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ABSTRACT 

 

The importance of conditional Value-at-Risk and conditional Expected Shortfall to 

estimate extreme risk in financial time series data cannot be exaggerated. This study 

applies these tools to estimate extreme risk in exchange rate returns. Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) model is applied to 

estimate the current volatility in daily exchange rate returns over the period of 10 

years and Extreme Value Theory (EVT) approach to estimate quantiles of 

innovations. First, Autoregressive (AR) model is fitted with GARCH errors to the 

daily exchange rate returns using Quasi-Maximum likelihood Estimate (Q-MLE) to 

get the current volatility. Second, Generalized Pareto Distribution (GPD) approach is 

fitted to the excess returns assuming the residuals are independent and identically 

distributed.  The asymptotic properties of the estimators are given. Finally, the 

estimated volatility and estimated quantiles are combined to obtain Conditional Value 

at Risk and Conditional estimates.  Results are applied to real data to estimate 

extreme risk in Rwanda exchange rate process. 
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CHAPTER ONE 

1.0 INTRODUCTION AND BACKGROUND INFORMATION 

 

1.1 Background Information 

Exchange rates are a challenging concept due to the fact that one has to deal with 

foreign exchange rates whenever he/she travels to foreign country. They play a 

crucial role in a country's level of trade. Markets of Exchange rates are world 

decentralized market places that determine the relative values of different currencies.  

Risk is a random variable transforming unforeseen future states of the world into 

values representing profits and losses. It is a common phenomenon in all areas of 

finance. Risk in foreign exchange can be defined as exposure to uncertainty and it 

cannot be dismissed in exchange markets since both importers and exporters of goods 

and services are affected by exchange rates fluctuations. This risk refers to a financial 

risk posed by an exposure to unanticipated changes in the exchange rate between two 

currencies. It may also be defined as the variability of a portfolio’s value caused by 

uncertain fluctuations in the exchange rates.  

Exchange rate risk is related to the effect of unexpected exchange rate changes on the 

value of a firm (Madura, 1989). The value of any currency fluctuates as its demand 

and supply fluctuates, this means that if demand decrease or supply increase this can 

cause depreciation of the currency’s value. On other hand if supply decreases and 

demand increases this can cause appreciation of the value of currency. There are three 

main types of exchange rate risk: Transaction risk (cash flow risk and deals with the 
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effect of exchange rate), Translation risk (balance sheet exchange rate risk) and 

Economic risk (reflects the risk to the firm’s present value of future operating cash 

flows from exchange rate movements). To deal with exchange rate risk, a firm needs 

to determine the specific type of currency risk exposure, factors influencing exchange 

rate and also find out a suitable technique for risk estimation. 

In this study; we are concerned with the estimation of extreme risk due to the 

exchange rates fluctuations. The modern era of risk measurement and estimation for 

exchange rate positions started in 1973. The risk managers and investors became 

concerned about the impact of exchange rate fluctuations on portfolios. Thereafter, 

exchange rates are among the most watched analyzed and governmentally 

manipulated economic measures. Exchange rate fluctuations have become an 

essential subject in macroeconomic analysis and have received a great deal of interest 

from academics, financial economists and policymakers, particularly after the 

collapse of the Bretton Woods agreement of fixed exchange rates among major 

industrialized countries.  This prompted the research for more appropriate 

methodologies to deal with rare events that have big effects.  

As the financial world focus on risk management, various models have been 

developed to estimate risk in financial data. Most common used risk measures are 

value at risk and Expected Shortfall. Value at risk summarizes the worst loss over a 

target horizon that will not be exceeded with a given level of confidence. In other 

words, Value at Risk answers the question about, how much one can lose over a 

certain time horizon with a given probability. It also summarizes in a single number 
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the overall market risk faced by a financial institution, (Jorian, 2007).  Expected 

Shortfall (coherent risk measure) is an expected value of the loss, given that a VaR 

violation occurred. In other word, Expected Shortfall estimates the potential size of 

the loss exceeding the VaR at 𝜑 probability level (Delbaen's, 2002).  

 

Last decades many techniques of estimating risk in exchange rates have been 

developed, but those that seem to be more successful and popular are: Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) models and extreme value 

theory (EVT) approach. Empirical evidence found that financial return series such as 

exchange rate returns exhibit certain stylized facts such as volatility clustering, heavy-

tailedness, heteroskedasticity and non-linearity (Gravril & Altar, 2009). The GARCH 

family models were introduced to deal with these problems of pattern facts in 

financial data. GARCH models manage changing volatility assuming normality of the 

data. However, the assumption of conditional normality does not seem to hold for real 

data since the VaR based on such models has difficulties in capturing the extreme 

events (Bollerslev, 1986).  

VaR estimations are only related to the tails of a probability distribution while 

extreme value theory (EVT) focuses directly on the tails. The Extreme value theory 

(EVT) provides a solid framework to formally study the behavior of extreme 

observations and using it in estimating VaR could give better forecasts of risk. 

However, applying EVT to the exchange rate return series is inappropriate as they are 

not independently and identically distributed and the current volatility background is 

not taken into account (Soltane et al, 2012).  
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In addition, Gravril & Altar (2009) applied exchange rate returns of selected countries 

versus Euro to test the fit of EVT as complementary risk management tool for 

stressed market conditions and analyzed various VaR models. They showed that in 

extreme market conditions, extreme measures are required and no single model can 

perform proper for both the centre and the tails of an exchange rate distribution. For 

this reason, this study, applies GARCH model to estimate conditional volatility and 

Extreme Value theory (EVT) particularly, the peak over threshold (POT) model 

where tails are estimated by fitting Generalized Pareto Distribution (GPD) to estimate 

conditional Value-at-Risk and Conditional Expected Shortfall.  

1.2 Statement of the Problem 

In the recent years, the exchange rate movements and fluctuations have become a 

serious challenge to the growing economy and have received a great deal of interest 

from academicians, financial economists, and policy makers (Papaioannou, 2006). 

There has been considerable amount of research on estimation of exchange rate risk 

using different approaches in estimation of extreme Value-at-Risk; however, no 

single model has performed well for both the centre and the tails of exchange rate 

distribution (i.e capturing volatility clustering and extreme events) , for example see 

(Gravril & Altar, 2009). In order to capture volatility clustering and extreme events, 

this study has used conditional Value-at-Risk and conditional Expected Shortfall 

estimates obtained by combining conditional volatility with extreme quantiles 

estimates.  
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1.3 Objectives of the Study 

1.3.1 Main objective 

The overall objective is to estimate extreme risk in exchange rate process with 

application to Rwandese exchange rates 

1.3.2 Specific objectives 

1. To estimate exchange rate volatility using GARCH model  

2. To use Generalized Pareto Distribution to estimate extreme quantile assuming  

the residuals are independent and identically distributed data. 

3. To study asymptotic properties of the estimated parameters 

4. To combine the estimated volatility with estimated extreme quantiles to obtain           

conditional Value at Risk and conditional Expected Shortfall estimates for the 

risk. 

1.4 Justification  

The estimation of extreme risk in exchange rate will assist risk managers, portfolio 

managers, traders, investors and market makers in different manners. For instance, it 

can help the risk practitioners to monitor the exposure of market risk, therefore, 

protecting their institution from collapsing. The conditional Value at risk and 

conditional Expected Shortfall estimates help risk managers to understand the 

position of their institutions thus making them actively involved in policies on risk 

management. They can also be used to ensure that financial institutions can still be in 

business after a catastrophic event. In general, results of this work will contribute a lot 

to understanding of how changes in exchange rate affect the prices of goods and 

services in international trade.  
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1.5 Scope of the Study 

The work used daily exchange rates of Rwanda francs (Frw) against Kenya Shillings 

(Ksh), US Dollars (USD), Euro and sterling GBP (GBP) respectively for the time 

period between 1
st
 January 2002 and 31

st
 December 2012. Data were provided by The 

National Bank of Rwanda (BNR).  

1.6 Outline of the Thesis 

This work is organized as follow, Chapter two focuses on literature review, model 

specification and definitions of some basics concepts applied in this work. Chapter 

three involves estimation of exchange rate volatility using Generalized 

Autoregressive Conditional Heteroskedasticity model with assumption that 

innovations follow a normal distribution. The chapter also studies asymptotic 

properties of the estimators. Chapter four deals with estimation of tails of distribution 

using Generalized Pareto Distribution with assumption that the residuals are 

independent and identically distributed. This chapter also provides asymptotic 

properties of estimated parameters and it obtains the conditional Value at Risk and 

conditional Expected Shortfall estimates. Chapter five focuses on empirical analysis 

of Rwanda exchange rate returns and discussion of the results. The last chapter 

concludes and gives recommendations for further study, based on this work. 
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1.7 Summary 

This chapter has introduced Generalized Autoregressive Conditional 

Heteroscedasticity and Extreme Value Theory and their application in risk estimation. 

The statement of the problem, research questions, objectives of the thesis, 

justification of the study and the scope of the study were also addressed in this 

chapter. 
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CHAPTER TWO 

2.0 LITERATURE REVIEW 

 

2.1 Introduction  

The main purpose of this section is to have an overall view on estimation of exchange 

rate volatility and a more detailed presentation of basic Extreme Value Theory 

framework. This enables to gain an insight of our research on risk estimation. The 

model and other basics concepts used in this research have been defined. 

 

2.2 Review on Exchange Rate Volatility 

Volatility refers to the spread of all likely outcomes of an uncertain variable. 

Statistically, volatility is often measured as the sample standard deviation and can be 

defined mathematically as follows  

σ =  
1

𝑇−1
   𝑟𝑡 − 𝜇 2𝑇

𝑡=1
 

1 2 

, t=1, 2,…,T                                                              (2.1) 

Where  𝑟𝑡  represents daily returns to the exchange rate at time t and 𝜇  represents the 

average return over the 𝑇days period.  Sometimes the variance 𝜍2 is also considered 

as volatility. The volatility and expected returns estimates are based on an 

Autoregressive model with GARCH innovations. 

Volatility is related to but not exactly the same as risk. Risk is associated with 

undesirable outcome, but volatility can be defined as a measurement of the change in 

price over a given period of time. Exchange rate volatility is a measure of the 
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fluctuations in an exchange rate.  When volatility in exchange rate increases it leads 

to uncertainty in pricing and this hurts importers who spend more for the same 

quantity while exporters benefit from this depreciation of local currency.  The 

volatility in prices has implications on the profits and survival of business enterprises 

(Smith et al., 1990). 

2.2.1 Stylized Facts about Volatility 

Financial time series such as exchange rates, stocks returns and other financial time 

series are known to exhibit certain stylized patterns which are crucial for correct 

model specification, estimation and forecasting. The most common stylized facts are 

fat tails, volatility clustering & persistence and leverage effects. 

a) Fat tails 

The fourth central moment that measures the tail behavior of a continuous random 

variable 𝑋 is called kurtosis denoted by 𝐾 𝑥 .  Mathematically 𝐾 𝑥  can be defined 

as 

 𝐾 𝑥 = 𝐸  
 𝑋−𝜇𝑥  4

𝜍𝑥
4                                                                                                   (2.2) 

Where 𝜇𝑥  represents the first central moment called mean and 𝜍𝑥
4 represents square of 

second central moment called variance.  The underlying distribution is also referred 

to as positive excess kurtosis (leptokurtosis) if the quantity of kurtosis is greater than 

three 𝑖. 𝑒. 𝐾 𝑥 − 3 > 0. This indicates that the underlying distribution has Fat tails 

behavior since for normal distribution 𝐾 𝑥 − 3 = 0. On the other hand, the 

distribution with negative excess kurtosis 𝑖. 𝑒. 𝐾 𝑥 − 3 < 0 has short tails and such 

distribution is called platykurtic (Ruey, 2005). 
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Researchers in the past years found that most of the times, the distributions of 

financial assets returns specifically, exchange rate returns are not normal, (Hull & 

White, 1998).  Some researchers argue that the distribution should have fat tails, ( 

(Longin, 1996), (Neftci, 2000)) and others argue that it should not be symmetric 

(Glosten et al., 1993). 

b)  Volatility clustering and persistence 

In financial time series volatility clustering means that small and large changes in the 

series tend to occur in clusters. This means that the large changes tend to be followed 

by large changes and small changes tend to be followed by small changes.  𝑖. 𝑒. When 

volatility is high it is likely to remain high and when it is low it is likely to remain 

low (Engle, 2004). Manganelli & Engle (2001) showed that exchange rates and 

interest rate returns are not normally distributed, suffer from volatility clustering and 

are not independent. 

c) Leverage Effects 

In financial market, leverage effects is a stylized fact in which depreciation (a 

downward movement) is always followed by higher volatility (volatility is high after 

negative shocks) while appreciation (upward movement) is followed by low volatility 

(volatility is low after positive shocks). There is evidence that volatility is higher after 

negative shocks than after positive shocks of the same magnitude (Nelson, 1991). 

Maana et al. (2010) estimated exchange rate volatility of Kenya Markets using 

GARCH (1, 1) model. They showed that the importers and exporters of goods and 

services are both affected by exchange rate fluctuations. Andersen & Sorensen 
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(1996), Ghysels et al. (1996) and Sandmann & Koopman (1998) estimated the 

volatility as non-constant and non-symmetric with left fat tail. They argued that the 

true volatility cannot be estimated because there is no relationship between prior, 

current, and future volatilities for financial assets. If so, approaches utilizing volatility 

in estimating VaR should be invalid. 

The foreign exchange rates can be subject to considerable daily fluctuations (up to 5 

percent within one day); this can cause serious losses on open overnight positions. 

The risk can be quantified by focusing on the tails of the distribution and using 

estimations one can compute limits that a risk manager can set to open positions to 

avoid unexpected huge losses (Blum & Dacorogna, 2002). Some researchers have 

found that the distributions of financial assets returns are not constant over time. Such 

findings are related to another field of research in finance: the prediction of volatility 

of financial assets. There have been a lot of debate about the attributes of volatility; 

whether volatility is time-varying or constant, whether it should be weighed through 

time or not, or what time interval from the past is relevant for current volatility 

(Nelson, 1991).  

