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Abstract

We study the free boundary problem of the American type of options. We con-

sider a continuous dividend paying put option and provide much simpler way of

approximating the option payoff and value. The essence of this study is to ap-

ply geometric techniques to approximate option values in the exercise boundary.

This, being done with the nature of the exercise boundary in mind, more accurate

results are guaranteed. We define a transformation (map) from a unit square to

the free boundary. We then examine the transformation and its properties. We

take a linear case for a transformation as well as a nonlinear case which would be

more fitting for option values. We consider stochasticity (an Ito process) as we

define this transformation and this yields better approximations for option values

and payoffs. We also numerically compute optimal option prices using the same

transformation. We finally demonstrate that our transformation performs better

than most semi-analytic results.
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Chapter 1

Introduction

1 Background

Option pricing is one of the major areas of financial engineering (also commonly

referred to as Financial Mathematics or Mathematical Finance). There are vari-

ous types of options spanning from European, Asian, American, Bermudan among

others. However, the two major traded types are the American above all followed

by the European kind of options. The latter have been studied and pricing for-

mulas established. For the former, work has been done but more is needed to

obtain appropriate pricing measures for this kind of options. The American type

of options differs from the European in only the exercise time. Much as the Eu-

ropean options can only be exercised at their expiration time, American options

can be exercised at any time even before their expiration time. This relatively

makes their pricing a bit complicated compared to the European type. Despite

the fact that Black-Scholes equation for pricing options has attracted a lot of
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attention from both a theoretical as well as a practical point of view, there is still

a significant challenge to meet as regards the American type of options. One of

the interesting problems in the study of American option pricing is the analysis of

the early exercise and the optimal stopping times especially for options on assets

that are paying continuous dividends. This kind of problem can be studied as a

problem of solving a certain free boundary problem for the Black?Scholes equa-

tion ((Morebeke, 1976)). However, the exact analytical expression for the free

boundary problem is not known yet ((Kim, 1990)). Many authors have devel-

oped various approximate models leading to approximate expressions for valuing

American call and put options.

2 Statement of the problem

Definition 2.1. (σ-algebra)

A σ-algebra on a set X is a collection Σ of subsets of X that includes the empty

subset, is closed under complementation, closed under countable unions and closed

under countable intersections.

The American option value is obtained as the expected discounted payoff at

exercise. However as said earlier on, unlike for European options, the exercise

time for American Options is just any random stopping time between the current

time, say t and the expiration time, say T . Suppose we denote by V (S, t) the

option value at time t and by f (S, t) the pay-off at the same t and S is the price
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of the underlying stock. Then the stopping times, τ would be defined by;

T[t,T ] = {τ ; t ≤ τ ≤ T ; τ ∈ Ft}

where Ft is the σ-algebra generated by Wt; a wiener process. This set of points

can indeed be a solution set to an optimal stopping problem given by;

V (S, t) = supEQ(e−r(t−T )f(Sτ )|St = S)

Now Tτ = t being a stopping time implies that the pay-off will always be greater

or equal to the option value. Now the free boundary that we seek for is the set

of points at which

V (S, t) = f(S, t)

This set of points could be obtained from solving the so-called complete free

boundary problem for American Options.

3 Justification

Locating the free boundary of the Black-Scholes PDE for American options is

highly significant in option valuation. The location of a set of points where the

option value V is equivalent to the pay off f will induce better optimal points for

options and related derivatives. Normally in practice, most traded options follow

the American option trend but their prices are usually just approximated using

chosen numerical techniques. The location of the BS-PDE is thus a very vital

area of research in option pricing, specifically American option pricing.
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4 Objectives

4.1 Main Objective

To locate a free boundary for the Black-Scholes PDE for American Options

4.1.1 Specific Objectives

(i) To obtain a (an asymptotic) solution to the American option analytic val-

uation

(ii) To solve the American put and call option value variational inequalities

(optimal stopping problem)

(iii) To assess the viability of our results in mathematical finance

5 Scope of the study

This study will entirely be devoted to establishing a free boundary (or an asymp-

totic one). This study will not involve the abstract concepts that may come along

with this solution set (free boundary). The purpose of this study therefore will

include devising solutions (asymptotic) to the corresponding variational inequal-

ities, having relaxed some assumptions and constraints on these equations. We

shall also study the existence, uniqueness as well as economic significance of the

suggested solutions.
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Chapter 2

Literature Review

The problem of discovering free boundaries dates back to the start of the 19th

century. The location of a free boundary for American options is undoubtedly one

of the most outstanding problems in mathematical economics ((McKean, 1965);

(Byun, 2005)). Rarely, even in mathematical physics where PDEs play a very

vital role, do we obtain explicit solutions to PDEs, specifically those to do with

solving for a free boundary. However, the vitality of the Black-Scholes equation

in mathematical finance and in particular option pricing has attracted attention

from researchers in different areas who have tried to study the free boundary for

the Black-Scholes PDE for over four centuries now since Black & Scholes break-

through paper on Option pricing see (Black & Scholes, 1973). McKean (1965) is

believed to be the first (Barone-Adesi & Whaley, 1987); (Brennan & Schwartz,

1978) to have studied a free-boundary problem of a parabolic type (which is our

interest) arising in optimal stopping of the American option pricing. Moerbeke

(1976) furthered the work of McKean having studied the properties of this free
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boundary. A summary of the essential results on the American option pricing

problem is given by (Myneni, 1992). (Jacka, 1991) discussed the pricing of an

American put option as an optimal stopping problem. They also verify the es-

sential uniqueness of the solution to the free boundary problem and also identify

an integral equation satisfied by the stopping boundary. Kim, 1990 presents an

analytic valuation formula for American options written on assets that pay con-

tinuous dividends. Black & Scholes demonstrated that European options could

be valued with the help of a closed form equation. However, this is hardly the

case for American options since their exercise time can never be known. A great

remark here is that as long as the underlying asset pays no dividends, American

call options can never be exercised early and hence will always have the same value

as their equivalent European call options. Moreover, even with some dividends

provided they are of a discrete nature, early exercise is still dubious (Merton,

1973); (Brenner, Courtadon, & Subrahmanyam, 1985). This eases the work of

premature exercise analysis since it would only be optimal if it exercised just

before the dividend payment. Nevertheless, this is never the case for American

puts, calls on futures, contracts and foreign currencies. This is also inapplicable

in cases when the dividends paid by the underlying asset are of a continuous type

(Merton, 1965). This is basically due to the fact that there then will always be

only a single possibility of early exercise ((Carr, Jarrow, & Myneni, 1992)). This

explains the major setback for the impossibility of using European option formu-

las on American type options written on futures, contracts and foreign currencies.

