances. The results are plotted in Figure.4.5. 

Experiment 2 

For this experiment, all the constellation points are multiplied by a suitable scalar so that 

the resulting constellation has an average energy equal to that of the constellation used for 

experiment 1.In other words, here we have a wholesale reduction of the energy of all 

constellation points so that the average energy of resulting constellation is equal to the case of 

experiment 1 where only specific components of  some constellation points had their magnitude 

reduced depending on how they are influenced by the value of their in-phase and quadrature 

components.800 symbols are then sent over the channel and the number of misclassified symbols 

is counted. As in experiment 1, we repeat the procedure for 10,000 vectors, where each vector 

consists of 800 symbols. The result is plotted in Figure.4.5. 
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Experiment 3 

For this experiment, symbols from the original constellation shown in Figure.1 are 

transmitted and the resulting symbol misclassification is noted. The result is plotted in 

Figure.4.5. 

 

 

Figure 4-5: Symbol classification errors for experiments 1, 2 and 3 

As shown in Fig.4.5, more symbol errors are incurred when the constellation energy is 

reduced homogeneously as in experiment 2 than when only specified constellation points have 

an energy reduction as in experiment 1. This is because there is a smaller  increase in number of 

errors when constellation points whose classification is weakly dependent on a component have 
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that component reduced than when all constellation points have an energy reduction including 

the ones whose classification is strongly dependent on the values of their in-phase and quadrature 

components. As expected, the least error is incurred when using symbols from the original 

constellation point without any energy reduction. 

In section 1.1, it was shown through computation that symbols belonging to constellation 

points whose classification is weakly dependent on a component have the least desirable 

response when that component is altered in the input symbols and symbols belonging to 

constellation points whose classification is strongly dependent on a component have the most 

desirable response when that component is altered in the input symbols. For example, symbols 

whose classification is weakly dependent on the in-phase component have the least energy 

increase when the magnitude of the in-phase component of corresponding constellation points is 

increased. The same is true for when the magnitude of the in-phase component is decreased. An 

equivalent way to demonstrate this experimentally is to show that when the magnitude of the in-

phase components for symbols whose classification is least dependent on the in-phase 

component is reduced, then we have the least increase in symbol classification errors. That is the 

essence of the next experiment 

Experiment 4  

In this experiment, the aim is to compare the increase in error per unit reduction of 

constellation energy when a reduction of the in-phase and quadrature components is done in the 

manner of experiment 1 and when in addition, the in-phase and quadrature components of the 

constellation points most strongly influenced by the values of their in-phase and quadrature 

components is reduced. The result is plotted in Figure 4.6.  
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Figure 4-6: Comparison of increase in error per unit energy reduction for 

experiment 4 

In Fig.4.6, it is evident that when constellation points whose classification is strongly 

influenced by the in-phase or quadrature component have the magnitude of that component 

reduced, then there is a drastic increase in number of symbol errors than when only components 

that are weakly or moderately influenced by in-phase or quadrature components have their 

magnitudes decreased. 
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CHAPTER 5  

                CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

Visualization and analysis of an interfering wireless channel output using self-organizing 

maps was done. Using 16-QAM symbols as the input to the wireless channel, then visualization 

of the output using a trained SOM revealed that the output is a rotated version of the input 

constellation. The SOM was also used to classify the channel output and an error analysis was 

then done on the misclassified symbols to determine which constellation points that an output 

symbol belonging to a given constellation point is likely to be misclassified to. It was found that 

a symbol is likely to be misclassified to those symbols belonging to constellation points whose 

gray codes differ from that of the symbol under consideration by one bit. In other words, the 

validity of the gray coding for the wireless channel used is verified. A component map analysis 

of the SOM map reveals how the classification of various classes of channel outputs is 

influenced by the values of their in-phase and quadrature components. It is found that the 

classification of symbols belonging to constellation points 9, 10, and 13 is strongly influenced by 

the value of their in-phase component while those belonging to constellation points 3, 4, and 7 

are weakly influenced by the value of their in-phase component. The rest of the constellation 

points are considered to be moderately affected by the value of their in-phase component. 

Further, we see that classification of classes 1, 2, and 5 are least dependent on the value of their 

quadrature component while the classification of classes 11, 12 and 15 are most strongly 

dependent on the value of their quadrature component. The rest of the classes are moderately 

dependent on the value of their quadrature component. Using this result, a technique was 

demonstrated on how to reduce the average constellation energy for an interfering channel while 

minimizing the resulting increase in symbol classification errors. Thus a method is found to 

mitigate inter-symbol interference. 
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5.2 Contribution of this work 

The study has extended the application of SOM into the visualization and analysis of 

wireless communication channels.The findings documented in this report and summarized in the 

preceding section shows new insights into the structure of a wireless channel output as well as 

establishing how the classification of symbols is affected by the values of two parameters namely 

their in-phase and quadrature components. Also presented is a technique demonstrating how this 

knowledge can be used to design an energy efficient digital modulation constellation. 

5.3 Recommendations for further research work 

Visualization and analysis was done for an output of a particular wireless channel. It 

would be interesting to see how the results turn out for a practical situation in which the channel 

varies over time. Also as has been demonstrated, self-organizing maps can be used to gain 

valuable insight about the wireless channel output and so the tool is recommended as a way of 

gaining additional insights on the output of a wireless channel, which may lead to discovery of 

properties which could be utilized to mitigate against channel imperfections. 
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