2.3 Review on Extreme Value Theory 

Extreme Value Theory is a well developed theory in the field of probability that 

studies the distribution of extreme realizations of a given distribution function, or of a 

stochastic process, satisfying suitable assumptions. The foundations of the theory 

were set by Fisher and Tippett (1928) and Gnedenko (1943), who proved that the 

distribution of the extreme values of an independent and identically distributed (𝑖𝑖𝑑) 
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sample, can converge to one out of only three possible distributions (Acerbi et al., 

2001). 

Many researchers have oriented their work towards more efficient tail-oriented 

models of risk, namely Extreme Value Theory (EVT) approach. The superiority of 

EVT has been extensively demonstrated by many researchers, in fields like insurance 

or financial risk management. The EVT approach was applied to assess fat tails of 

different time series, like hydrologic, insurance and financial data, supported by a 

very detailed and complex mathematical framework (Embrechts et al.,1997). Similar 

work is found in Resnick (2007), who studied extreme events in data networks, 

finance and insurance. McNeil (1997a, 1997b, 1998 and 1999) also studied the 

performance of the methods in insurance and finance. His studies focused on the POT 

method, i.e. fitting a Generalized Pareto Distribution to excesses over a high 

threshold. He also applied Block Maxima to financial time series.  

Gravril & Altar (2009) applied exchange rate returns of four currencies against the 

Euro to analyze the relative performance of several VaR models and Extreme Value 

Theory. They revealed that in extreme market conditions, extreme measures are 

needed and their studies came up with the evidence that no single measure can 

perform proper for both the centre and the tails of an exchange rate distribution. 

Ammann and Reich (2000) examined Value-at-Risk for Nonlinear Financial 

Instruments; they found that the VaR estimates by the variance covariance approach 

sometimes do not differ greatly from other simulations even for some optioned 

portfolios. However, they concluded that for heavily optioned portfolio, Variance-

covariance approaches with linear model are not appropriate to be applied. 
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Angelidis & Degiannakis (2004) Modeled risk for long and short trading positions 

show that different risk management techniques produce different VaR forecasts and 

therefore, these risk estimates might be imprecise. It is now widely believed that VaR 

is not the best risk measure. The use of Extreme Value Theory (EVT) proposed by 

McNeil and Frey (2000) estimate residuals distributions under the assumption that the 

tail of the condition distribution of GARCH innovations is well approximated by the 

heavy tailed distribution. The innovations estimates distribution are based on the 

Maximum Likelihood fitting of GARCH models to estimate the conditional volatility 

and extreme value theory for estimating the tail of the innovations distribution of the 

GARCH model. 

 

Hendricks (1996) analyzed the performance of twelve different VaR models using 

historical data on exchange rate returns. His work agreed to the works of Hols & De 

Vries (1991), Huisman et al (1998), Wagner & Marsh (2003) and others who showed 

that financial data are fat-tailed and EVT methodology is superior in estimating tail 

risks but does not capture volatility clustering. 

A considerable amount of research has also been dedicated to more specific issues of 

Extreme Value Theory, e.g. tail index and graphical tools of the framework, like 

mean excess function plot, Hill plot, QQ plots etc. Tail index estimation is yet a very 

widely debated problem of EVT. Starting with the work of Hill (1975) and Pickands 

(1975), many studies have tried to establish a measure of the tail thickness of fat-

tailed distributions. Dekkers et al (1989) improve the Hill estimator and prove 
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consistency as well as asymptotic normality. Artzner et al. (1998) studied Coherent 

measures of risk and revealed that the VaR of a portfolio may be greater than the sum 

of individual VaRs and therefore, managing risk by using it may fail to automatically 

stimulate diversification. Furthermore, VaR does not indicate the size of the potential 

loss, given that this loss exceeds the VaR. Due to inconsistent patterns of 

distributions, some argue that VaR does not give an appropriate risk measurement, 

and its estimation is subject to large estimation errors. 

 To remedy these shortcomings of VaR, Delbaen (2002) introduced the Expected 

Shortfall which equals the expected value of the loss, given that a Value at Risk 

violation occurred.  

2.4 Definitions of Basics Concepts 

2.4.1 Exchange rate returns 

To study any asset returns, and specifically, daily exchange rate, practitioner usually 

derives daily log-returns. As in most of empirical finance literature, the variable to be 

modeled is daily exchange rate return which is the first difference of the natural 

logarithm of the exchange rate. Mathematically exchange rate returns at time 𝑡 can be 

modeled as follows: 

 𝑟𝑡 = 𝑙𝑜𝑔  
𝐸𝑋𝑡−1

𝐸𝑋𝑡
 , 𝑡 = 1,2, … , 𝑇                                                                              (2.3)     

 𝑟𝑡  represents the daily percentage return to the exchange rate at time 𝑡 ∈ 𝑇 where 𝑇 is 

the total number of observations. 𝐸𝑋𝑡  and 𝐸𝑋𝑡−1 denote the exchange rate at the 

current day and that of previous day respectively. The positive returns will therefore 
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denote losses at time 𝑡.  A good parametric example is an AR (1)-GARCH (1, 1) 

given as 

 𝑟𝑡 = 𝜇𝑡 + 𝜍𝑡𝑒𝑡 , 𝑡 = 1,2, … , 𝑇                                                                                 (2.4)                                     

Where      𝜇𝑡 = ℴ 𝑟𝑡−1          

 𝜍𝑡
2 = 𝜔 + 𝛼  𝑟𝑡−1 − 𝜇𝑡−1 2 + 𝛽𝜍𝑡−1

2 ,     𝑡 ∈ ℤ and 𝜔, 𝛼, 𝛽 > 0,  𝛼 + 𝛽 < 1 and 

| ℴ| < 1 

2.4.2 Model Specification 

The term model means any assumptions about the structure of the population (Smith , 

1994). Mathematically exchange rate returns can be modeled as Autoregressive 

model with conditionally heteroskedastic financial time series as follows: 

 𝑟𝑡 = 𝜇 𝑦𝑡 , 𝑧𝑡 + 𝜍 𝑦𝑡 , 𝑧𝑡 𝑒𝑡 , 𝑡 = 1,2, … , 𝑇                                                             (2.5) 

𝑦𝑡 = ( 𝑟𝑡−1,  𝑟𝑡−2, … ,  𝑟𝑡−𝜋) 

Where 𝑦𝑡    represents endogenous variables in the model, 𝑧𝑡  represents Explanatory 

variables consisting of information other than the past of the returns, 𝜇 represents 

Conditional expected return which may be arbitrary, 𝜍 represents Conditional 

volatility of daily exchange rate returns, 𝜋 represents the order of Autoregressive and 

𝑒𝑡  represents standardized return i.e. independent and identically distributed random 

variable with 𝐸 𝑒𝑡 = 0 and 𝐸 et
2 = 1.  

 



16 
 

2.5 Research Gaps 

In literature many methods of estimating extreme risk in exchange rate process have 

been developed. However, none has performed properly both for the central and the 

tails of the exchange rate distribution. The most popular models applied by many 

researchers and academicians are GARCH models and Extreme Value Theory 

approach. The GARCH models introduced by Bollerslev (1986) were applied to 

estimate Value at Risk; the models capture volatility clustering and persistence. 

However, these models often fail to fully capture the fat tails observed in exchange 

rate return series. Wagner and Marsh (2003) showed that even if EVT methodology is 

superior in estimating tail risks it fails to capture volatility clustering. To deal with 

these two major shortcomings of these models, this study combines both GARCH 

model with EVT approach to estimate extreme risk in Exchange rate process. 

 

2.6 Summary 

This section reviews what other researchers have done on the estimation of exchange 

rate volatility and the use of the Extreme Value Theory approach in estimating Value 

at Risk.  It has also explained how some assumptions can affect the estimation of the 

model and therefore, the direction of our study has taken. Some basics concepts 

applied in this study have also been defined at the end of this section.   
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CHAPTER THREE 

 3.0 CONDITIONAL VOLATILITY ESTIMATION IN 

GENERALIZED AUTOREGRESSIVE CONDITIONAL 

HETEROSCEDASTICITY 

 

3.1 Introduction  

The conditional volatility in exchange rate returns is considered as the origin of 

exchange rates risk and has certain significances on the volume of international trade. 

Exchange rate series exhibits non-normal characters as we described them in the 

second chapter. In literature, many different models in econometrics have been 

proposed to deal with those stylized facts including models from the ARCH/GARCH 

family. Engle (1982) and Bollerslev (1986) suggested ARCH and GARCH models 

respectively to resolve the problem of volatility clustering in financial data. 

ARCH/GARCH models play a crucial role in estimation of conditional volatility. 

These models manage changing volatility with the assumption of conditional 

normality.  

3.2 ARCH model and its properties 

A stochastic process is called Autoregressive Conditional Heteroscedasticity if its 

time varying conditional variance is heteroscedastic with auto-regression; 

 
𝑟𝑡 = 𝜍𝑡𝑒𝑡 ,      𝑒𝑡~𝑁(0,1)

𝜍𝑡
2 = 𝜔 +  𝛼𝑖  𝑟𝑡−𝑖

2𝑝
𝑖=1

                                                                                         (3.1)     
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Where 𝑒𝑡  is 𝑖. 𝑖. 𝑑 process with  𝐸 𝑒𝑡 = 0 and 𝑣𝑎𝑟 𝑒𝑡 = 1, and 𝜔 > 0 and 0 ≤ 𝛼𝑖 <

1 to ensure that conditional variance is strictly positive for all 𝑡 and that the variance 

stationary as it can be seen below:  

Consider the ARCH model given by 

𝑟𝑡 = 𝜍𝑡𝑒𝑡    

      =  𝜔 + 𝛼𝑟𝑡−1
2 . 𝑒𝑡   

𝐸 𝑟𝑡
2 = 𝐸  𝜔 + 𝛼𝑟𝑡−1

2  𝑒𝑡
2   

           = 𝐸 𝜔 + 𝛼𝑟𝑡−1
2  𝐸 𝑒𝑡

2|𝑟𝑡−1   

            = 𝜔 + 𝛼𝐸 𝑟𝑡
2    

𝐸 𝑟𝑡
2 =

𝜔

1−𝛼
                                                                                                            (3.2) 

It is clear that a value of 𝛼  need to be less than 1 to make the equation (3.2) stable 

and hence finite variance. The conditional disturbance variance is the variance of 𝑟𝑡 , 

conditional on the given information at time 𝑡 − 1. 

 𝑖. 𝑒. 𝜍𝑡
2 = 𝑣𝑎𝑟(𝑟𝑡/𝑦𝑡) , 𝑦𝑡 = 𝑟𝑡−1, … , 𝑟𝑡−𝑞  

            = 𝐸(𝑟𝑡
2/𝑦𝑡) 

             = 𝐸𝑡−1(𝑟𝑡
2) ,  

Where 𝐸𝑡−1 represents the expectation conditional on all information up to the end of 

period 𝑡 − 1, it is now easy to see the recent disturbance influence the variance of 
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current disturbance. The ARCH terms can be interpreted as news about volatility 

from past periods. The estimation and testing are natural extensions of ARCH (1) 

model. To show that 𝑟𝑡~𝑁(0, 𝜍𝑡
2), consider the ARCH (1) model where 

𝐸 𝑟𝑡
2 = 𝐸  𝑒𝑡  𝜍𝑡

2                                                                                                                     

            = 𝐸 𝑒𝑡 𝐸    𝜍𝑡
2 = 0, since 𝑒𝑡  is 𝑖. 𝑖. 𝑑 with mean zero and variance 1.  

In other words, the disturbance 𝑟𝑡  is conditionally heteroscedastic with respect to 𝑟𝑡−1. 

The short-run volatility of the exchange rate process is a function of the immediate 

past value of the error term. The ARCH can describe volatility clustering since the 

conditional variance of 𝑟𝑡  is an increasing function of 𝑟𝑡
2. This means that large shock 

cluster together and exchange rate return goes through a period of large volatility and 

a period of small volatility.  

 

3.2.1 The Properties of ARCH Model 

The Autoregressive Conditional Heteroscedasticity models of 𝑟𝑡  have the following 

properties: 

a) 𝐸 r𝑡/𝑦𝑡 = 0  

b) 𝑉𝑎𝑟(𝑟𝑡/𝑦𝑡) = 𝜍𝑡
2,  𝑦𝑡 = 𝑟𝑡−1, … , 𝑟𝑡−𝑝  

Where 𝜍𝑡
2 = 𝜔 +  𝛼𝑖  𝑟𝑡−𝑖

2𝑝
𝑖=1  , 0 ≤  𝛼𝑖  

𝑝
𝑖=1 < 1, 𝜔 > 0, the conditional variance 𝜍𝑡

2 

is a nontrivial positive valued parametric function of 𝑟𝑡−1, 𝑟𝑡−2  … , 𝑟𝑡−𝑝  
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c) 𝑒𝑡 =
𝑟𝑡

𝜍𝑡
  are 𝑖. 𝑖. 𝑑 and also independent of 𝑟𝑡−1, 𝑟𝑡−2  … , 𝑟𝑡−𝑝  , the sequence 

 𝑟𝑡  may be observed directly, or it may be an error or innovation sequence of an 

econometric model. The ARCH process of order 𝑝, abbreviated as ARCH (𝑝) can be 

used to describe volatility clustering in exchange rate process.  

 

3.3 GARCH Model and its Properties 

The ARCH models capture the mentioned stylized facts behavior of real return data. 

The ARCH (𝑝) is more flexible than ARCH (1). In order to have a good fit to real life 

exchange rate data one needs a large number of parameters, however, large lags 

reduce data required for estimation. Bollerslev (1986) proposed the GARCH model 

by adding the concept that the volatility for tomorrow depends not only on the past 

realizations but it depends too on the errors of the volatility predicted. The advantage 

of the GARCH model over the ARCH model is that it can capture the series 

correlation in squared residuals using a smaller number of parameters. For this reason 

GARCH models have found extremely wide use since they integrate the two main 

characteristics about financial returns series, volatility clustering and unconditional 

non-normality.  