More so, up until now, there are no generally accepted (or even proposed) an-
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alytic solutions that exist for those option types. The whole problem is rooted

in the fact that the optimal exercise boundary must be determined as a part of

the solution (Karoui & Karatzas, 2008); (Geske, 1979). On these very grounds,

researchers in this area specifically the valuation of American puts have resorted

to numerical methods or some kind of approximation methods. An example is

Brenner, Courtadon, and Subrahmanyam (1985) have applied the implicit finite-

difference method on the work of Brennan and Schwartz (1977, 1978) as a way

of accounting for the early exercise possibility of American options on futures

contracts. Geske (1984) devised a valuation formula for American puts which is

in terms of a series of functions of compound-options. A series of numerical tech-

niques have been developed in the past all for the purpose of approximating the

American option value. Most of these techniques have instances in which they are

best suited for use as well as times when they fail to bring out the best results.

Kim (1990) attempted to work on the analytic valuation of the American type of

options and they defined integral equations that define the option value. These

integral equations are of Volterra type II kind. Little, Pant, and Hou (2000) have

also derived another alternative integral equation for the American put option

optimal exercise boundary. Byun (2005) studied the properties of the integral

equations derived in Kim (1990). Many numerical and approximation methods

(integral representation) have been invented basing on these very integral equa-

tions but the journey to obtaining analytic solutions still seems to be a very

distant one (Little, Pant, & Hou, 2000). Faye et al. (2015) have approximated

the optimal exercise boundary using the mathematical concepts of topological
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optimization. They developed a numerical algorithm that starts off with a choice

of time and outputs the set of values in the free boundary and as well as the

approximate optimal value for the American option in question. This is clearly a

significant advancement towards obtaining analytic descriptions of optimal times

and values for American options.

This work is organized as follows. Section 3 reviews the various valuation tech-

niques that have been employed in literature. The next chapter reviews the

American put option which is our major focus in this work including sub-sections

devoted to the analysis of the problem as an optimal stopping problem with our

own results included, in which we utilize series expansions to determine an ana-

lytic expression for the optimal exercise boundary. This sub-section is followed

by another of like nature devoted to the analysis of the same as a variational

inequality in which we discuss the regularity results of this pricing problem. Sec-

tion 5 carries on with the development of the pricing transformation from a unit

square to the optimal exercise boundary before section 6 details the numerical

work done here in. Section 7 is the last and sums it up with suggestions for

different approaches to handling this same problem.
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Chapter 3

Methodology

1 Pricing Techniques

1.0.2 Finite Differences Method (FDM)

With FDM, three major methods are considered i.e. the explicit, implicit and

Crank-Nicolson Methods. With discretization of the pricing equations in regard

to the selected scheme, functions are re-written as per the convenience of the user

and the options are valued according to the output of the defined functions.

1.0.3 Binomial Option Pricing

Here in, we consider the American put option being priced using the binomial

tree (often referred to as the Cox-Ross and Rubinstein (CRR) model). At each

node of the lattice-like binomial tree, we compute the value of the option. The

valuation of American options proceeds as follows:

• At each node, we check for early exercise
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• If the value of the option is greater when exercised, we assign that value to

the node. Otherwise, we assign the value of the option un exercised

• We work backward through the three as usual

With the Binomial pricing model, the option value can either go up by a value

, say u or down by a value, say d. Notice that the American put option value

must be greater than or equal to the payoff function i.e. we assume there exists

no opportunity for arbitrage. Mathematically,

P ≥ max(0, K − S)

otherwise there is arbitrage.

Example 1.1. Suppose one buys stock for S and an option for, say P and im-

mediately exercise it by selling the stock at a price, say E. Then

E − (P + S) > 0

General Binomial Pricing Method for American Put Option

So in general, denote by Pm
n the n-th possible value of the put option as time

step m∆t, the American put option value is given by

Pm
n = max

{
max(K − Smn , 0), e−r∆t(pPm+1

n+1 + (1− p)Pm+1
n )

}
(3.1)

where Smn is the n-th possible value of the stock price at time step m∆t. Hence

PN
n = max(K−SNn , 0);n = 0, 1, 2, · · · , N ;K = the strike prices some times denoted as K

(3.2)
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1.0.4 Monte Carlo Techniques

This method is very popular among scholars of the American option as several

paths have been taken to value an American option by the help of Monte Carlo

simulation techniques.

Major Pros and Cons of Monte Carlo Simulation

Monte Carlo simulation methods have proved to beat most methods when it

comes to valuation of path dependent options. Their supremacy proceeds from

the following facts;

• It can simulate the underlying asset price path by path

• It can calculate the payoff associated with the information for each simu-

lated path

• It can also utilize the average discounted payoff to approximate the expected

discounted payoff, which is the value of path-dependent options

However, Monte Carlo methods become cumbersome to work with when it comes

to American options. This is due to the difficulty in derivation of the holding

value (or the continuation value) as at each time point, it has to be based on one

single subsequent path. Scholars have suggested to resort to multiple-tier Monte

Carlo simulation as a means of estimating the holding value for American options,

which rellay seems to make the work easier but still the method is infeasible for

a large number of early exercise time points.
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2 American put option

Modern finance theory states that the fair price of an American put option with

expiration at infinite time is give by

V (S) = sup
τ
ES(e−rτ (K − Sτ )+) (3.3)

the supremum being taken over all stopping times τ of the geometric Wiener

process (St)t≥0. This process satisfies the SDE given by;

dSt = rStdt+ σStdWt;S0 = s

under Ps. The corresponding unique solution to the SDE defining S is given by;

St = S0 exp{σWt + (r − (σ2/2))t}; t ≥ 0, x > 0

Now noticeably as S → 0, there is little or even no possibility of the payoff

increasing thus continuation is u called for in that case. However, this also points

to the existence of a set of stopping times τB (that can be deemed optimal to

the equation (3.3)) such that basing on the strong Markov property, we come up

with the following set of expressions for the unknown set B, which in this case is

referred to as the free boundary.
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LV = rV ;S > B (3.4)

V (S) = (K − S)+ ;S = B (3.5)

V ′(S) = −1 ;S = B (3.6)

V (S) > (K − S)+ ;S > B (3.7)

V (S) = (K − S)+ ; 0 < S < B (3.8)

where L is the infinitesimal generator defined by;

L = rS
∂

∂S
+
σ2

2
S2 ∂

2

∂S2

Now the price of the option would then comprehensively be given by;

P (T, St) = sup
τ∈[0,T ]

Ee−rτV
[
Ste

(
r−δ−σ

2

2

)
τ+σWτ

]
(3.9)

where

V (St) = (K − St)+

Some of the desirable properties about this price are such that;

• For St ∈ [0,+∞), t→ P (t, St) is increasing.

• Also for t ∈ [0, T ], St → P (t, St) is non-increasing and convex, of course

this is as a result of the monotone and convex nature of Phi

• ∀ (t, St) ∈ [0, T ]× [0,+∞), P (t, St) ≥ V (St) = P (T, ST )

Theorem 2.1. For any market, if the risk-free rate r is positive, then for every

t < T ,

VE(t, St) ≤ VA(t, St)
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where VE(t, St) and VA(t, St) are the values of the European and American put

options respectively.