The general framework of GARCH (𝑝, 𝑞) model is represented by allowing the 

current conditional variance to depend on the first 𝑞 past Conditional variance as well 

as the 𝑝 past squared innovations. In general case the volatility presented in (3.1) can 

be defined by  
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𝑟𝑡 = 𝜖𝑡 = 𝜍𝑡𝑒𝑡 , 𝜖𝑡~(0, 𝜍𝑡

2)   

𝜍𝑡
2 = 𝜔 +  𝛼𝑖

𝑝
𝑖=1 𝜖𝑡−𝑖

2 +  𝛽𝑗
𝑞
𝑗=1 𝜍𝑡−𝑗

2
                                                                   (3.4)   

                                                                                                                                                                 

Equation (3.4) is a GARCH (𝑝, 𝑞) process where Autoregression in its squared 

residuals has an order of 𝑝 ≥ 0 and 𝑞 ≥ 0 is the number of lagged of variance terms 

and is the number of lagged 𝑟2 terms. The sizes of the parameters 𝛼𝑖  and 𝛽𝑗  

determine the short run dynamics of the resulting volatility process. The non-

negativity of 𝛼𝑖  and 𝛽𝑗  ensure that 𝜍𝑡
2 is strictly positive. The innovation 𝑒𝑡 is an 

independent and identically distributed process with zero mean and unity variance 

and strict stationarity is ensured by  𝛼𝑖
𝑝
𝑖=1 +   𝛽𝑗

𝑞
𝑗=1 < 1.  

Large ARCH error coefficients  𝛼𝑖  imply that volatility reacts significantly to market 

movements. Large GARCH coefficients 𝛽𝑗  indicate that shocks to the conditional 

variance take long time to die out. High 𝛼𝑖  coefficients, relative to 𝛽𝑗  indicate that 

volatility tends to be more extreme. Since 𝜍𝑡
2 is the one-period ahead forecast 

volatility based on the past information, it is called conditional volatility and it is 

specified as a function of three terms: unconditional volatility 𝜔, news about volatility 

from the previous period measured as the lag of the squared residuals from the mean 

equation 𝑟𝑡−1
2   (ARCH term) and last period volatility 𝜍𝑡−1

2   (GARCH term).  

The most common form of the GARCH models uses in financial data is the GARCH 

(1, 1) model. By examining the behavior of GARCH model described in (3.4) it is 

clear that the impact of sign is not taken into account since to estimate the variance of 
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today, the model has to consider the impact of yesterday as a squared value. For this 

reason the GARCH model is referred to as a symmetric model. 

 

3.3.1 Properties of GARCH Model 

The 𝑟𝑡  process is called GARCH (𝑝, 𝑞) if the following properties are satisfied: 

1) 𝐸 𝑟𝑡|Ωt−1 =0 

2) 𝑉𝑎𝑟 𝑟𝑡|Ωt−1 = 𝜍𝑡
2  

Where  𝜍𝑡
2 = 𝜔 +  𝛼𝑖

𝑝
𝑖=1 𝑟𝑡−𝑖

2 +  𝛽𝑗
𝑞
𝑗 =1 𝜍𝑡−𝑗

2         

3) 𝑒𝑡 =
𝑟𝑡

𝜍𝑡
  are independent and identically distributed and independent of   

𝑟𝑡−1, 𝑟𝑡−2, …                                                                                                       

The symbol Ωt−1 is omega contains past information of 𝑟𝑡  and 𝜍𝑡up to time 𝑡 − 1. 

 

3.4 Tests 

In this study various tests on exchange rate returns and residuals have been 

performed. Jarque Bera test for normality has been used to test whether the exchange 

returns series follow normal distribution or not. ARCH effect in residuals series have 

been tested using Lagrange Mutliplier test. It is also very important in financial time 

series data to test for stationarity. Augmented Dickey Fuller test is applied to check 

the stationarity of our data. The Box-Ljung test introduced by Ljung and Box (1978) 

for autocorrelation testing in residuals series after fitting the proposed model to the 

data is also used.   
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3.4.1 Test for Normality 

In many empirical studies with time series data Jarque and Bera test is the most 

popular for normality testing. Jarque Bera test is better for sample size range between 

50 and 5000 observations, Jushan (2005). Since the sample size is 2758 observations, 

this test is useful in this work for normality testing. 

Jarque Bera test can be applied using the method of moments, suppose 𝑋 is a 

continuous random variable. The first moment 𝜇𝑥   measures the central location of 

the distribution. Second moment 𝜍𝑥
2 measures the variability of a continuous random 

variable. The first two moments of a random variable determine a normal distribution. 

The third and fourth moments measure the symmetry and tail behavior of 𝑋 

respectively. In statistics, skewness and kurtosis are often used to determine the 

degree of asymmetry and fat tailedness of a distribution under study. 

Mathematically, the skewness of a continuous random variable 𝑋 are defined as 

follow. 

𝑆 𝑥 = 𝐸  
 𝑋−𝜇𝑥  3

𝜍𝑥
3  ,                                                                                                  (3.5) 

Under the normality assumption, the estimated skewness and kurtosis (as defined in 

equation 2.2) are distributed asymptotically as normal with zero mean and variance 

6/𝑇 and 24/𝑇 respectively, Snedecor and Cochran (1980). Jarque and Bera (1987) 

combined these two tests for normality testing as follows. 

𝐽𝐵 =
𝑆 2(𝑟𝑖)

6/𝑇
+

 𝐾  𝑟𝑖 −3 2

24/𝑇
                                                                                            (3.6)                                           
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Where{𝑟1, 𝑟2, … , 𝑟𝑇}, are the returns series with 𝑇 observations. The null hypothesis of 

normality can be rejected only if the 𝑝 −value of the 𝐽𝐵 statistic is less than the 

significance level. Therefore we conclude that the distribution is not normally 

distributed. 

 

3.4.2 Test for Stationarity of the data 

In Autoregressive time series model the presence of unit root causes a violation of the 

assumptions of classical linear regressions. Recall the classical linear assumptions; 

where we consider the following seven assumptions of classical linear regression 

models:  

i. The dependent variable is linearly related to the coefficients of the model and the 

model is correctly specified. 

ii. The independent variables are not correlated with the equation error term. 

iii. The mean of error term is zero. 

iv. The error term has a constant variance (homoscedastic error) or no 

heteroskedasticity. 

v. The error terms are uncorrelated with each other. 𝑖. 𝑒 No autocorrelation or series 

correlation. 

vi. No perfect multicolinearity. 𝑖. 𝑒. Non-independent variable has a perfect linear 

relationship with any of the other independent variables. 

vii. The error term is normally distributed (optional assumption for hypothesis testing). 
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The presence of the unit root indicates that the given time series data is non-

stationary. When non-stationary time series are used in a regression model one may 

obtain apparently significant relationships from uncorrelated variables. This 

phenomenon is called spurious regression. The most popular unit root test is the 

Augmented Dickey Fuller test. The reason is that the standard Dickey Fuller test is 

only able to test unit root for first order Autoregressive model. For the standard 

Dickey Fuller test the following equation can be applied: 

∆𝑟𝑡 =  𝛿 − 1 𝑟𝑡−1 + 𝑒𝑡                                                                                             

The case where 𝛿 = 1, then we have the random walk which is non-stationary. The 

Dickey fuller test whether 𝛿 = 1 or not. This t-statistic does not converge to the 

normal distribution but instead to the distribution of functional of wiener process. The 

Augmented Dickey Fuller test builds correlation of parameters for higher order 

correction by adding lag differences of the time series, when the time series is 

correlated at higher lags,. 

∆𝑟𝑡 =  𝛿 − 1 𝑟𝑡−1 +  𝛼𝑖∆𝑟𝑡−𝑖
𝑞
𝑖=1 + 𝑒𝑡                                                                   (3.7) 

The order of 𝑞 could be chosen by minimizing information criteria such as Akaike 

Information Criterion (AIC) or Bayesian Information Criterion (BIC).  

Null hypothesis (𝐻0): Time series data is not stationary and 

Alternative (𝐻𝑎 ): the data is stationary.  
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3.4.3 Test for Autocorrelation in the series 

Ljung and Box (1978) proposed a diagnostic tool (Box-Ljung test) to test the lack of 

fit of financial time series models. It analyzed autocorrelations of the GARCH 

innovations. In general if the autocorrelations are very small we can conclude that the 

model does not exhibit significant lack of fit. The Box-Ljung test for autocorrelation 

can be defined as: 𝐻0:  The model does not exhibit lack of fit (there is no 

autocorrelation), 𝐻1:  the model exhibits lack of fit (there is autocorrelation or 

dependence in data). Test statistic  𝑄 of length 𝑇 is defined as: 

 𝑄 = 𝑇(𝑇 + 2)  
𝜌 𝑖

𝑇−𝑖

𝑘
𝑖=1                                                                                            (3.8) 

Where 𝜌 𝑖 is the estimated autocorrelation of the series at lag 𝑖, and 𝑘 is the number of 

lags being tested. The Box-Ljung test rejects the null hypothesis if  𝑄 > 𝜒1−𝜑,𝑑
2  where 

𝜒1−𝜑,𝑑
2  is the chi-square distribution table value with 𝑑 degree of freedom and 

significance level 𝜑. This indicates that the model has significant lack of fit. In this 

study, we have used this test to the residuals of exchange rate returns after fitting the 

GARCH model for testing autocorrelation in residuals series. 

 

3.4.4 ARCH Effects Testing 

One of the most important issues before applying the GARCH model for financial 

time series data is to test for the presence of ARCH effect in the residuals. If residuals 

do not exhibit ARCH effects presence, the GARCH model is unnecessary. Using 

mean equation in (2.5), we can get the residuals 𝜖𝑡 =  𝑟𝑡 − 𝜇𝑡  of the mean equation; 
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the squared series 𝜖𝑡
2 can be applied to test ARCH effects. Lagrange Multiplier (LM) 

test proposed by Engle (1982) was applied in this work for ARCH effects testing.  

In summary the test procedure is performed as follows: First, obtain the residuals 

𝜖𝑡  from the ordinary least squares regression of the conditional mean equation. 

Secondly, regress the squared residual 𝜖𝑡  on a constant and 𝑝 lags in the following 

equation: 

𝜖𝑡
2 = 𝑎0 + 𝑎1𝜖𝑡−1

2 + ⋯ + 𝑎𝑝𝜖𝑡−𝑝
2 + 𝑒𝑡                                                                      (3.9) 

The null hypothesis that there is no ARCH effect up to order 𝑝 can be formulated as: 

𝐻0: 𝑎1 = 𝑎2 = 𝑎3 = ⋯ = 𝑎𝑝 = 0 Against alternative 𝐻1: 𝑎𝑖 ≠ 0, for at least one, 

𝑖 = 1,2, … , 𝑝. The test statistic 𝐿𝑀 = 𝑇. 𝑅2~𝜒𝑑
2 where 𝑇 is the sample size and 𝑅2 is 

computed from the regression of (3.9) using the estimated residuals. The null 

hypothesis is rejected if p-value is less than the conventional level. If the LM test for 

ARCH effects is significant for a time series then we could proceed to estimate a 

GARCH model and obtain estimates of the conditional volatility.  

 

3.5 GARCH Model selection 

Model selection is an important part of any statistical analysis and it is interpreted as 

a decision problem through which a statistic model is selected in order to perform 

statistical analysis, such as policy analysis, forecasting, estimation and testing. The 

choice of a good model in the application of financial time series data analysis is 

crucial since in financial modeling, one of the main challenges is to select a suitable 
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model to characterize the underlying time series process. The best one can be selected 

based on diagnostics such as, Akaike Information Criterion (A.I.C) or the Schwartz 

Criterion (S.C), F-test and Q-test. This study has applied the most popular diagnostics 

AIC and SC tests to select a good model for the exchange rates data.   

 

3.5.1  Autocorrelation Function and Partial Autocorrelation function 

Autocorrelation function (ACF) and Partial Autocorrelation function (PACF) are 

measures of correlation between current and past series values and show which past 

series values are most useful in predicting future values. Using this knowledge we 

came up with the order of the processes in GARCH model. Specifically, ACF can be 

defined as a set of correlation coefficients between the series and the lags of itself 

over time. The lag at which the ACF cuts off is the indicated number of GARCH term 

or conditional Variance. In the same way, PACF can also be defined as partial 

correlation coefficients between the series and lag of itself over time. The lag at 

which the PACF cuts off is the indicated number of Autoregressive term or ARCH 

term. A positive correlation indicates that large current values correspond with large 

values at the specified lag whereas a negative correlation indicates that large current 

values correspond with small values at the specified lag. The absolute value of a 

correlation is a measure of strength of the association, with large absolute values 

indicating stronger relationships (wang et al., 2005). 
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3.5.2  Akaike and Schwartz Information Criterions 

Akaike (1973) came up with AIC test as an extension to the maximum likelihood 

principle. In addition, this test was the first model selection criterion to benefit from 

widespread acceptance. AIC is an estimate of a constant plus the relative distance 

between the unknown true likelihood function of the data and the fitted likelihood 

function of the model. A lower AIC means a model is considerable to be closer to the 

truth. The selection criterion is based on the information content of the model. Akaike 

Information Criteria can be defined mathematically as follows. 

𝐴𝐼𝐶 = −2 ln 𝑙𝑖𝑘𝑒𝑙𝑖𝑕𝑜𝑜𝑑  + 2𝑘                                                                                                                                 

Where likelihood is the probability of the data given a model and 𝑘 is the number of 

fitted parameters in the model. In other words, AIC can also be defined as 

𝐴𝐼𝐶 = −2𝑙𝑜𝑔 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑑 𝐿𝑖𝑘𝑒𝑙𝑖𝑕𝑜𝑜𝑑  + 2(𝑛𝑜. 𝑜𝑓 𝑓𝑖𝑡𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)    

The first term on the right hand side of AIC equation is a measure of the lack of fit of 

the chosen model while the second term on the right hand side measures the increased 

number of model parameters. 

 

The Schwartz Information Criterion proposed by Schwartz (1978) is another model 

selection criterion based on information theory in Bayesian context called BIC. BIC 

is an estimate of a function of a future probability of a model being true under a 

certain Bayesian setup. A lower BIC means that a model is considerably more likely 

to be the true model. Mathematically, BIC can be defined as follows. 

𝐵𝐼𝐶 = −
2𝐿𝑛

𝑇
+ [𝐾(1 + ln 𝑇 ]/𝑇                                                                           
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Where 𝑇 is the number of observations and 𝐿𝑛 is log-likelihood function using the 𝑘  

estimated parameters. This definition allows multiple models to be compared at once; 

where the model with the highest future probability is the one that minimizes the 

value BIC. 

 

3.6 Estimation of Exchange rate Volatility 

We consider the process that describes the exchange rate returns under the model in 

(2.5) and we redefine it as follows; 

 
 𝑟𝑡 = 𝜇𝑡 + 𝜖𝑡 , 𝜖𝑡 = 𝜍𝑡  𝑒𝑡

𝜍𝑡
2 = 𝑣𝑎𝑟( 𝑟𝑡|ℱ𝑡−1)

                                                                                        (3.10) 

In order to estimate the conditional volatility residuals are substituted by sample 

residuals. The residuals of the returns can be given as 𝜖𝑡 =  𝑟𝑡 − 𝜇𝑡 , since 𝑒𝑡  is 

standardized returns (i.e. independently and identically distributed random variable 

with 𝐸 𝑒𝑡 = 0 and 𝐸 𝑒𝑡
2 = 1). Residuals may be estimated through sample 

residuals as follows. 

  𝜖 𝑡 =  𝑟𝑡 − 𝜇 𝑡  

𝜍 𝑡  𝑒 𝑡 =  𝑟𝑡 − 𝜇 𝑡  

Where 

 𝜍𝑡
2 = 𝜔 +  𝛼𝑖

𝑝
𝑖=1 𝜖𝑡−𝑖

2 +  𝛽𝑖
𝑞
𝑖=1 𝜍𝑡−𝑖

2                                                                  (3.11) 

is GARCH (𝑝, 𝑞) model. We can fit GARCH (𝑝, 𝑞) model to the negative return 

exchange rate data using Quasi-Maximum likelihood Estimation procedure to get the 
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current volatility. From equation (3.11) of general framework of GARCH (𝑝, 𝑞) 

model, the volatility estimator can be obtained as follows. 

𝜍 𝑡 =  𝜔  +  𝛼 𝑖
𝑝
𝑖=1 𝜖𝑡−𝑖

2 +  𝛽 𝑖
𝑞
𝑖=1 𝜍𝑡−𝑖

2                                                                (3.12) 

Where 𝜍  is the estimated volatility and its asymptotic consistency and asymptotic 

normality were investigated in the next section.  

 

3.7 Quasi-Maximum Likelihood Method 

Quasi-maximum likelihood Estimate is appropriate when the estimator is derived 

from a normal likelihood but the disturbances in the model are not truly normally 

distributed. An important assumption made is that the specification of the likelihood 

function, in terms of the joint probability density of variables is correct. Under these 

conditions the maximum likelihood estimator has the desirable properties of 

consistency and asymptotically normally (Straumann & Mikosch (2006). Lumsdaine 

(1996) investigated the Q-MLE for GARCH models and she showed that the 

parameters of GARCH models are consistent and asymptotically normal. In this 

study, we applied Q-MLE is applied to estimate parameters of GARCH (𝑝, 𝑞) models 

assuming that conditional expectation of exchange rate returns is negligible.  

To get the Quasi-Likelihood function, we consider the situation where the true 

probability distribution 𝑓0(𝑟𝑡 , 𝜃0) of the exchange rate at time 𝑡 and incorrect 

probability distribution given by 𝑓 𝑟𝑡 , 𝜃  are used to build the likelihood function. 
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Now model (2.5) can be reformulated by letting   𝑟𝑡  to be a sequence with the true 

model giving 

 
 𝑟𝑡 = 𝜖0𝑡 , 𝜖0𝑡 = 𝜍0𝑡  𝑒𝑡    

𝜍0𝑡
2 = 𝑉𝑎𝑟  𝑟𝑡 ℱ𝑡−1 = 𝐸   𝑟𝑡 

2|ℱ𝑡−1 
                                                             (3.13)                                                         

Where  𝜖0𝑡~N(0, 𝜍0𝑡
2 ), 𝐸 𝜖0𝑡|ℱ𝑡−1  = 0 almost sure (𝑎. 𝑠) and 

ℱ𝑡 = 𝜍 𝜖0𝑡 , 𝜖0𝑡−1, 𝜖0𝑡−2, …  , the conditional variance can be defined as 

𝐸 𝜖0𝑡
2  ℱ𝑡−1  =𝜍0𝑡

2  (the subscript 0 indicates the true values of parameters). We also 

assume  𝑟𝑡 = 𝜖𝑡 = 𝜍𝑡𝜀𝑡  , 𝜖𝑡~N(0, 𝜍𝑡
2) to be the model for the unknown parameters 

(misspecified model). Hence the true and misspecified distributions are; 

 𝑓0 𝑟𝑡  = 
1

𝜍0𝑡 2𝜋
𝑒𝑥𝑝  −

 𝜖0𝑡 
2

2𝜍0𝑡
2                                                                                (3.14) 

      𝑓 𝑟𝑡 =
1

𝜍𝑡 2𝜋
𝑒𝑥𝑝  −

 𝜖𝑡 
2

2𝜍𝑡
2                                                                                 (3.15) 

Assume that the innovations follow a GARCH (1, 1) process; 

 𝜍0𝑡
2 = 𝜔0 1 − 𝛽0 + 𝛼0𝜖0𝑡−1

2 + 𝛽0𝜍0𝑡−1
2  𝑎. 𝑠                                                                         

An equivalent expression for the conditional variance can be derived as: 

 𝜍0𝑡
2 =  𝜔0 + 𝛼0  𝛽0

𝑘∞
𝑘=0 𝜖𝑡−1−𝑘

2   𝑎. 𝑠,                                                                                    

Again assume that the process is described with true parameters in the vector form 

given as 

𝜃0 =  𝜔0, 𝛼0, 𝛽0 ′                                                                                                (3.16) 

and for the model with the unknown parameters, 
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 𝜍𝑡
2 𝜃 = 𝜔 1 − 𝛽 + 𝛼𝜖𝑡−1

2 + 𝛽𝜍𝑡−1
2  ,   𝑡 = 2,3, … , 𝑇                                                         

with the setup or initial condition  𝜍1
2 𝜃 = 𝜔, this gives the convenient expression 

for the conditional variance process  

𝜍𝑡
2 =  𝜔 +  𝛽𝑘𝑡−2

𝑘=0 𝜖𝑡−1−𝑘
2                                                                                                     

Finally, assume that the innovation 𝜖𝑡  is the model for the unknown parameters  

𝜃 =  𝜔, 𝛼, 𝛽 ′, with| 𝛽| < 1                                                                               (3.17) 

Now define the compact parameter space Θ, in the following way. 

Θ ≡  θ: 0 < 𝜔𝑙 ≤ 𝜔 ≤ 𝜔𝑢 ;  0 < 𝛼𝑙 ≤ 𝛼 ≤ 𝛼𝑢 ;  0 < 𝛽𝑙 ≤ 𝛽 ≤ 𝛽𝑢 < 1           (3.18) 

Where subscript 𝑙  and  𝑢 indicate lower and upper limits respectively. We assume 

that the true parameter 𝜃0 ∈ Θ, this implies that 𝛼0 > 0 ,   𝛽0 > 0, which means that  

𝜖𝑡  is strictly a GARCH process. We can also define standardized residuals 𝑒𝑡 =

𝜖𝑡
𝜍𝑡

  by constructing 𝐸 𝑒𝑡|ℱ𝑡−1  = 0 𝑎. 𝑠 and 𝐸 𝑒𝑡
2 ℱ𝑡−1 = 1 𝑎. 𝑠 frequently, 

estimation of GARCH models is done under the assumption that 𝑒𝑡  ~ 𝑁(0,1) so 

that the likelihood is easily specified. The maximum likelihood estimators of the 

parameters of the misspecified distribution are obtained by maximizing the log-

likelihood function 

𝑙𝑛𝐿 θ =  𝑙𝑛𝑓 𝑟𝑡 ; θ  𝑛
𝑡=1                                                                                   (3.19) 

The estimator 𝜃  is obtained by setting the first order conditions given by 

 𝑙 𝜃 =
𝜕𝑙𝑛𝐿

𝜕𝜃
= 

𝜕𝑙𝑛𝑓  𝑟𝑡 ;θ 

𝜕𝜃

𝑛
𝑡=1                                                                                  (3.20) 
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 to zero. Let take expectations of the gradient vector in (3.20) with respect to the 

true probability distribution 𝑓0 𝑟𝑡 ; 𝜃0 . 

𝐸0 𝑙 𝜃  =  𝑙(𝜃)
∞

−∞
𝑓0 𝑟𝑡 ; 𝜃0 𝑑𝑟𝑡   

                =  
𝜕𝑙𝑛𝑓  𝑟𝑡 ;𝜃 

𝜕𝜃

𝑛
𝑡=1

∞

−∞
𝑓0 𝑟𝑡 ; 𝜃0 𝑑𝑟𝑡  

               =  
𝜕𝑓 𝑟𝑡 ;𝜃 

𝜕𝜃

𝑛
𝑡=1

∞

−∞

𝑓0 𝑟𝑡 ;𝜃0 𝑑𝑟𝑡

𝑓 𝑟𝑡 ;𝜃 
                                                                (3.21) 

Where 𝐸0 .   means that the expectation taken with respect to the true distribution, 

this expression is not guaranteed to equal zero except in the case where the 

distribution is specified correctly 𝑓 𝑟𝑡 ; 𝜃 = 𝑓0 𝑟𝑡 ; 𝜃0 . In this case, (3.21) may be 

simplified by exchanging the integration and differentiation operators and using the 

property of a probability distribution to give 

𝐸0 𝑙 𝜃     = 
𝜕

𝜕𝜃

𝑛
𝑡=1  𝑓 𝑟𝑡 ; 𝜃 

∞

−∞
𝑑𝑟𝑡  

                 = 
𝜕

𝜕𝜃

𝑛
𝑡=1 1 

 𝐸0 𝑙 𝜃   = 0                                                                                                        (3.22) 

Thus sufficient condition for (3.22) to hold is that the model is specified correctly. 

There are however, some important cases where 𝐸0 𝑙 𝜃  = 0 even when the 

distribution is misspecified. Let us assume that the Gaussian Likelihood is applied 

to form the estimator. Then, the Log Likelihood takes the form   

𝐿𝑛 θ =
1

2𝑛
 𝑙𝑡 θ ,𝑛

𝑡=1                                                                                         (3.23)                                                                                 
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Where  𝑙𝑡 θ = −  ln 𝜍𝑡
2(θ) +

𝜖𝑡
2

𝜍𝑡
2(θ)

   and  𝐿𝑛 θ  is typically referred to as a quasi-

likelihood function of parameter θ, since the likelihood need not to be the correct 

density. The vector of parameter value, denoted by 𝜃 𝑛  maximizes the likelihood 

𝐿𝑛 θ  on the subspace Θ𝐼of compact space Θ is obtained as:                                                                                  

𝜃 𝑛 = 𝑎𝑟𝑔 max𝜃∈Θ𝐼
𝐿𝑛 θ                                                                                     (3.24) 

 We also need to investigate the asymptotic consistency and asymptotic normality 

properties of the quasi-maximum estimator 𝜃 𝑛  of the GARCH process. 

  

3.7.1 Asymptotic Consistency  

An estimator say 𝜃 𝑛  is consistency to the actual parameter 𝜃𝑛  means that when 

sample size is sufficiently large the estimator 𝜃 𝑛  will be very likely to be very close 

to the actual parameter value 𝜃𝑛 . When an estimator converges in probability to the 

true value as the sample size increases, then, the estimator is asymptotically 

consistent. Suppose that we observe the daily exchange rate returns data 

𝑟−𝑝+1, … 𝑟0, 𝑟1, … , 𝑟𝑛  generated by the model (3.13) with 𝜃0  as the parameter. 

Assume that the data up to 𝑟0  are available to us and the process 𝑟0 is described 

with true parameters in the vector form given as in (3.16). One can define 

 𝜍 ∗𝑡
2  𝜃 = 𝜔 1 − 𝛽 + 𝛼𝜖 𝑡−1

2 + 𝛽𝜍 ∗𝑡−1
2  𝑡 = 1,2, . . 𝑇                                                               

Together with initialization  𝜍 0𝑡
2  𝜃 ≥ 0 this means that the log-likelihood of 

 𝑟1, … , 𝑟𝑛 ′ given  𝑟0, 𝜍0 ′ under 𝑒𝑡~𝑁(0,1) is approximately equal to  
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𝐿 𝑛 𝜃 = −
1

2
  ln𝜍 ∗𝑡

2  𝜃 +
𝑟𝑡

2

𝜍 ∗𝑡
2  𝜃 

 
𝑛

𝑡=1
                                                                                  

The Quasi-Maximum Likelihood Estimator  𝜃 𝑛  is the parameter value which 

maximizes 𝐿 𝑛   on subspace Θ1, since Θ1 is an approximately chosen compact subset 

of the parameter space Θ.  Then   Quasi-MLE 𝜃 𝑛      is strongly consistency if the 

following conditions on the random variable 𝑒𝑡  are satisfied:                                                                   

𝐷1.  𝑒𝑡  is sequence of independent and identically distributed random variables such 

that E(𝑒𝑡)=0 

𝐷2 .  The vector parameter 𝜃0 is in the interior of compact set Θ. 

𝐷3 . For some a>0 there exists a constant 𝑏 < ∞ such that 𝐸 𝑒𝑡
2+𝑎 ≤ 𝑏 < ∞ 

𝐷4 . 𝑒𝑡
2+𝑎  is non degenerate 

𝐷5. 𝐸 𝑙𝑛 𝛽0 + 𝛼0𝑒𝑡
2  < 0 

𝐷6 . If for some t holds   𝜍0𝑡
2 =  𝜔0 +  𝜔𝑘

∞
𝑘=1 𝜖𝑡−𝑘

2  and  𝜍0𝑡
2 =  𝜔0

∗ +  𝜔𝑘
∗∞

𝑘=1 𝜖𝑡−𝑘
2  

Therefore 𝜔𝑗 = 𝜔𝑗
∗ for every 1 ≤ 𝑗 < ∞ 

If these conditions are satisfied we can conclude the consistency of Quasi-MLE in 

the following theorem. 

Theorem 

Under the conditions 𝐷1 − 𝐷6 𝑎𝑏𝑜𝑣𝑒,  the quasi-maximum likelihood estimate 𝜃 𝑛  is 

strongly consistent that is 𝜃 𝑛  
𝑎.𝑠
  𝜃0, 𝑛 → ∞.                                                       (3.25) 
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3.7.2 Asymptotic normality 

The distribution of estimators is said to be asymptotically normal if, as the sample 

size increases, the distribution of the estimators approaches a normal distribution. 