This theorem is clearly reflected by the decomposition of the American option

value into the European option value as well as the early exercise premium. Since

the premium can at worst be zero but not negative, this establishes the theorem

2.1. as can be seen from the figure 3.1.

Figure 3.1: American and European option payoffs

First of all, in developing this figure, we assumed a strike price of 10, expiration

time T = 1, interest rate r = 0.2, and volatility σ = 0.5 and plotted the variation

of the option price against the stock price for both an American as well as Eu-

ropean option prices. Now first we recognize that the pay off for the American
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option is always greater than that of its European counterpart. Also the plot of

both American and European option prices produced by our transformation is

similar to those from other techniques of approximating the option prices. Fig-

ure 3.1 emphatically depicts the difference between the European and American

option prices as well as payoffs. This is a way explains the popularity of the

American option as it tends to pay more to its holder than the European type.

The relationship between the stock price and the option price is also seen to be

an inverse one as expected. Another great point to note is that the payoff of a

European option can hardly be equal to the price of the underlying asset thus

exercise only at expiration time.

However for the American option, exercise can clearly be done at any time prior

to the expiration time as the pay off can at any time be equal or even greater than

the underlying asset price. Lastly, note that when the payoff reaches 0, the stock

price is the same as the strike price K = 10 (still as is expected from theory). So

then lets get into the standard pricing results about this option, having looked

at its behavior graphically.

2.0.5 Optimal stopping problem

Suppose that X = {Xt}t≥0 is a time-homogeneous strong Markov process defined

on the measure space (Ω,F , {Ft}t≥0, P ) with (R,B(R)). Define also the measures

{Px, x ∈ R}, Px being the law of distribution for the process X form P (X0 =

x) = 1. The transition probability would then be;

P (Xt ∈ B|X0 = x) = Px(X ∈ B)

15



and hence the family (Ω,F ,Ftt≥0.{Px, x ∈ R}), together with the process X form

a Markov family. Now with out loss of generality, define ω : [0,∞)→ R on which

the σ-algebra F is defined, F being spanned by {ω ∈ R[0,∞) : ω(t1)F1, ω(t2) ∈

F2, · · ·ω(tn) ∈ Fn;n ∈ N &Fi ⊂ R}. Then we can defined the Markov process X

as the projection process

Xt(ω) = ω(t); t ≥ 0, ω ∈ Ω

Now in this case we assume that the shift operator θt is well defined. Now our

intention is to solve (or attempt to) the American (put) option optimal stopping

problem. However, we start off with a general easier case before we embark on

to the very problem addressed here in.

2.0.6 The general optimal stopping problem

In this sub section we address the problem of the optimal stopping problem

(OSP). We discuss regularity results and dwell on that in the next section to

attempt to solve the American put option stopping problem. Through out this

section, we presume the following assumptions hold.

(a) F′ contains all P -null sets from F and that also the filtration Ftt≥0 is right

continuous i.e. F+ :=
⋂
s>tFs = Ft

(b) Right continuous sample paths of X i.e. Xt → Xs whenever X0 = x and t ↓

s;P − a.s (t decreases towards s)

(c) Over stopping times, the sample paths ofX are left continuous i.e. ForX0 =

x, P − a.s.,Xτn → Xτ whenever τn ↑ τ (τn increases towards τ)
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The general optimal stopping problem can be defined as;

V (x) = sup
0≤τ≤T

ExG(Xτ ) (3.10)

G : R→ R being a measurable function, and supremum is taken over all stopping

times satisfying P (τ < ∞) = 1. G and V are usually referred to as Gain and

Value functions respectively. Notice also that

Ex( sup
0≤τ≤T

|G(Xt)|) <∞;x ∈ R, G(XT ) := 0 provided T =∞

otherwise equation (3.10) would be void.

Definition 2.1. Super harmonic function

Let F : R→ R be a measurable function and a > 0. Then F is said to be a-super

harmonic if

Exe
−aσF (Xσ) ≤ F (x);x ∈ R

with P (σ < ∞) = 1. F is said to be just super harmonic if a = 0.By the

super harmonicity of F , it implies that {F (Xt)t≥0} is a super martingale just as

{e−aσF (Xt)t≥0} is a super martingale when F is a-super harmonic.

Now in solving the equation (3.10), we need to basically accomplish two main

tasks namely; finding an optimal time τ ∗ and finding the value of V . Here, we

accomplish this by showing that V is the smallest super harmonic function that

dominates G and by proving that the stopping time τD := inf{t ≥ 0;Xt ∈ D} is

optimal in equation (3.10) whenever P (τD <∞) = 1; x ∈ R.

Theorem 2.2. Let V be a lower semi continuous function and G be a bounded

17



upper semi continuous functions, Consider the optimal stopping problem

V (x) = sup
τ≥0

ExG(Xτ )

Then V is the smallest super harmonic function that dominates G and τD is

optimal for this OSP provided that Px(τD <∞) = 1.

Proof: Now V (Xσ) is measurable since V is measurable (as it can writ-

ten as a sequence of continuous functions basing on its lower semi continu-

ity). Assume that X0 = x and fix x ∈ R, then for each stopping time σ,

V (Xσ) = supτ≥0EXσG(Xτ ) and by the string Markov property of X, V (Xσ) =

ess supτ≥0Ex(G(Xτ ◦ θσ)|Fσ), the essential supremum of the expectation Ex.

Since the family {Ex(G(Xτ ◦ θσ)|Fσ); τ is a stopping time} is upwards directed,

then there exists a sequence of stopping times {τn;n ≥ 1} such that V (Xσ) =

limn→∞Ex(G(Xτn ◦ θσ)|Fσ) with {Ex(G(Xτ ◦ θσ)|Fσ);n ≥ 1} increasing Px-a.s.

and hence by the monotone convergence theorem, ExV (Xσ) = limn→∞Ex(G(Xτn◦

θσ + σ) ≤ V (x) which completes the first part of the proof. Now we also

prove the optimality of τD to the equation (3). Fix ε > 0 and define the sets

Cε := {x ∈ R;V (x) > G(x) + ε} and Dε := {x ∈ R;V (x) ≤ G(x) + ε}. Notice

that Cε ↑ C and Dε ↓ D as ε ↓ 0. Recall that the stopping times are defined as

τDε ; = inf{t ≥ 0;Xt ∈ Dε} (3.11)