To show that our estimators are asymptotically normal we need the following 

additional assumptions.  

𝐷7. 𝜍∗𝑡
2  is twice continuously differentiable on subspace Θ1  

𝐷8. The following moment conditions hold: 𝐸 𝑒0
4 < ∞, 𝐸  

 ∇𝜍∗0
2  𝜃0  

2

𝜍0
4  < ∞, 

𝐸 ∇𝑙𝑛 Θ1
< ∞ and 𝐸 ∇2𝑙𝑛 Θ1

< ∞. 

If the conditions 𝐷1 − 𝐷8 hold, the following theorem can be stated for the 

asymptotic normality of the quasi-Maximum likelihood estimator. 

Theorem 

Under the conditions 𝐷1 −  𝐷8, the Quasi-Maximum Likelihood Estimator 𝜃 𝑛  is 

strongly consistent and asymptotically normal, that is 

  𝑛  𝜃 𝑛  − 𝜃0 
𝑑
→ 𝑁 0, 𝑉0  as 𝑛 → ∞.                                                               (3.26) 

Where 𝑉0 is the asymptotic variance of the estimator 𝜃 𝑛 . Under asymptotic normality, 

the estimator 𝜃 𝑛  not only converges to the unknown parameter, but it converges fast 

enough, at a rate 1/ 𝑛. For more details see (Francq and Zakoïan, 2004) and 

(Posedel, 2005).  
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3.8 Conclusion 

In this section we estimated conditional volatility in GARCH (𝑝, 𝑞) model using 

Quasi-Maximum Likelihood procedure assuming that the innovations are normally 

distributed. This chapter described some tests need to be done for foreign exchange 

rate series such as Normality testing, unity root test, test for Autocorrelation in series 

and also test for presence of ARCH effects in residuals. This chapter also investigated 

consistency and asymptotic normality of estimated parameters.  
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CHAPTER FOUR 

 4.0  QUANTILES ESTIMATION AND VALUE AT RISK 

 

4.1 Background of Extreme Value Theory 

Extreme Value Theory (EVT) is a well developed theory in the field of probability 

that studies the distribution of extreme realizations of a given process, satisfying 

certain assumptions. The foundations of the theory were set by Fisher & Tippett 

(1928) and Gnedenko (1943), who proved that the distribution of the extreme values 

of an independent and identically distributed (𝑖. 𝑖. 𝑑) sample from a cumulative 

distribution function 𝐹, when adequately rescaled, can converge to one out of only 

three possible distributions; Fr chet family, Weibull family and Gumbel distribution 

(Embrechts et al.,1999). 

There are two main approaches when identifying extremes in real data. The first 

approach is Block Maxima which considers the maximum (minimum) values that a 

variable takes over successive periods of same length (blocks). The second approach 

is known as Peaks over Threshold (POT) which focuses on the realizations exceeding 

a given (high) Threshold.  

For financial time series, POT method is employed to modeling extreme events. This 

approach is considered to follow a Generalized Pareto Distribution (GPD). Extreme 

Value Theory provides possibility to concentrate on each one of the two tails of the 

distribution independently, thus allowing a flexible approach which can take 

skewness of the underlying distribution into account.   
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4.2 Distribution of Maxima 

The limit law for the block maxima, denoted  𝑀𝑛  with 𝑛 the size of the subgroup is 

given by:  

Theorem1 (Fisher and Tippet, 1928) 

Consider a sequence  𝑥𝑛  of independent and identically random variables. If there 

exist constants 𝑎𝑛  >0 and 𝑏𝑛  ∈ ℝ and some non-degenerate distribution function ℋ 

such that  

𝑀𝑛 −𝑏𝑛

𝑎𝑛
 

𝑑
→   ℋ, as 𝑡 ⟶ ∞ or lim𝑡→∞𝑃  

𝑀𝑛 −𝑏𝑛

𝑎𝑛
≤ 𝑥 = ℋ(𝑥)                                  (4.1) 

then ℋ belongs to one of the three standard extreme value distributions.  

Frechet: Φ𝛿(𝑥)= 
0,            𝑥 ≤ 0 

𝑒𝑥𝑝 −𝑥−𝛿 ,   𝑥 > 0
 , 𝛿 > 0                                                         (4.2) 

Weibull: Ψ𝛿(𝑥)= 
𝑒𝑥𝑝 −  −𝑥 𝛿 ,    𝑥 ≤ 0 

1,                 𝑥 > 0
 , 𝛿 > 0                                                    (4.3) 

Gumbel: Λ 𝑥 = 𝑒𝑥𝑝  −exp⁡[−𝑥] , 𝑥 ∈ ℝ                                                           (4.4) 

Where 𝛿 is referred to as the tail index of the distribution. Jenkinson (1955) and Von 

Mises (1954) generalized these distributions above in the following one shape 

parameter 𝜁 representation.  

ℋ𝜁 𝑥 =  
 𝑒𝑥𝑝 − 1 + 𝜁𝑥 −1/𝜁                  𝑖𝑓    𝜁 ≠ 0

𝑒𝑥𝑝 −𝑒𝑥𝑝 −𝑥                           𝑖𝑓   𝜁 = 0   
                                            (4.5) 
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Where 𝑥 is such that 1+ 𝜁𝑥 > 0,  𝜁 is the shape parameter, ℋ𝜁 𝑥  is known as the 

Generalized Extreme Value (GEV) distribution. An important concept for application 

of extreme value theory to extreme quantile estimation is the maximum domain of 

attraction(𝔇). In simple terms, a random variable 𝑥𝑛  is said to belong to 𝔇 𝑖. 𝑒., 

 𝑥𝑛 ∈ 𝔇(ℋ), if and only if the Fisher-Tippet theorem holds for 𝑥𝑛 . The shape 

parameter 𝜁is very important in determining the class of generalized extreme value 

distribution. For 𝜁 > 0, derivers the Fr chet family, 𝑖. 𝑒. the distribution is in 

𝔇 ℋ𝜁 , 𝜁 > 0   and is heavy tailed. Examples of heavy tailed distributions are, Pareto, 

Log-gamma, Cauchy and t-distribution. For 𝜁 ⟶ 0 𝑜𝑟( 𝜁 = 0), the distribution is 

said to belong to 𝔇 of Gumbel distribution 𝔇 ℋ0  and they are characterized by 

median tails. Examples are, gamma, normal, lognormal. For 𝜁 < 0, the distribution is 

said to belong to 𝔇 of Weibull family 𝔇 ℋ𝜁 , 𝜁 < 0   and are short tailed or bounded. 

Examples are uniform and beta distributions. 

In practice, the true distribution of the returns is not known, therefore we do not have 

any idea about the constants 𝑎𝑛  and 𝑏𝑛 , for this reason we may use the parameter 

specification 

ℋ𝜁 ,ℓ,𝜓 𝑥 = ℋ𝜁  
𝑥−ℓ

𝜓
 

 
 
 

 
  𝑒𝑥𝑝  −  1 + 𝜁

𝑥−ℓ

𝜓
 

−
1

𝜁
   

𝑒𝑥𝑝  −𝑒𝑥𝑝  −
𝑥−ℓ

𝜓
       

,

𝑥 ∈ 𝔇,

 𝔇 =

 
 
 

 
 ] − ∞, ℓ −

𝜓

𝜁
[   𝜁 < 0

] − ∞,∞[          𝜁 = 0

] ℓ −
𝜓

𝜁
, ∞[        𝜁 > 0

     (4.6) 

of the GEV, which is the limiting distribution of the not normalizes Maxima. Where ℓ 

and 𝜓 are the location and the scale parameters representing the unknown constants 

𝑎𝑛  and 𝑏𝑛 , for a location parameter  ℓ ∈ ℝ  and a scale parameter 𝜓 > 0 . In our case, 
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we are not only focusing on the parameters themselves, but the quantiles also called 

return levels of estimated generalized extreme value.  

 

4.3 Distribution of Exceedances 

Since Peaks over Threshold focuses on the realizations exceeding a given (high) 

threshold and the threshold method uses data more efficiently, we concentrate on 

peak over threshold approach. Consider 𝑥𝑛  to be independent and identically 

distributed (𝑖. 𝑖. 𝑑) random variables and 𝑣1 , 𝑣2, … , 𝑣𝜏  to be a series of exceedances 

over threshold 𝜏. We assume that the excesses are 𝑖. 𝑖. 𝑑 with conditional distribution 

function 𝐹𝜏 , and threshold 𝜏 is less than endpoint 𝑥𝐹 ≤ ∞. The distribution function 𝐹𝜏  

is called the conditional excess distribution function and is defined as follows: 

𝐹𝜏 𝜈 = 𝑃 𝑥𝑛 − 𝜏 ≤ 𝜈|𝑥𝑛 > 𝜏 ,  𝑜 < 𝑣 ≤ 𝑥𝐹 − 𝜏  

          =
𝑃  𝑥𝑛 ≤𝜈+𝜏 ∩ 𝑥𝑛 >𝜏  

𝑃 𝑥𝑛 >𝜏 
  

           =
𝑃  𝑥𝑛 ≤𝜈+𝜏 − 𝑥𝑛 ≤𝜏  

𝑃 𝑥𝑛 >𝜏 
  

𝐹𝜏 𝜈 =
𝐹 𝜈+𝜏 −𝐹(𝜏)

1−𝐹(𝜏)
                                                                                                  (4.7) 

This is the excess distribution. When rearranged we obtain the tail distribution of the 

random variable 𝑥𝑡  𝑖. 𝑒. 

1 − 𝐹𝜏 𝜈 = 1 −
𝐹 𝜈+𝜏 −𝐹(𝜏)

1−𝐹(𝜏)
                                                                                                        

                   =
1−𝐹 𝜏 −𝐹 𝜈+𝜏 +𝐹(𝜏)

1−𝐹(𝜏)
  



43 
 

                   =
1−𝐹 𝜈+𝜏 

1−𝐹(𝜏)
  

𝐹 𝜏 𝜈 =
𝐹  𝜈+𝜏 

𝐹 (𝜏)
⟹ 𝐹  𝜈 + 𝜏 = 𝐹 𝜏 𝜈 𝐹 (𝜏)                                                             (4.8) 

Peak over threshold method according to Todorovic & Zelenhasic (1970) gives the 

framework of estimating the distribution function 𝐹𝜏  of the value of 𝑥𝑡  excesses over 

certain threshold 𝜏, which identifies the starting of the tail.  

Theorem (limiting distribution of 𝐹 𝜏 𝜈 ),  Pickands (1975), Balkema and Haan 

(1974) 

For a large class of underlying distribution function 𝐹 the conditional excess 

distribution function 𝐹𝜏 𝜈  given an appropriately high threshold 𝜏 is approximated 

by a Generalised Pareto Distribution function i.e 

lim𝜏→𝑥𝐹
 Sup0≤𝑣≤𝑥𝐹−𝜏 |𝐹𝜏 𝑣 − 𝐺𝜁 ,𝜓(𝜏) 𝑣 | = 0                                                     (4.9) 

 

4.3.1 Generalized Pareto Distribution 

For a given a series  𝑣1, 𝑣2 , … , 𝑣𝜏  of exceedances over threshold 𝜏, the generalized 

Pareto distribution function 𝐺𝜁 ,𝜓𝜏
 𝑣  can be defined as follows: 

𝐺𝜁 ,𝜓𝜏
 𝑣 =  

1 −  1 +  𝜁𝑣/𝜓𝜏 
−1

𝜁                 𝑖𝑓 𝜁 ≠ 0

1 − exp  −
𝑣

𝜓𝜏
                          𝑖𝑓 𝜁 = 0

                                           (4.10) 

With a random variable 𝑥𝑡 − 𝜏 ≥ 𝑣 ≥ 0  and  𝜁 the shape parameter is independent of 

𝜏 and is the same as for GEV distribution and 𝜓 the scale parameter, 𝜓𝜏 = 𝜓(𝜏) > 0.  

The distribution is said to be generalized because it contains other distributions under 



44 
 

common parametric form. The shape parameter 𝜁 controls the tails behavior of the 

distribution and the tendency to produce heavy extremes while the scale parameter 

stretches or contracts the distribution. When 𝜁 > 0, we have a reparametrized type of 

the usual Pareto distribution, if 𝜁 = 0, gives the exponential distribution, and if 𝜁 < 0, 

gives uniform distribution. In general, one cannot fix an upper bound for financial 

losses; only distributions with the positive shape parameter are suited to model 

financial return distributions. From equation (4.9) the distribution function  𝐹𝜏  tends 

to become 𝐺𝜁 ,𝜓(𝜏) 

 𝐹𝜏 𝑣 ⟶ 𝐺𝜁 ,𝜓(𝜏) 𝑣                                                                                               (4.11) 

By setting 𝑥 = 𝜈 + 𝜏 and combining expression (4.9) and (4.7) we see that the model 

can be also written as 

 𝐹  𝑥 =  𝐹 (𝜏)𝐺 
𝜁,𝜓(𝜏) 𝑣                                                                                        (4.12) 

Equation (4.12) shows that we may interpret the model in terms of the tail of the 

underlying distribution 𝐹(𝑥) for 𝑥 >  𝜏. The main steps of Peak over Threshold 

implementation are; 

a) Test for independent and identically distributed. Hypothesis Data should be a 

sequence of independent and identically distributed random variables. 

b) Select an appropriate threshold level. 

c) Estimate the parameters using the most appropriate method for the considered 

excesses dataset. 
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4.3.2 Threshold selection Methods 

By choosing a low threshold the risk is to introduce some central observations in the 

series of extremes. The tail index (shape) in this case is more accurate (less variance 

but biased). Setting a too high threshold would lead to a reduction of the number of 

extreme observations and hence increase in the variance. The high threshold implies a 

less biased but less robust tail index. Here the major problem is to find the optimal 

threshold for Generalized Pareto Distribution.  