We have to prove that

(i) V (x) = ExV (XτDε
);∀x ∈ R

(ii) τDε ↑ τD as ε ↓ 0

18



Now to prove part (i) above, suppose we define c; = supx∈R{G(x)−ExV (XτDε
)} <

∞, then c is finite since V (XτDε
) ≤ G(XτDε

) + ε and G is bounded. Then

G(x) ≤ ExV (XτDε
) + c; ∀x ∈ R Now given δ > 0 with δ ≤ ε, choose y ∈ R

such that G(y)− EyV (XτDε
) ≥ c− δ by the supremum definition. Thus V (y) ≥

G(y) + δ ≥ G(y) + ε⇒ y ∈ Dε ⇒ τDε = 0⇒ EyV (XτDε
) = EyV (X0) = V (y)⇒

0 ≥ G(y) − V (y) ≥ c − δ. Now given that δ is arbitrary and small, then c ≤ 0,

thus G(x) ≤ ExV (XτDε
) and since ExV (XτDε

) is super harmonic and yet V is the

smallest one that dominates G, then

V (x) ≤ ExV (XτDε
) (3.12)

Now because V is super harmonic, we also have the inverse inequality

V (x) ≥ ExV (XτDε
) (3.13)

Hence from inequalities (3.12) and (3.13), we have our first result in part (i)

above. Now for the second part (ii), note that V (XτDε
) ≤ G(XτDε

) + ε over

the set Dε and since Dε ↓ D then there exists a stopping time τ0 ≤ τD such

that τD ↑ τ0, hence V (XτDε
) → V (τ0), G(XτDε

) → G(τ0);∀x ∈ RPxa.s. as ε ↓ 0

by the left continuity of X. Recall that V is lower semi continuous and thus

V (Xτ0 ≤ limε↓0 inf V (XτDε
) ≤ limε↓0 supG(XτDε

) ≤ G(Xτ0) ⇒ V (Xτ0) = G(Xτ0)

and hence X ∈ D at time τ0 by the definition of D. This proves that τD ≤ τ0 ⇒

τD = τ0
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2.0.7 American put option: optimal stopping problem

Now we stretch our strides to now handle the major aim of (attempting to solve)

solving the OSP for the American put option. Here we apply the Markovian ap-

proach of solving optimal stopping problems and develop an asymptotic solution

for the same.

The American put option OSP is one of the group of discounted OSPs and it is

defined by;

Q(t) = sup
t≤τ≤T

E[e−r(τ−t)(K − Sτ )+Ft] (3.14)

with S the stock price following the stochastic differential equation (SDE)

dSt = rStdt+ σStdWt (3.15)

r > 0 being the market interest rate and σ > 0 the stock volatility, Wt the Wiener

process. Solving equation (3.15) for a good solution yields

St = S0exp

{(
r − σ2

2

)
t+ σWt

}
;∀t ≥ 0 (3.16)

Clearly, St is follows an Ito process, hence a strong Markov process. Now the

infinitesimal generator is

L; = rx
∂

∂x
+
σ2

2
x2 ∂

2

∂x2
(3.17)

since S is time homogeneous. Consider now the OSP

V (t, x) = sup
0≤τ≤T−t

Et,xe
−rτ (K − St+τ )+ (3.18)

Also let St = x. Then equations (3.18) and (3.14) can be related by the equality

Q(t) = V (t, St);∀t ∈ [0, T ]
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Now the set of stopping times for the equation (3.18) would be defined as;

τD = inf{0 ≤ u ≤ T − t; (t+ u, St+u) ∈ D} (3.19)

since V (t, x) is continuous on [0, T ] × (0,∞) and G(x) = (K − x)+ is such that

|G(x)| ≤ MeM |x|;M > 0. The set D is then called the stopping set and defined

as D = {(t, x) ∈ [0, t] × (0,∞);V (t, x) = G(x)} and its complement usually

referred to as the continuation region is then defined as C := {(t, x) ∈ [0, t] ×

(0,∞);V (t, x) > G(x)}. Now the boundary between C and D is what we refer

to as the optimal exercise boundary. Obtaining the boundary set between C

and D will surely accomplish the American put option pricing problem and this

is what we attempt to do in the next sections.

2.0.8 Analytic expression for exercise boundary

Kuske & Keller (1998) have obtained an asymptotic analytic expression for the

exercise boundary in their celebrated paper Optimal exercise boundary for an

American put option. The expression is obtained from solving the integral rep-

resentation of the exercise boundary (eq 3.4, pp 4) through applying Greens

theorem to it. The exercise boundary according to that paper is given by

e−ρt − 1 + I(t) =
1√
2π

[
eb(t)+(1−(ρ−1))t

∫ ∞
− b(t)+(3−ρ)t√

2t

e−
z2

2 dz −
∫ ∞
− b(t)−(ρ−1)t√

2t

e−
z2

2 dz

]
(3.20)

where

I(t) =

∫ t

0

[
−b(t)− b(s)

2(t− s)
+

1

2
(ρ− 1) + b′(s)

]
(eρs − 1)G[b(t), t; b(s), s]ds
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and G(x, t; ξ, s) being Greens function given by;

G(x, t; ξ, s) =
1√

4π(t− s)
e−

[z−ξ+(ρ−1)(−t−s)]2
4(t−s) ; s < t

and also ρ = 2r
σ2 , z is a normal random variable and b(t) = log(β(T )/K), β(.)

being the exercise boundary, K is the strike price. Now from equation (3.20), we

evaluate the integrals on the right hand side.

2.0.9 Integral evaluation

Now we wish to compute the integral

Ja =

∫ +∞

a

e−x
2

dx

But let us first compute

J0 := J =

∫ +∞

0

e−x
2

dx

Applying double integration techniques along with the change of variables, we

have that;

J2 =

(∫ +∞

0

e−x
2

dx

)2

=

(∫ +∞

0

e−x
2

dx

)(∫ +∞

0

e−z
2

dz

)
=

∫ +∞

0

∫ +∞

0

e−(x2+z2)dxdz

Now define the transformation (x, z) = T (r, θ) with x = r cos θ; z = r sin θ; r > 0

and

θ ∈
[
0,
π

2

]
(notice that the choice of θ being in the first quadrant is supported by the fact

that the second integral takes on the whole circle and thus yielding the whole area.

Using full circles on both would yield ambiguous results as laws of multivariate
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calculus suggest.)

and then it yields the Jacobian matrix given by;

DT =

 cos θ sin θ

−r sin θ r cos θ


and the absolute value of the determinant is given by |DT | = r, then we have;

J2 =

(∫ +∞

0

∫ π
2

0

re−r
2

drdθ

)
=
π

4
⇒ J =

√
π

2

Hence for Ja, it suffices that

Ja = J −
∫ a

0

e−x
2

dx =

√
π

2
−
∫ a

0

e−x
2

dx

The latter integral can be shown to be approximately equal to;

∫ a

0

e−x
2

dx = ae−
a2

8

and hence

Ja =

√
π

2
− ae−

a2

8

Now from the above integral in equation (3.20), we have that

Jai =

√
π

2
− aie−

a2i
8 ; i = 1, 2; a1 = −b(t) + (3− ρ)t√

2t
and a2 = −b(t)− (ρ− 1)t√

2t

which yields

Ja1 =

√
π

2
− a1e

−a
2
1
8

=

√
π

2
−
(
−b(t) + (3− ρ)t√

2t

)
e−

(
− b(t)+(3−ρ)t√

2t

)2

8

and
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Ja2 =

√
π

2
− a2e

−a
2
2
8

=

√
π

2
−
(
−b(t)− (ρ− 1)t√

2t

)
e−

(
− b(t)−(ρ−1)t√

2t

)2

8

and Ja1 and Ja2 substituted in to equation (3.20), we obtain

eρt − 1 + I(t) =
1√
2π

[√
π

2
e[b(t)+(1−(ρ−1))t] +

b(t) + (3− ρ)t√
2π

e
16tb(t)+16t2(1−(ρ−1))−(b(t)+(3−ρ)t)2

16t

−
√
π

2
+

(
(ρ− 1)t− b(t)√

2t
e−

1
16t

[b(t)+(ρ−1)]2
)]

where

I(t) =

∫ t

0

[
1

4π(
√
t− s)

e
− 1

16(t−s)2
[b(t)−b(s)+(ρ−1)(t+s)]

]
ds; s < t

which can be approximated with appropriate integral schemes thus equation

(3.20) can be evaluated to obtain an analytic expression for the exercise bound-

ary b(t). Now we move on to study the regularity results, having re-written this

problem as a variational inequality in the forth coming section.

2.0.10 The Variational Inequality

Here, we review the existence and uniqueness results for the American option vari-

ational inequality. We also derive the transformation for approximating optimal

prices (values) basing on a unit square.

2.0.11 Regularity results on the variational inequality

Definition 2.2. The finite dimensional variational inequality problem V I(F,K)

seeks to determine a vector x∗ ∈ K ⊂ Rn such that

F (x∗)T .(x− x∗) ≥ 0;∀x ∈ K
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where F is a given continuous function from K to Rn and K is a closed convex

set.

Definition 2.3. Compactness

A space (set) X is said to be compact if for each open cover of X there exists

a finite sub collection that also covers X. In other words, X is compact if each

open cover of X contains a finite sub cover.

Definition 2.4. Monotonicity

Monotonicity can be defined as either the entire increasing or decreasing nature

of a function or sequence. Mathematically, F (x) is monotone on K if

[F (x)− F (y)]T .(x− y) ≥ 0;∀x, y ∈ K

Strong monotonicity of F (x) on K then is such that given µ > 0,

[F (x)− F (y)]T .(x− y) ≥ µ||x− y||2; ∀x, y ∈ K

and strict monotonicity of F (x) on K is such that;

[F (x)− F (y)]T (x− y) > 0;∀x, y ∈ K, x 6= y

Definition 2.5. Lipschitz continuous

F (x) is Lipschitz continuous on K is there exists a C > 0 such that

||F (x)− F (y)|| ≤ C||x− y||;∀x, y ∈ K

Definition 2.6. Coercivity

F (x) is said to be coercive if it satisfies the coercivity condition

(F (x)− F (y))T (x− y)

||x− y||
→ ∞

as ||x|| → ∞ for x ∈ K and for some y ∈ K.
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2.0.12 General variational inequality

Definition 2.7. Let X : [0,+∞) × Ω → Rn defined on a probability space

(Ω,Σ, P ) be an Ito diffusion satisfying the stochastic differential equation of the

form

dXt = µXtdt+ σXtdWt

where W is an m-dimensional Wiener process and µ : Rn → Rn and σ : Rn →

Rn×m are the drift and diffusion fields respectively. For a point x ∈ Rn, let P x

denote the law of X with X0 = x and let Ex be the expectation with respect to

P x. The infinitesimal generator of X is the operator A, which is defined to act

suitable functions f : Rn → R by

Af(x) = lim +t→ 0
Ex[f(Xt)]− f(x)

t

Definition 2.8. Dynkin’s formula is a theorem giving the expected value of any

suitably smooth statistic of an Ito diffusion at a stopping time. At times, it is

understood as the stochastic generalization of the (second) fundamental theorem

of calculus.

Statement

Let X be the Rn valued Ito diffusion solving the stochastic differential equation

dXt = µXtdt+ σXtdWt

For a point x ∈ Rn, let P x denote the law of X with X0 = x and let Ex be the

expectation with respect to P x. Let A be the infinitesimal generator of X, defined
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by its action on compactly supported C2, then

Af(x) =
∑
i

bi(x)
∂f

∂xi
(x) +

1

2

∑
i,j

(σσT )i,j(x)
∂2f

∂xi∂xj
(x)

Now if τ is a stopping time with Ex[τ ] < +∞ and f is C2 with compact support,

then Dynkins formula holds such that

Ex[f(Xτ )] = f(x) + Ex

[∫ τ

0

Af(Xs)ds

]

Consider the Dynkin-operator D associated with the stochastic differential

equation given by;

D =
∂

∂t
+

1

2

d∑
i=1

d∑
j=1

aij(t, x)
∂2

∂xi∂xj
+

d∑
i=1

bi(t, x)
∂

∂xi
(3.21)

where

a(t, x) = [aij(t, x)]1≤i,j≤d = σ(t, x)× σt(t, x)

Now suppose X is a solution to the SDE 3.21 on [0, T ] and let βt = e{−
∫ t
0 r(r,Xs)ds},

then for F ∈ C1,2 on [0, T ]× Rd,

βtF (t,Xt) = F (0, X0) +

∫ t

0

βs∇F (s,Xs)σ(s,Xs)dWs +

∫ t

0

βs(DF − rF )(s,Xs)ds

with

∇F (s,Xs)σ(s,Xs)dWs =
d∑
i=1

∂F

∂xi
(s,Xs)

d∑
j=1

σij(s,Xs)dW
j
s

Now for the process (βtF (t,Xt))0≤t≤T to be the Snell envelope of the discounted

27



payoff process (βtf(t,Xt))0≤t≤T we need

DF − rF ≤ 0

F ≥ f

F (T, .) = f(T, .)

DF − rF = 0 on the set {F > f}

which can be summarized as;
max(DF − rF ; f − F ) = 0

F (T, .) = f(T, .)

2.0.13 American options variational inequality

Now for the American option (put specifically), the Dynkin-operator is given by;

∂

∂t
+
σ2

2

∂2

∂x2
+ µ

∂

∂x

and

dXt = µdt+ σdWt (3.22)

where Xt = log(St) with µ = r − δ − σ2

2
. If X∗ is the solution to equation

3.22, then X∗t = x + µt + σWt;X
∗
0 = x. The American put price denoted by

P (t, x) = F (t, log x) where

F (t, x) = sup
τ∈T0,T−t

Ee−rτf(X∗τ ) (3.23)

with f(x) = (K − ex)+.

Now notice that all the partial derivatives above i.e. ∂F
∂x
, ∂F
∂t
, ∂

2F
∂x2

are locally
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bounded. Also F , as is defined in equation 3.23 satisfies the variational inequality
max(DF − rF ; f − F ) = 0

F (T, .) = f(T, .)

dtdx a.e. in (0, T )× R.