A considerable amount of researchers such as Neves & Alves (2008), Smith (1985) 

and Thompson, et al. (2009) proposed and applied various methods to detect the 

appropriate threshold. Some of these approaches are graphical, numerical and others 

combine both graphical and numerical approaches. Three techniques of threshold 

determination are discussed; Mean Residual Life Plot, Hill Plot, and Square Error 

Method. 

i. Mean Residual Life Plot 

The Mean Residual Life Plot also known as Mean Excess plot is one of the most 

commonly used graphical methods. The theoretical reasons behind this approach 

reside in the fact that the distribution of exceedances over the threshold 𝜏 is a 

Generalized Pareto Distribution of exceedances over any threshold 𝜏1 > 𝜏 is also a 

GPD with the same shape parameter 𝜁 and scale parameter 𝜓𝜏1
= 𝜓𝜏 − 𝜁 𝜏1 − 𝜏 . The 

Mean Residual Life Plot is a representation of the empirical estimate of conditional 

expectation 𝐸 𝑋 − 𝜏|𝑋 > 𝜏  as a function of 𝜏. For an optimal threshold 𝜏∗, the 

underlying distribution function of the excedances is a GPD and the conditional mean 

excess is given by 
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 𝐸 𝑋 − 𝜏|𝑋 > 𝜏 =
𝜓𝜏

1+𝜁
=

 𝜓𝜏∗−𝜁 𝜏−𝜏∗ 

1+𝜁
, for 𝜏 > 𝜏∗                                                 (4.13) 

Hence, a good Generalized Pareto Distribution fit occurs when the Mean Residual 

Life Plot is roughly linear. 

ii. Hill Plot Approach 

The Hill Plot technique is done by ordering the data with respect to their values as 

 𝑋1,𝑛 ,𝑋2,𝑡 , …,𝑋𝑡,𝑛  where 𝑋1,𝑛 ≥ 𝑋2,𝑛 ≥ …≥ 𝑋𝑡,𝑛 . The Hill estimator of the tail index, 

 𝛿 = 1
𝜁 > 0, is given by  

𝛿 =  
1

𝑘
 𝑙𝑛 𝑋𝑖,𝑛 − 𝑙𝑛 𝑋𝑘,𝑛

𝑘
𝑖=1  

−1

                                                                         (4.14) 

Where 𝑘 → ∞ is upper order statistics (the same number of excedances), 𝑛 is the 

sample size, 𝛿 = 1
𝜁  is tail index and 𝜁is shape parameter. The Hill Plot is 

constructed by plotting the estimate of tail index as a function of 𝑘 −upper order 

statistics or threshold 𝜏=𝑋𝑘,𝑛 . The threshold is selected from the plot where the shape 

parameter 𝜁  or tail index 𝛿  is fairly stable. 

iii. Square error method 

The square Error method was proposed by Beirlant et al. (1996) with the purpose of 

choosing the threshold that minimizes the Mean square error of the tail index Hill 

estimator. The square error method is based on mathematical criteria, so it helps the 

user in choosing an adequate threshold on a quite objective consideration basis. In 

this work, we propose an algorithm in the line of Beirlant’s work. It is useful in 
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comparing different estimators, especially when one of them is biased. The square 

error method is therefore natural to take as optimal threshold that minimizes the mean 

square error of an estimator based on exceedances (Xiangxian & Wenlei, 2009). 

 

4.4 Tails Estimation  

Our interest is to build tail estimator that can be used to obtain quantiles. The method 

of the nonparametric such as historical simulation may be used to estimate 𝐹𝜏  

as 𝐹  𝜏 =
𝑁−𝑁𝜏

𝑁
, where  𝑁 is the total number of observations and 𝑁𝜏  are the number 

of the observations above the threshold 𝜏. The MLE of the generalized Pareto 

distribution parameters give rise to the tail estimator formula 

 𝐹  𝑥 =
𝑁𝜏

𝑁
 1 −  1 +  𝜁 (𝑥 − 𝜏)/𝜓 𝜏 

−1
𝜁  
 +  1 −

𝑁𝜏

𝑁
                                         (4.15) 

This simplifies to 

𝐹  𝑥 = 1 −
𝑁𝜏

𝑁
  1 +  𝜁 (𝑥 − 𝜏)/𝜓 𝜏 

−1
𝜁  
                                                             (4.16) 

Where 𝜁 and 𝜓 𝜏  are the estimates of 𝜁 𝑎𝑛𝑑 𝜓(𝜏) shape and scale parameters 

respectively. 

 

4.5 Maximum Likelihood Method  

Maximum likelihood estimation method is a general method for estimating the 

parameters of an econometric model. In this section it has been used to estimate 

Generalized Pareto Distribution (GPD) parameters and it may be expressed as 
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follows. Let 𝐺 𝜁 ,𝜓 𝜏
 𝑣  be the Estimated Generalized Pareto Distribution with 𝜁 and 𝜓 𝜏  

the estimates of 𝜁 𝑎𝑛𝑑 𝜓(𝜏) shape and scale parameters respectively then 

 

 

𝐺 𝜁 ,𝜓 𝜏
 𝑣 =  

1 −  1 +  𝜁 𝑣/𝜓 𝜏 
−1

𝜁  
                𝑖𝑓 𝜁 ≠ 0

1 − exp  −
𝑣

𝜓 𝜏

                          𝑖𝑓 𝜁 = 0

  

 

Consider a random variable 𝑟𝑡  with probability density function 𝑓 𝑟1, 𝑟2, … , 𝑟𝑇; Φ   

where the form of 𝑓 is known, but the parameter vector Φ = (𝜁, 𝜓(𝜏)) is not known. 

In its principle one can choose values of the parameters that give the greatest 

probability of giving rise to the observed sample of data. The following conditions 

below must be satisfied in deriving the maximum likelihood estimator of a GPD 

approach; 

1) The distribution of the observed random variable 𝑟𝑡  must be known 

2) The likelihood function must be tractable in the sense that it can be evaluated 

for all admissible values Φ. The joint probability density function is given by 

 𝑓 𝑟1, 𝑟2, … , 𝑟𝑇; Φ 1, Φ 2, … , Φ 𝑇                                                                           (4.17) 

Where Φ1 = Φ2 = ⋯ = Φ𝑇 = Φ is a vector parameter that is constant over time. The 

standard interpretation of the probability density function in (4.17) above is that 𝑓 is 

interpreted as a function of 𝑟𝑡  for given parameters Φ in defining maximum likelihood 

estimators this interpretation is reversed, so that 𝑓 is taken as a function of Φ for 
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given 𝑟𝑡 . The reason behind this change in the interpretation of the arguments of the 

probability density function is to consider  𝑟1, 𝑟2, … , 𝑟𝑇  as a realized exchange rates 

data set which is no longer random. Therefore, the maximum likelihood estimator is 

obtained by finding the value of Φ which is most likely to have generalized the 

observed data. The likelihood is expressed as  

𝐿 Φ = 𝑓 𝑟1, 𝑟2, … , 𝑟𝑇; Φ 1, Φ 2, … , Φ 𝑇                                                               (4.18) 

It is crucial to remember that the likelihood function is a redefinition of the joint 

probability density function. The maximum likelihood estimate of Φ is therefore 

defined as that value of Φ that maximizes the likelihood function in (4.18).  

Most of the problems often work with the log-likelihood function. The only reason to 

use Log-Likelihood instead of the plain old likelihood is mathematical convenience 

because it lets you turn multiplication into addition. The plain old likelihood is P 

(parameter\data) i.e assuming data is fixed and vary the parameters of the model. 

Maximizing this is one way to do parameter estimation is known as maximum 

likelihood. 

𝑙𝑛𝐿 Φ = 𝑙𝑛𝑓 𝑟1, 𝑟2, … , 𝑟𝑇; Φ 1, Φ 2, … , Φ 𝑇                                                        (4.19)                     

The likelihood functions of the case of independent and identically distributed (𝑖. 𝑖. 𝑑) 

is  

   𝑙𝑛𝐿 Φ =  𝑙𝑛𝑓 𝑟𝑡 ; Φ 𝑇
𝑡=1                                                                                  (4.20) 

Since the objective of maximum likelihood estimation is to find the value of Φ that 

maximizes the log-likelihood function, a natural way to do this is to use the rules of 
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calculus. We compute the first derivatives (gradient) and second derivatives (Hessian) 

of the log-likelihood function with respect to the parameter Φ. 

 𝑙 Φ =  
𝜕𝑙𝑛𝐿  Φ 

𝜕Φ
                                                                                                     (4.21) 

is known as the score. In the 𝑖. 𝑖. 𝑑 case where Φ is a fixed (𝑘𝑥1) vector of the 

parameters, the score is 

 𝑙 Φ =

 
 
 
 
𝜕𝑙𝑛𝐿  Φ 

𝜕Φ1

⋮
𝜕𝑙𝑛𝐿  Φ 

𝜕Φ𝑘  
 
 
 

                                                                                                    (4.22) 

The maximum likelihood estimate of Φ, namely Φ  is obtained by solving the set of 

the first order conditions for a maximum obtained by setting the score equal to zero. 

Thus, Φ  satisfies 

𝑙 Φ  =   
𝜕𝑙𝑛𝐿  Φ 

𝜕Φ
 
Φ=Φ 

= 0                                                                                       (4.23) 

The second derivatives of log-likelihood function with respect to the parameter 

vector Φ is known as the Hessian   

𝐻 Φ =  
𝜕2𝑙𝑛𝐿  Φ 

𝜕Φ𝜕Φ′                                                                                                    (4.24) 

The hessian plays two important roles in the maximum likelihood framework. First, 

the Hessian is used to establish that a maximum for log-likelihood function has been 

achieved. The maximum of a function is obtained by solving the first order condition 



51 
 

obtained by setting the gradient to zero and checking to see if the second derivative of 

the function at optimum is negative.  

𝐻 Φ   =   
𝜕2𝑙𝑛𝐿  Φ 

𝜕Φ𝜕Φ′  
Φ=Φ 

                                                                                          (4.25) 

is negative definite matrix. A matrix 𝐻 is negative definite if and only if 𝑎′𝐻𝑎 < 0 for 

all non-zero vectors 𝑎. The second crucial role of hessian is that, the hessian plays a 

role in determining the precision of the maximum likelihood estimator. We need to 

investigate the consistency and asymptotic normality of the estimated parameters of 

Generalized Pareto Distribution. 

 

4.5.1 Consistency of Maximum likelihood estimator 

To derive the asymptotic properties of maximum likelihood estimators, we assume 

that Φ  is the maximum likelihood estimator of the parameter vector Φ and the true 

value is Φ0. A minimum requirement of estimator to be consistency is that, as the 

sample size increases the estimate approaches the true population parameter value Φ0, 

that is,                    

𝑝𝑙𝑖𝑚 Φ  = Φ0                                                                                                       (4.26) 

A result which requires that any finite sample bias and the variance of the estimator 

both tend to zero as 𝑡 → ∞. Given the regularity conditions all maximum likelihood 

estimators are consistent. 
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4.5.2 Asymptotic Normality 

The distribution of estimators are said to be asymptotically normal if, as the sample 

size increases, the distribution of the estimators approaches a normal distribution. 

Mathematically the sampling distribution of the maximum likelihood estimator is 

  𝑇 Φ − Φ0 
𝑑
→ 𝑁 0, 𝐼𝑡 Φ0 −1                                                                            (4.27) 

The square roots of the diagonal elements of 𝐼𝑡 Φ0 −1 represent the standard errors 

while 
𝑑
→ means that the estimator converge in distribution. 𝑇 represents the total 

number of observations. The parameters are obtained by using MLE where the 

parameter values are chosen to maximize joint probability density of observations.  

Maximum Likelihood Estimate of GPD parameters are consistent and asymptotically 

normal as 𝑁𝜏  ⟶ 𝑥𝐹  (Smith R. , 1987). 

 

4.6 Estimation of Extreme Quantiles  

Consider a random variable 𝑋 and 𝜑 ∈ (0,1) be a given probability level, a quantile 

of random variable 𝑋 at probability level 𝜑 is any real number e𝜑  satisfying the 

following inequalities. 

 𝑃(𝑋 ≤ 𝑒𝜑 ) ≥ 𝜑                                                                                                    (4.28) 

Now, defining the quantile, 𝑒𝜑 , of distribution function 𝐹 as generalized inverse of 

that distribution at a given probability level 𝜑 ∈ (0,1) close to one, 𝑖. 𝑒 𝐹 𝑒𝜑  close to 

unity.  
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𝜑 = 𝐹  𝑒𝜑 = 1 −
𝑁𝜏

𝑁
  1 +  𝜁 (𝑒𝜑 − 𝜏)/𝜓 𝜏 

−1
𝜁  
                                                  (4.29) 

We obtain the quantile estimate of an underlying distribution by simple inverting the 

(4.29) 𝑖. 𝑒  𝑒 𝜑 (𝜏) =  𝐹  𝜑  
−1

 yield 

𝑒 𝜑 (𝜏) = 𝜏 +
𝜓 𝜏

𝜁 
  

𝑁(1−𝜑)

𝑁𝜏
 

−𝜁 

− 1                                                                        (4.30) 

Where 𝜁 and 𝜓 𝜏  are the estimates of 𝜁 𝑎𝑛𝑑 𝜓(𝜏) shape and scale parameters 

respectively. For extreme quantiles (when 𝜑  closes to 1) the empirical quantiles are 

not efficient estimates of the theoretical quantiles. Given the risk horizon and 

confidence level 𝜑 ≥ 0.95, we can obtain the unconditional Value at Risk estimate 

𝑈𝑉𝑎𝑅 
𝜑  which is equal to the quantile at confidence interval 𝜑 ≥ 0.95. 

𝑈𝑉𝑎𝑅 
𝜑≥0.95 = 𝜏 +

𝜓 𝜏

𝜁 
  

𝑁(1−𝜑)

𝑁𝜏
 

−𝜁 

− 1                                                               (4.31) 

 

4.7 Conditional Value at Risk  

The conditional volatility provided by GARCH model and extreme quantile estimates 

are combined to obtain conditional Value at Risk (𝐶𝑉𝑎𝑅𝜑 
𝑡 ). For extreme quantiles, 

when 𝜑 closes to unity the empirical quantiles are not efficient estimates of the 

theoretical quantiles. The conditional value at risk is given by 

 𝐶𝑉𝑎𝑅𝜑 
𝑡 = 𝜍𝑡𝑒𝜑                                                                                                     (4.32) 

and Conditional Value at Risk estimate is 
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𝐶𝑉𝑎𝑅 
𝜑 
𝑡 = 𝜍 𝑡  𝜏 +

𝜓 𝜏

𝜁 
  

𝑁(1−𝜑)

𝑁𝜏
 

−𝜁 

− 1                                                              (4.33) 

Conditional Value at Risk 𝐶𝑉𝑎𝑅 
𝜑 
𝑡 is defined as the 𝜑 −conditional quantile of returns 

at 𝜑 ∈  0.95, 0.99 , (Gourieroux and Jasiak, 2009). The conditional VaR estimate is 

also consistency since it is composed of consistent estimates. 