Theorem 2.3. Uniqueness (Narguney; (2002))

Suppose that F (x) is strictly monotone on K. Then the solution to the variational

inequality V I(F,K) is unique, if one exists.

Proof:

Suppose x 6= y are both solutions to the variational inequality V I(F,K). Then

F (x)T .(z − x) ≥ 0;∀z ∈ K (3.24)

F (y)T .(z − y) ≥ 0;∀z ∈ K (3.25)

After substituting y for z in 3.24 and x for z in 3.25 and adding the two resulting

inequalities, we obtain

(F (x)− F (y))T .(y − x) ≥ 0 (3.26)

but inequality 3.26 contradicts the definition of strong monotonicity. Hence

x = y

Theorem 2.4. Existence and Uniqueness of solutions to Variational In-

equalities (Narguney; (2002))

Assume that F (x) is strongly monotone, then there exists precisely one solution

x∗ to the variational inequality V I(F,K).
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Proof: (Heuristic1)

Strong monotonicity implies coercivity and also strong monotonicity implies strict

monotonicity. Thus for an unbounded feasible set K, existence and uniqueness

are established by strong monotonicity. Also, if K is compact, the continuity

of F assures us of existence of a solution and strict monotonicity suffices for

uniqueness.

Hence since for the American options variational inequality V I(F,K), K = [0, T ]

is compact and F = F (t, x) = supτ∈T0,T−t Ee
−rτf(X∗τ ); f(x) = (K − ex)+ is

continuous, V I(F,K) admits a unique solution.

3 The Option Price Transformation

We now embark on establishing a transformation for the optimal boundary. We

define this transformation from a unit square a set Rε whose area we approxi-

mate using quadrature numerical integration techniques. The area of Rε is, here,

analogous to the measure of the disjoint sets Ai and thus we can easily evalu-

ate the American option using the value equation supplied in literature. Here,

we evaluate for the put option as the call option can also be equally evaluated

or rather employ the put-call parity relationship. We also consider the value

equation supplied in Kim, 1990 (pp. 560). Notice that

lim
τ→0

V (S, τ, B(τ)) = f (3.27)

1For a more concrete proof of theorem 2.4, see Nagurney; 2002 or any other good text on

Variational Inequalities
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V () being the option value and the pay off f is given by;

f = max[0, (K − S)+] (3.28)

∀ε > 0, there existsηε > 0 s.t ∀τ > 0, |τ | ≤ ηε

⇒ |V (S, τ, B(τ))− f | ≤ ε

⇒ V (S, τ, B(τ)) ∈ [−ε+ f, ε+ f ]

whenever τ ∈ [−ηε, ηε]. This basically explains that the option value is always

going to lie with in some value from the payoff. In brief, we can say it as the option

value can not exceed the payoff of the option otherwise the option is not worth

any thing then. Having noticed that the option value is at most the option payoff,

we now analytically define some parts of the free boundary. This is intended in

mathematically explaining why (and how) the option value is at most the option

payoff. So set

S1 = {(S, τ);B(τ) < S ≤ ∞, τ ∈ [−ηε, ηε] ∩ (0, T ] = [0, ηε] ∩ (0, T )} (3.29)

and also that

V (S, τ, B(τ)) ∈ [−ε+ f, ε+ f ]

Now the standard American put option valuation equation is given by;

K −B(τ) = P (B(τ), τ) +

∫ τ

0

[
rKe−r(τ−ξ)N(−d2(B(τ), τ − ξ, B(ξ)))

}
−δB(τ)e−δ(τ−ξ)N(−d1(B(τ), τ − ξ, B(ξ)))

]
dξ (3.30)
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And

lim
S→B(τ)

V (S, τ, B(τ)) = K −B(τ);∀τ ∈ (0, T ]

Set g = K −B(τ) then;

∀ε > 0, there existsδε > 0,∀S such that |S −B(τ)| ≤ δε

⇒ |V (S, τ, B(τ))− g| ≤ ε

Again, set

S2 =


(S, τ);

B(τ) < S ≤ ∞;

τ ∈ (0, T );

S ∈ [B(τ), B(τ) + δε]

V (S, τ, B(τ)) ∈ [−ε+ g, ε+ g]


(3.31)

lim
S→0

V (S, τ, B(τ)) = 0; ∀τ ∈ (0, T ]

∀ε > 0 there exists γε;∀S (S > B(τ))

such that |S| ≤ γε ⇒ |V (S, τ, B(τ))| ≤ ε

Lets again set S3 to be defined by;

S3 =


(S, τ);

τ ∈ (0, T ]

B(τ) < S ≤ +∞

S ∈ [0, γε];

V (S, τ, B(τ)) ∈ [0, ε]


(3.32)

limS→B(τ) VS(S, τ, B(τ)) = −1 and thus

∀ε > 0; there existsλε > 0

such that ∀S > B(τ); |S −B(τ)| ≤ λε

⇒ |Vs + 1| ≤ ε
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where Vs = ∂V
∂S

(S, τ, B(τ)). Set also that

S4 =


(S, τ);

τ ∈ (0, T ]

B(τ) < S ≤ +∞

S ∈ [−λε +B(τ), λε +B(τ)];

VS ∈ [−1− ε,−1 + ε]


(3.33)

The optimal exercise boundary is B(τ) and the free boundary is the set given by;

B =

(τ, B(τ)); τ ∈ (0, τ ], B(0) = lim
τ→0

B(τ) =


K; δ ≤ r

r
δ
; δ > r


 (3.34)

Recall that Ai = (τi, τi+1];Ai ∩ Aj = φ for i 6= j;
⋃n
i=0Ai = (0, T ]. Now

B =
n⋃
i=1

Bi

where Bi = {(τ, B(τ)); τ ∈ Ai} Now consider the coordinates (t, y) and the curve

f := l with a trajectory given by the definition y = l(τ), the curve of f , can be

somewhat like as in figure (3.2) below.

Figure 3.2: Plot of pay off function, f
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Now y = l(τ);

τ ∈ [0, T ]

Rε = {τ, l(τ), τ ∈ [0, T ] and − ε ≤ l(τ) ≤ ε}

The aim is to locate B and the area of Rε is given by;

Area(Rε) =

∫ τi+i

τi

∫ ε

−ε
l(τ)dτdy = 2ε

∫ τi+1

τi

l(τ)dτ (3.35)

The next question now is how to compute or express Ri
ε. We approximate

Area(Rε) through employing the Gaussian quadrature method of integration on

a unit square.

3.1 Quadrature approximation of Area (Rε)

In this sub section, we apply quadrature techniques to obtain an approximate for

the area of Rε. Quadrature approximation has merits such as the ease with which

it can be applied as well as its accuracy. Still the fact that all nodes lie with in

the interior of the main interval guarantees that even integrals with functions

that tend to infinite value at one end of the interval can be handled (of course

given that the integral is defined there). Recall that

Area(Rε) =

∫ τi+i

τi

∫ ε

−ε
l(τ)dτdy = 2ε

∫ τi+1

τi

l(τ)dτ (3.36)

and computing the value of the integral, we employ the Gaussian quadrature

approximation technique.

∫ τi+1

τi

l(τ)dτ ∼=
n∑
i=0

Ail(τi) (3.37)
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and τ0 = −ε, τn = ε where

Ai =

∫ τi+1

τi

[
n−1∏

j=0,j 6=i

(
τ − τj
τi − τj

)]
dτ (3.38)

and now we notice that for n = 2, we have that

∫ τi+1

τi

l(τ)dτ ∼=
n∑
i=0

Ail(τi) = A0l(x0) + A1l(x1)

and

A0 =

∫ τi+1

τi

[(
τ − τ1

τ0 − τ1

)(
τ − τ2

τ0 − τ2

)]
dτ ;A1 =

∫ τi+1

τi

[(
τ − τ0

τ1 − τ0

)(
τ − τ2

τ1 − τ2

)]
dτ

and hence

∫ τi+1

τi

l(τ)dτ ∼=
n∑
i=0

Ail(τi) = l(τ0)

∫ τi+1

τi

[(
τ − τ1

τ0 − τ1

)(
τ − τ2

τ0 − τ2

)]
dτ

+ l(τ1)

∫ τi+1

τu

[(
τ − τ0

τ1 − τ0

)(
τ − τ2

τ1 − τ2

)]
dτ

Consequently with increase in the n value, there will be an increase in the terms

on the expansion thus increasing accuracy. So then recall the equation (3.35)

which is;

Area(Rε) = 2ε

∫ τi+1

τi

l(τ)dτ

which is the required exercise boundary i.e.

Area(Rε) = 2ε

∫ τi+1

τi

l(τ)dτ = 2ε

{
n∑
i=0

l(τi)

∫ τi+1

τi

[
n−1∏

j=0,j 6=i

(
τ − τj
τi − τj

)]
dτ

}
(3.39)

Now having obtained the area of the co-domain of our desired transformation, we

now move on to establish this transformation from a unit square to the set Rε

whose area has been computed in the preceding sub section. This transformation
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is designed in way that it ought to satisfy some conditions especially at the grid

bounds of the unit square. Other values within the square can be consequently

computed with reference to the bound values using any mathematically efficient

numerical scheme as shall be seen in section 4. We define the transformation to

be

T : [0, 1]2 → Rε

such that

T : (x, z)→ T (x, z) =


T1(x, z)

T2(x, z) = (τ, z); such that |z − l(τ)| ≤ ε

 (3.40)

and on the boundaries of the unit square, it is clear that

T (0, 0) = (τi, l(τi)− ε) T (0, 1) = (τi, l(τi) + ε)

T (0, 1) = (τi+1, l(τi+1 − ε); T (1, 1) = τi+1, l(τi+1 + ε)

i.e.

T1(0, 0) = τi T2(0, 0) = l(τi − ε)

T1(0, 1) = τi T2(0, 1) = l(τi + ε)

T1(1, 0) = τi+1 T2(1, 0) = l(τi+1 − ε)

T1(1, 1) = τi+1 T2(1, 1) = l(τi+1 + ε)



(3.41)

So a transformation that satisfies both of these equations (3.40) and (3.41) would

be our appropriate result to use in the analytic approximation of the option

optimal prices alongside their corresponding optimal times.

36



3.2 Linear transformation

Now note that;

T1(0, 0) = τi, T1(1, 0) = τi+1

and also that T1 is the part of the transformation that evaluates values on the

x-axis of the unit square. Hence we have the values as depicted in table (3.1) and

interpolating these results linearly in x yields;

Table 3.1: Interpolation Table for transformation T : T1

(x, z) (0, 0) (x, 0) (1, 0)

T1(x, z) T1(0, 0) = τi T1(x, 0) T1(1, 0) = τi+1

1− 0

τi+1 − τi
=

x− 0

T1(x, 0)− τi

⇒ T1(x, 0)− τi = x(τi+1 − τi)

⇒ T1(x, 0) = τi + x(τi+1 − τi)

Consequently, a similar expression can be obtained for various other values of y

provided they are assumed constant and only x varying. In general, the transfor-

mation for values along the x-axis of the unit square is given by;

T1(x, z) = τi + x(τi+1 − τi) (3.42)

And also for the second piece of the transformation i.e. in the y-direction we

apply interpolation. However here we note that the Ti2 varies on two indices

i and the x concurrently since the optimal value would have to depend on the
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optimal times that is in an economically meaningful sense. Having taken that into

consideration, we use the following table 3.2 and and on linearly interpolating;

Table 3.2: Interpolation Table for transformation T : T2

(x, z) (1, 0) (1, z) (1, 1)

T2(x, z) T1(1, 0) = l(τi+1)− ε T2(0, z) T1(1, 0) = l(τi+1) + ε

1− z
l(τi+1) + ε− T2(1, z)

=
1− 0

l(τi+1) + ε− l(τi+1) + ε

⇒ l(τi+1) + ε− T2(1, z) = 2ε(1− z)

⇒ T2(1, z) = l(τi+1) + ε− 2ε(1− z)

Also, a similar expression can be obtained for various other values of x provided

they are assumed constant and only y varying. hence in general, the transforma-

tion for values along the y-axis of the unit square is given by;

T2(x, z) = l(τi+1) + ε− 2ε(x− z)] (3.43)

In a summary, the transformation would then be defined as in the next proposition

which is one of the major results of this work.

Proposition 3.1. Linear transformation

Define Ti : [0, 1]2 → Ri
ε by

Ti(x, z) =


Ti1(x, z) = τi + x(τi+1 − τi)

Ti2(x, z) = l(τi+1) + ε− 2ε(x− z)


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where [0, 1]2 is a unit square, then Ti is a bijection.

Ti1 in this case represents the optimal times as Ti2 represents the optimal value

of the option at node i whose location is geometrically (x, z).

Proof: The first part of the proof is to prove that Ti is one-to-one and the second

is to prove that it is onto. Consider the associated vector transformation of Ti ,

say Hi i.e.

Hi =


H1
i (x, z) = x(τi+1 − τi)

H2
i (x, z) = −2ε(x− z)


Notice that

Ker(Hi) = {0} ⇒ Ker(Ti) = 0

hence Ti is one-to-one. So we now prove that Ti is onto. Now, for every (τ, l(τ)) ∈

Ri
ε, there exists a point (x, z) ∈ [0, T ]2 for which we have that

Ti(x, z) =


Ti1(x, z) = τi + x(τi+1 − τi)

Ti2(x, z) = l(τi+1) + ε− 2ε(x− z)


Hence Ti is onto. Therefore Ti being onto as well as one-to-one implies that Ti is

a bijection.