 

4.8 Conditional Expected Shortfall 

The conditional value at risk is not sub-additive risk measure. 𝑖. 𝑒 Let 𝜗 be a generic 

measure of risk that maps the riskness of a portfolio to an amount of required reserves 

to cover losses that regularly occur and let 𝑊1 and 𝑊2 be portfolios of assets. For sub-

additivity property, the required reserves for the combination of two portfolios are 

less than the required reserves for each treated separately. 𝑖. 𝑒 

𝜗 𝑊1 +  𝑊2  ≤  𝜗 𝑊1 + 𝜗 𝑊2                                                                         (4.37) 

To overcome these shortcomings the conditional Expected Shortfall which has better 

theoretical properties is applied.  

Expected Shortfall also called average value at risk or the tail conditional expectation 

or expected tail loss; can be defined as the conditional expectation of the return given 

that it falls above the Value at Risk.  Estimation of conditional Expected Shortfall, 

under extreme conditions, requires estimation of volatility 𝜍𝑡  and using appropriate 

extreme value distribution to obtain quantiles. The estimator for the conditional 

Expected Shortfall becomes: 



55 
 

𝐶𝐸𝑆 
𝜑 
𝑡 = 𝜍 𝑡  

𝑈𝑉𝑎𝑅 𝜑  

1−𝜉 
+

𝛽 +𝜉 𝜏

1−𝜉 
 , 1 > 𝜉 > 0                                                               (4.38) 

Where 𝛽  and 𝜉  are the scale and shape parameters respectively of the GPD 

distribution and 𝜏 is threshold. The conditional ES estimate is also consistency since 

it comprised of consistency parameters. 

 

4.9 Conclusion 

In this chapter extreme quantiles have been estimated using Generalized Pareto 

Distribution under the assumption that the distribution is unknown. We have 

combined the conditional volatility obtained by fitting GARCH (𝑝, 𝑞) model with the 

extreme quantiles based on independent and identically distributed excesses to 

estimate conditional Value-at-Risk and conditional Expected Shortfall. 
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CHAPTER FIVE 

 5.0  EMPIRICAL ANALYSIS AND RESULTS DISCUSSIONS 

 

5.1 Introduction  

This chapter presents empirical results on the estimation of extreme risk in exchange 

rates using volatility and Extreme value theory. The analysis has been done using 

opening daily exchange rates for the following currency pairs: Rwanda Francs versus 

Kenya Shillings (Frw/Ksh), Rwanda Francs against US Dollars (Frw/USD), Rwanda 

Francs against Euros (Frw/Euro) and Rwanda Francs versus Sterling GBP 

(Frw/GBP). The choice of these currencies was based on their relative proportions, in 

the Bank’s foreign exchange investment portfolio and based also on their currency 

composition of the Rwanda imports. 2758 daily observations covering the period 

from January 1
st
 2002 to December 31

st
 2012 were used. The data were obtained from 

National Bank of Rwanda.  

5.2 Estimation of Volatility  

5.2.1 Data Exploration  

The exchange rate data were plotted to see the behavior of the data. The plots in 

Figure 5.1 below show the daily fluctuations of Exchange rate series of the Rwandan 

Francs versus Kenya Shillings, US Dollars, Euros and GB Pounds respectively. The 

plot 5.1.b shows that the Rwanda Francs against US Dollars exchange rate data 

exhibit very low volatility since the graph is almost smooth for some period as 

indicated on plots. The Plots in Figures 5.1 reveal general trends with high 

uncertainty in the exchange rates of all currencies between the end of 2003 and the 
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beginning of 2004, and relative stability thereafter. This high depreciation of 

Rwandan Francs is maybe due to the supply of banknotes and coins, the issue of new 

banknotes and the distribution of notes unfit for circulation with a view to ensure 

sound management of money in circulation. The expenses associated with the end of 

political transitional period and the current external deficit deteriorated contributing 

sharply to the depreciation of Rwandan franc against foreign currencies in that period. 
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5.1.a) Rwandan Francs vs Kenya Shillings 

 

5.1.b) Rwandan Francs vs US Dollars 

 

5.1.c) Rwandan francs vs Euros 

 

5.1.d) Rwandan Francs vs Sterling Pounds 
 

 

Figure5.1: Trends in the Daily Exchange Rate series 
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The daily exchange rate series has a significant difference between its maximum and 

minimum specifically, in plot 5.1.c Rwanda Francs against Euros (Frw/Euro) as well 

as in plot 5.1.d Francs versus Sterling GBP (Frw/GBP). However, the Rwanda Francs 

against Kenya Shilling (Frw/Ksh) exhibits low difference as well as Francs versus US 

Dollars (Frw/USD). The standard deviation of Frw/Ksh series is 8.20% of its mean 

and that of Frw/USD is insignificant 6.47% of its mean. 

Table5.1: Basic statistics of Exchange rate series 

Statistics  Frw/Ksh Frw/USD Frw/Euro Frw/GBP 

Mean 7.317 560.20 799.7 956.9 

Median 7.378 560.10 719.7 967.1 

St.dev 0.603 36.25 110.30 110.66 

Maximum 8.829 631.50 893.5 1147.0 

Minimum 5.759 455.50 394.9 645.6 

Kurtosis  3.674 4.021 4.171 3.295 

Skewness  -0.437 -0.85635 -1.23 -0.849 

observations 2759 2759 2759 2759 

 

5.2.2 Daily Exchange Rate Returns 

Most financial time series data are probably decomposed into exponentially growing 

trend. In financial econometric, it is important to transform data in log-returns 

because log-returns have good properties such as; it is very simple to aggregate the 

log-returns over time and in error correlation models, there is assumption that 

proportions are more stable than absolute differences. In order to estimate the 

volatility in exchange rates, we have used logarithm exchange rates returns.  
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5.2.a) Frw/Ksh 

 

5.2.b) Frw/USD 

 

5.2.c) Frw/Euros 

 

5.2.d) Frw/GBP 

 

Figure5.2: Daily Exchange Rate Returns  
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The log-returns plots in Figures 5.2 show that the data appear to be stationary in mean 

after logarithm transformation. These plots also reveal that the returns exhibit 

dependence structure where period of high returns tend to be followed by high returns 

and period of low returns tend to be followed by low returns. This is evidence of 

short-range dependence (volatility clustering in data), which must cast doubt on the 

assumption of independent and identically distributed (𝑖. 𝑖. 𝑑) data. The clustering of 

exchange rate returns data indicates presence of stochastic volatility in exchange rate 

series. Plots in Figures 5.2 allow identifying the most extreme losses and their 

occurrence.  

Descriptive statistics for the exchange rate log returns are presented in Table 5.2. The 

mean of the exchange rate returns range from −0.026% on Euro to −0.008% on 

Kenya shillings which are negligible for all currencies. The distribution of returns in 

plots 5.2.a of Frw/Ksh and 5.2.b of Frw/USD exhibit negative skewness (means 

frequent small gains and few extreme losses). This indicates that they have what 

statisticians call a long left tail, which for investors can mean a greater change of 

extremely negative outcomes. The returns series in plot 5.2.c of Frw/Euro and that of 

5.2.d of Frw/GBP have positive skewness coefficients. The positive skewness 

coefficients indicate that the distributions of the returns in both currencies are slightly 

right skewed. This implies that depreciations in the exchange rates occur slightly 

more often than appreciation. This indicates that investors can have frequent small 

negative outcomes and few extreme gains.  
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Table5.2: summary statistics for exchange rate log-returns 

 

The kurtosis coefficients for log-returns of all currencies are much greater than three 

for normal distribution. This indicates that the underlying distributions of exchange 

rate returns have tails which are heavier than that of the normal distribution for log-

returns of selected currencies. Jarque Bera test for normality rejects null hypothesis 

that the distribution is normally distributed since 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is too small number 

compare to 5% probability level for all the currencies. Augmented Dickey Fuller 

(ADF) test has been applied for stationarity testing, the results revealed that the null 

hypothesis of exchange rate returns series is not stationary  has been rejected for all 

currencies since the p-value is less than 5% level of confidence and more negative 

indicates the stronger the rejection of the null hypothesis. 

Statistics  Frw/Ksh Frw/USD Frw/Euro Frw/GBP 

Mean -8.905e-05 -0.000116 -0.000264617 -0.00015700 

Median -4.329e-05 0.0000000 -0.0003855 -0.0001134 

Minimum -0.09532464 -0.011194 -0.04449859 -0.0413000 

Maximum 0.1048363 0.008339 0.04643833 0.0808800 

Standard dev. 0.006702908 0.0011167 0.006160647 0.006094035 

Skewness -0.1100568 -1.065407 0.2640723 1.15312 

Kurtosis 63.08347 15.5501 7.642768 18.3189 

JB.(p-value) <2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 

ADF.Statistics(14) -12.5243 -9.2241 -12.02 -11.9874 

ADF(p-value) 0.01 0.01 0.01 0.01 

Sign. level 0.05 0.05 0.05 0.05 

Observations 2759 2759 2759 2759 
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5.2.3 GARCH model selection 

The Autocorrelation function (ACF) and Partial Autocorrelation function (PACF) 

were applied to obtain the lags in the GARCH (p, q) model. These functions help us 

to know which past series values are most useful in predicting future values. The 

length of past conditional variance (q) was determined by ACF where the lag at 

which the ACF cuts off is the indicated number of GARCH term (q). The PACF 

determine the length of past squared innovations (p) where the lag at which PACF 

cuts off is the indicated the number of ARCH term (p).  
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5.3.a) Frw/Ksh 

 

5.3.b) Frw/USD 

 

5.3.c) Frw/Euros

 

5.3.d) Frw/GBP 

 

Figure5.3: Autocorrelation Function for returns series 
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5.4.a)Frw/Ksh 

 

5.4.b)Frw/USD 

 

5.4.c)Frw/Euros 

 

5.4.d)Frw/GBP 

 

Figure5.4: Partial Autocorrelation Function for returns series 
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The Akaike information (AIC) criterion and Bayesian information criterion (BIC) 

tests were used to select the best model for each currency. As suggested by Akaike 

(1973) and Schwarz (1978) that the best model for financial data is the one that 

minimize the AIC and BIC respectively. The results are as presented in Table 5.3 

below.  

Table5.3: BIC and AIC for GARCH model selection  

a) Frw/Ksh 

 

 

 

 

 

 

  

b) Frw/USD 

 

 

 

 

 

 

Frw/Ksh GARCH(1,1) GARCH(2,1) GARCH(3,1) 

omega 7.42e-07 7.67e-07 9.52e-07 

Alpha1 0.115 9.81e-02 7.63e-02 

Alpha2  2.57e-02 1.00e-08 

Alpha3   1.29e-01 

Betha 0.898 0.892 8.44e-01 

AIC -7.597 -7.613 -7.616 

BIC -7.589 -7.600 -7.604 

Frw/USD GARCH(1,1) GARCH(2,1) GARCH(3,1) 

omega 3.09e-09  3.10e-09 3.08e-09  

Alpha1 0.112  0.113 0.112  

Alpha2  1.00e-08 1.00e-08  

Alpha3   1.00e-08  

Betha 0.900 0.899 0.900 

AIC -11.49346 -11.51255 -11.48645 

BIC -11.48487 -11.50181 -11.47956-11.47884 
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c) Frw/Euro 

 

 

 

 

 

 

 

d) Frw/GBP 

 

 

 

 

 

 

 

As it can be seen in Table 5.3 from (a) to (d) the results reveal that the GARCH (3,1) 

is the best GARCH model for Frw/Ksh, GARCH (2,1) for Frw/USD and GARCH (1, 

1) is the best model for Frw/Euro and Frw/GBP.  

5.2.4 Conditional Volatility estimation 

After getting appropriate GARCH model for each currency now we need to estimate 

the  model parameters using Quasi-Maximum Likelihood Procedure as listed in 

Frw/Euro GARCH(1,1) GARCH(2,1) GARCH(3,1) 

omega 1.827e-07   1.83e-07     1.83e-07   

 

Alpha1 3.063e-02   3.070e-02   2.719e-02   

 

Alpha2  1.00e-08   1.00e-08   

 

Alpha3   4.122e-03  

 

Betha 0.963 0.963 0.337 

AIC -7.546322  -7.546272  -7.5460  

BIC -7.537732 -7.535536 -7.5330 

Frw/GBP GARCH(1,1) GARCH(2,1) GARCH(3,1) 

omega 1.31e-07   1.37e-07   1.44e-07   

Alpha1 3.364e-02   2.339e-02   2.312e-02   

Alpha2  1.127e-02   1.00e-08   

Alpha3   1.297e-02 

Betha 0.9619e-01 0.9606 0.9590 

AIC -7.701987   -7.701069  

BIC -7.693398  -7.690333 
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chap.3 section7 (3.7). The results of estimated models are summarized in the Table 

5.4 below. 

Table5.4: Summary statistics of the selected GARCH models  

 

The results in Table 5.4 show that the sums of the ARCH and GARCH coefficients 

for Frw/Ksh as well as Frw/USD exceed unity. This indicates that the conditional 

variance is high persistence to the shocks in the volatility of these currencies, so, 

memories of shocks for these currencies are remembered in the exchange rates 

markets. The sum of ARCH term and GARCH term coefficients for Frw/Euro and for 

Frw/GBP are below unity. This indicates that the variance is relatively less persistent 

to the shocks in volatility (Bollerslev, 1986). The coefficients of ARCH terms (in 

Table 5.4 above) for variance equation are positive in all currencies and that of 

GARCH terms are also positive. 