3.3 Non-linear transformation

Now, we have a linear transformation that could be used to approximate the

payoff values of the option over time. Nevertheless, we remark that the approx-

imations from it would be too inaccurate as option payoffs are known not to be

linear over time otherwise. It is rather evident that option prices and their corre-

sponding pay-offs follow Ito processes and not log normal processes (even though
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the two are somewhat related). So we need to consider this in the approximation

of payoff values from the bound values of the same. We thus employ techniques

borrowed from (Kim, 1990) the area of stochastic interpolation2; the type of inter-

polation in which we approximate functional values for random (stochastic) data;

with some modifications so as to suit our problem here. Consider an Ito process

dSt = µStdt+ σStdWt (3.44)

where µ is the drift term (also called the mean of the process) and σ is the

volatility, Wt is the standard Wiener process and St is the price of the underlying

asset on which the option is written. Since we have to consider the variation

of the point (optimal times) whose payoff value we seek from both ends, we

propose a method that takes this into consideration and there after demonstrate

its accuracy as it proves to be better than most known. Consider (τ0, l(τ0) = l0)

and (τn, l(τn) = ln) and that we wish to know the optimal payoff corresponding

to time τk, the technique below can help swipe away the high variations and

approximate an appropriate value. This technique is basically given by;

lk = l(τk) =
1

2

(
l0Pk

1− Pk
+
ln(1− Pk)

Pk

)
(3.45)

where

P (τ ≤ k) = Pk =
1

τkσ
√

2π
exp

{
(ln τk − µ)2

2σ2

}
(3.46)

the log-normal probability density function. Using the technique given in equa-

tion (3.45), we can reliably approximate the payoff values and thus define a trans-

2first introduced by (Gandin, 1970)
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formation from the unit square using this approximation. So then we now orga-

nize the preceding results into a proposition which follows right away.

Proposition 3.2. Suppose the price St of an underlying asset for a given Ameri-

can put option follows an Ito process, then the option pay off can be approximated

by the transformation

Ti(x, z) =


Ti1(x, z) = τi + x(τi+1 − τi)

Ti2(x, z) = l(τi+1) + ε− 2ε(x− z)


where

l(τi+1) = li+1 =
1

2

(
l0Pi+1

1− Pi+1

+
ln(1− Pi+1)

Pi+1

)
(3.47)

and [0, 1]2 is a unit square. Ti1 in this case are the optimal times as Ti2 are the

optimal value of the option at node i whose location is geometrically (xk, yk) and

R2
ε the optimal exercise boundary.

Proof: Notice that the proof can be done in the very exact way as in proposition

(3.1) with a change of l(.) into a stochastic representation now. Never the less,

we provide a heuristic one here. Suppose the hypothesis in proposition 3.2 holds,

then we prove that this transformation is indeed a better approximation compared

to the previous one. Consider the extreme points (τ0, l0) and (τn, ln), the the

probability that we approximate and obtain the functional value for τ0 ≤ τk ≤ τn

is Pk and the functional value lk is such that

lk =
l0Pk

1− Pk

from the start of the interval. Also from the interval end it would then be given
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as;

lk =
ln(1− Pk)

Pk

Hence from either end; we have that

lk =
1

2

(
l0Pk

1− Pk
+
ln(1− Pk)

Pk

)

So the task remains to demonstrate that our results concur with this in all

ways. But before embarking on that we desire to note some properties of a good

approximation for the put price that we can perhaps look out for from our results.
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Chapter 4

Numerical Results

In this section we demonstrate the numerical results of this project. We de-

velop algorithms for simulation of optimal option prices from the transformation.

Now we proceed to derive and demonstrate the numerical approximations of the

method in sub section 3. So the task remains to demonstrate that our results

concur with this in all ways. But before embarking on that we desire to note some

properties of a good approximation for the put price that we can perhaps look

out for from our results.The algorithm used to simulate the forthcoming option

price plot is given as;

• Select T , the expiration time of the option, r the interest rate and δ, the

volatility.

• τ ∈ [0, T ], ε = 1
10000

, Choose ηε = 1

• St, K, the price of the underlying asset and the strike price respectively are

both given and known.
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• B(0) = limτ→0B(τ) =


K; δ ≤ r

r
δ
; δ > r

• f = limτ→0 V (St, τ, B(τ)) = max[0, (K − St)φ(St −B(0))]

• For τ ∈ (0, ηε]∩ (0, T ) and V (St, τ, B(τ)) ∈ [−ε+ f, ε+ f ], B(τ) < St ≤ ∞,

S1 = (St, τ)

• Plot S1

and the exercise boundary is obtained graphically as depicted in figure (4.1).
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Figure 4.1: American option exercise boundary

Figure 4.2: American put payoff
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Figure 4.3: Comparison: FDM Vs CRR

Figure 4.4: 3D American put option
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Now for the exercise boundary plot, as the stock price grows over time there

is at first a gradual expansion in the size of the exercise region with a concurrent

reduction in the holding region. Also at about t = T
2

= 0.5, the expansion of

the exercise region starts to grow at an exponential rate. Now we next study a

3D plot of option prices against stock prices over time. This is depicted in figure

4.4. This plot clearly informs us of the various relationships among these three.

Notice that the structure of the exercise boundary (region) is depicted along the

x-axis (time) of this plot which is analogous to the structure obtained for the

exercise boundary plot which is graphed as stock prices over time.

Notice also that the shape of the variation of the payoff for an American option

is also reflected here in (Option prices axis) over time. This, in a nut shell is a

plot that summarizes all the plots into one. So all conclusions made regarding

the other previous two plots still hold under figure 4.4.
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Chapter 5

Results & Discussion

Here, we have provided a far much simpler way of approximating option values as

well as payoffs basing on a unit square. Most approximation techniques provided

in literature tend to be sophisticated and some what cumbersome at specific times

of the option. However, our method stays put in regard to application through

out the entire life of the option. We have demonstrated that an option value

can be approximated through basing on the unit square to acquire far better

accurate results. This beats most approximation techniques already in existence.

This method also exceeds others in terms of simplicity of application coupled

with accuracy of results. The major objective of this work has been achieved

as it was majorly providing an easier way of approximating the payoff using

a transformation from a unit square to the exercise boundary. This has been

achieved. The transcendence of our method is evidenced by the fact that when

approximating pay offs, one works with in a known set, the unit square. More

over, our method can easily be run on a computer and the average running time
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is so minimal as compared to the Binomial Scheme and the Finite Difference

Scheme.
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Chapter 6

Recommendations & Conclusion

Further work may be needed to be done in this area to improve the results such

as considering better and more efficient non linear approximation (interpolation)

schemes such as ordinary Kriging, universal Kriging. Notice that considering

these approximation schemes would better the results (in terms of accuracy) as

variance is minimized. However, such methods were beyond the scope of this

work.
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