The daily exchange rate series indicates volatility clustering characteristics. The 

values of Q-statistics, ACF and PACF suggest the presence of autocorrelation, for 

example see plots in Figures 5.3 and 5.4 above. These values continue to decrease 

with the increase of the number of lags. As can be seen in Table 5.5 below, the Jarque 

 𝝎  𝜶 𝟏 𝜶 𝟐 𝜶 𝟑 𝜷   𝜶 𝒊

𝒊=𝟏

+ 𝜷  
Observations 

Ksh 9.5e-07 0.076 1.0e-08 0.129 0.844 1.049 High persistent 

USD 3.10e-09 0.113 1.0e-08  0.998 1.111 High persistent 

Euro 1.82e-07 0.030   0.963 0.993 Low persistent  

GBP 1.31e-7 0.033     0.961 0.994 Low persistent 
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Bera (J.B) test whether the residuals of returns are normally distributed rejects the 

null hypothesis to indicate that the residuals of return series are not normal. A test for 

the presence of ARCH effects in residuals is computed by regressing the squared 

residuals on a constant and q lags. Lagrange Multiplier (LM) test for ARCH effects 

rejects the null hypothesis of no ARCH effects at 12 degrees of freedom for all 

currencies. This indicates the presence of ARCH effects in residuals of exchange rate 

returns.  

 For examples, the autocorrelation in the exchange rate returns series for Frw/Ksh 

dies out after 435 lags and the ARCH effects in residuals die out after 678 lags. The 

autocorrelation in the returns of Frw/USD dies out after 1732 and ARCH effects in 

residuals die out after 916 lags. The autocorrelation in the returns Frw/Euro dies out 

after 746 and ARCH effects in residuals die out after 906 lags. The autocorrelation of 

the returns in Frw/GBP dies out after 1643 and ARCH effects in residuals die out 

after 645 lags (These values we got them by increasing number and compare p-value 

with 5% significance level and we stop where the null hypothesis is accepted to 

indicate that there is no ARCH effects and we did the same for Autocorrelation).  The 

plots of volatilities in Figure5.5 below reveal volatility clustering characteristics. 

Statistically, volatility clustering implies a strong autocorrelation in the exchange rate 

returns series.  

 

 



70 
 

Table 5.5: Summary statistics of GARCH model innovations 

Tests statistics Frw/Ksh Frw/USD Frw/Euro Frw/GBP 

J.B 𝜒2(2) 415489.8 18654.85 2515.073 27626.04 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 2.2e-16 < 2.2e-16 < 2.2e-16 <2.2e-16 

LM  𝜒2(12) 528.3464 323.4492 376.3599 191.2635 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 2.2e-16 2.2e-16 2.2e-16 2.2e-16 
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5.5.a) Frw/Ksh 

 

5.5.b) Frw/USD 

 

5.5.c) Frw/Euro 

 

5.5.d) Frw/GBP 

 

 

Figure5.5: Daily Exchange Rate Volatilities 
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As it is seen on plot 5.5.b of Frw/USD volatility is high around the year 2003 the 

reason behind this high volatility is maybe because during this period USD was 

mostly using by importers of the goods in Rwanda. Therefore new banknotes and 

coins distribution and political transitional in that period could affect the Frw/USD 

more than other currencies. The plots 5.5.c and 5.5.d of Frw/Euro and Frw/GBP 

respectively exhibit high volatility around 2009 this is resonable since global crisis 

(2008) affected Europeans more than the rest of the world. Correlograms of the 

exchange rate series in Figure 5.5 suggest the evidence of ARCH effects judging from 

significant autocorrelation coefficients.  

The results can be summarized as follows, neither the exchange rate return series nor 

the residuals series can be considered to be normally distributed since both the series 

have kurtosis which are greater than 3. This indicates that the curvatures are high in 

the middle of the distributions and tails are fatter than normal distribution. This means 

that even if we assumed that 𝑒𝑡  is independent and identically distributed standard 

normal we still get returns which have fat tail behaviors. Therefore, we can conclude 

that the assumption of conditional normality is not realistic for these data. 

 

5.3 Estimation of Extreme Quantiles 

Our aim is to estimate the extreme quantiles in exchange rate returns series using 

extreme value theory (EVT). The randomness in the model comes through the 

random variables 𝑒𝑡 , which are referred to as noise variables or the innovations of the 

process and assumed to be independent and identically distributed with unknown 
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distribution function 𝐹 𝑒 . We begin this stage of estimation of extreme quantile by 

standardizing the residuals. 

 𝑒 𝑡 =
𝑟𝑡

𝜍 𝑡
 , 𝑡 = 1,2, … ,2759                                                                                   (5.1) 

where 𝑟𝑡  is returns series and 𝜍 𝑡  is estimated volatility in the returns. ACF and PACF 

for squared residuals are plotted in Figures 5.6 and 5.7 below to show that 

standardized residuals are not autocorrelated. 

 

 

 

 

 

 

 

 

 



74 
 

 

5.6.a) Frw/Ksh 

 

5.6.b) Frw/USD 

 

5.6.c) Frw/Euro 

 

5.6.d) Frw/GBP 

 

Figure 4.6 ACF of squared residuals for Daily exchange rates 
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5.7.a) Frw/Ksh 

 

 
5.7.b) Frw/USD 

 

5.7.c) Frw/Euro 

 

5.7.d) Frw/GBP 

 

Figure5.7: PACF of squared Residuals 
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The plots in Figures 5.6 and 5.7 reveal that the residuals exhibit no autocorrelation in 

all lags for Frw/Euro as well as Frw/GBP but exhibit low autocorrelation in Frw/Ksh 

for only first lag and for Frw/USD up to 4
th

 lag. Since the standardized residuals 

exhibit insignificant autocorrelation. 

 

Table5.6: Summary statistics of squared standardized residuals 

Tests Statistics  Frw/Ksh Frw/USD Frw/Euro Frw/GBP 

JB 𝝌𝟐(𝟐) 7428.669 5415.314 51183.32 40820.44 

𝒑 − 𝒗𝒂𝒍𝒖𝒆 < 2.2e-16 <2.2e-16 < 2.2e-16 <2.2e-16 

LM 𝝌𝟐(𝟏𝟐) 16.8744 31.5687 2.2033 3.8016 

𝒑 − 𝒗𝒂𝒍𝒖𝒆 0.1544 0.001612 0.999 0.9868 

 

The summary statistics of squared residuals presented in Table 5.6 above where JB 

test for normality with 2 degree of freedom rejects the null hypothesis to mean that 

the standardized residuals are not normally distributed. LM test for ARCH effects 

rejects null hypothesis at lag 12 for Frw/Ksh as well as for Frw/USD and accepts null 

hypothesis for Frw/Euro and for Frw/GBP. This indicates that up to lag 12 

standardized residuals series of Frw/Ksh and that of Frw/USD exhibit ARCH effects 

whereas standardized residuals series of Frw/Euro and that of Frw/GBP do not 

present ARCH effects at lag12. Since there is evidence that standardized residuals are 

not normally distributed and therefore EVT is needed to estimate tails of the 

exchange rates distributions data. 
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5.3.1 Threshold selection techniques 

1) Quantile-Quantile Plots 

The QQ-plots known as Quantile-Quantile plots are needed for two reasons, first, it 

completes the results obtained using JB test for normality. This means that JB test 

showed that the squared residuals are not normal while QQ-plots in Figure5.8 below 

revealed that standardized residuals are fat tailed. This is the reason of using Extreme 

value theory to estimate the tails of innovations. Secondly, QQ-plots may also be 

applied to check if the data points satisfy the generalized Pareto Distribution. 

Picklands (1975) and Balkema & de Haan (1974) showed that if the empirical plots 

seem to follow a reasonably straight line with a positive gradient above a certain 

threshold, therefore these indicate that the exchange rates data follows a Generalized 

Pareto Distribution with scale and shape parameters. It is possible to choose the 

threshold where an approximation by the GPD is reasonable by detecting an area with 

a linear shape on the plot. 
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    5.8.a) Frw/Ksh                                                   5.8.b) Frw/USD 

   

    5.8.c) Frw/Euro                                                5.8.d) Frw/GBP 

 

 

Figure5.8: Quantile-Quantile plots of residuals against the normal distribution 

As it can be seen in plots from Figure 5.8, Quantile-Quantile plots of residuals against 

normal distribution confirm that the standardized residuals for all currencies have a 
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fat tail since each plot curve down the left and up the right (concave curve). Hence 

the assumption of conditional normality is unrealistic. 

2) Mean Residual Life Plot 

   The Mean Residual Life Plot (Mean Excess plot) is one of the most common used 

graphical methods. The reasons behind is that the distribution of exceedances over the 

threshold 𝜏 is a Generalized Pareto Distribution (GPD) of excedances over any 

threshold 𝜏1 > 𝜏. 
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    5.9.a) Frw/Ksh                       5.9.b) Frw/USD 

 

5.9.c) Frw/Euro 5.9.d) Frw/GBP 

 

Figure5.9: Mean excess function against threshold 

It is observed that mean excess plots in Figure 5.9 shows an upward trend for each 

currency, which indicates heavy tail behavior. Particularly, since the plot seems to 

follow a straight line with positive gradient above a certain value of threshold, this is 

evidence that our data follow a GPD with a positive shape parameter in the tail area 

above a certain threshold.   
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Figure5.10: Shapes against exceedances plots 

The shapes against exceedances plots from Figure5.10 above are helpful in threshold 

selection, where threshold is chosen where the line seems to be horizontal. We also 

pay attention on the number of observations which require appearing above threshold. 

Since if low threshold is chosen the number of observations (exceedances) increase 
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chosen, the estimates based on few largest observations are highly sensitive with 

large variability.  

5.3.2 Estimated parameters of Generalized Pareto Distribution 

After identifying the threshold for each currency, the observations in excess of the 

thresholds are used to determine the Generalized Pareto Distribution parameters 

which are shape and scale parameters. The statistic results of the estimated 

parameters of Generalized Pareto Distribution are presented in Table5.7 below; 

Table5.7: Generalized Pareto Distribution parameter estimates 

Frw/ Threshold(𝝉) 𝜻  𝝍  𝑁𝜏  

Ksh 0.815 0.307503 0.6205089 249 

USD 0.975 0.2108428  0.6324132 286 

Euro 1.31 0.01203404 0.62319310 225 

GBP 1.36 0.0335017  0.6004739 212 

 

𝜁  represents the shape parameter which determines the type of the distribution, it is 

positive for all currencies. This indicates that the distributions of selected currencies 

belong to maximum domain of attraction of Frechet distribution which is heavy 

tailed. 𝜓  represents the scale parameter of underlying distribution. 

 

5.3.3 Extreme Quantiles Estimates 

Using the shape and scale parameter estimates obtained above, we can obtain the 

quantiles at extreme probability values for independent and identically distributed 

standardized residuals. Let 𝑒 𝜑  be the quantiles estimate of innovations at 
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probability 𝜑. Typically, the probability 𝜑 is such that 0.95 ≤ 𝜑 < 1. Recall that the 

quantile estimate is defined in (4.30) as follows. 

𝑒 𝜑 (𝜏) = 𝜏 +
𝜓 𝜏

𝜁 
  

𝑁(1−𝜑)

𝑁𝜏
 

−𝜁 

− 1                                                                           (5.2) 

Where 𝜁 and 𝜓 𝜏  are the estimates of 𝜁 𝑎𝑛𝑑 𝜓(𝜏) shape and scale parameter 

respectively. 𝑁 represents number of observations and 𝑁𝜏  represents number of 

observations over threshold 𝜏. In this work we choose 𝜑 = 0.95,0.99 and 0.995 the 

results are presented in table 5.8 below 

Table5.8: summary statistics of extreme quantiles estimates 

Frw/ 𝒆 𝟎.𝟗𝟓 𝒆 𝟎.𝟗𝟗 𝒆 𝟎.𝟗𝟗𝟓 𝑼𝑬𝑺 
𝟎.𝟗𝟓 𝑼𝑬𝑺 

𝟎.𝟗𝟗 𝑼𝑬𝑺 
𝟎.𝟗𝟗𝟓 

Ksh 1.217101 2.766735 3.709776 3.0155 5.253249 6.615046 

USD 1.473689 2.887003 3.65989 2.929295 4.72021 5.699593 

Euro 1.614201 2.601706 3.021144 2.199196 3.174958 3.589409 

GBP 1.620108 2.627472 3.078336 2.33135 3.373632 3.840125 

 

 

5.4 Conditional VaR and Conditional ES Estimates 

The extreme quantiles presented in Table 5.8 are unconditional. To obtain conditional 

quantile 𝑒𝜑
𝑡  we combine conditional volatility estimate with the estimated 

unconditional quantile. Thus conditional quantile 𝑒𝜑
𝑡 , assuming the mean is 

negligible, is given as 
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𝑒𝜑
𝑡  = 𝜍 𝑡𝑒 𝜑 , 𝑡 = 1,2, . . . ,2759                                                                                  

Using the results obtained in Table 5.8 we can apply the following formula (Eq.5.3) 

to obtain conditional VaR estimate at 𝜑 =  0.995. 

𝐶𝑉𝑎𝑅 
𝜑 
𝑡 = 𝜍 𝑡  𝜏 +

𝜓 𝜏

𝜁 
  

𝑁(1−𝜑)

𝑁𝜏
 

−𝜁 

− 1                                                               (5.3) 

The results of conditional Value at Risk estimates are presented graphically in 

Figure5.11 below. 
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5.11.a) Frw/Ksh 

 

 

5.11.b) Frw/USD 

 

5.11.c) Frw/Euro 

 

5.11.d) Frw/GBP 

 

Figure5.11: Exchange Rate Returns with Conditional Value at Risk 
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The plots in Figure 5.11 show the conditional Value at Risk estimated at probability 

level 𝜑 = 0.995. The plots in black colour give the extreme quantiles on the daily 

returns in blue colour. The plots look reasonable compare to the formulae used. 

Quantiles estimates indicate the scale of losses that could be received if the threshold 

were to be exceeded. These are referred to as conditional Value at Risk which risk 

managers have to monitor regularly. If they fall above a certain level the management 

should be able to advice the institution accordingly.  

As it is described some limitations of VaR in previous chapters, we need to plot  

conditional  Expected Shortfall estimate to overcome these shortcomings of VaR. 

Estimation of conditional Expected Shortfall, under extreme conditions, requires 

estimation of volatility 𝜍𝑡  and using appropriate extreme value distribution to get 

quantiles. The plots in Figure 5.12 below show the conditional Expected Shortfall 

estimated at probability level 𝜑 = 0.995. Recall the equation of estimated conditional 

is; 

𝐶𝐸𝑆 
𝜑 
𝑡 = 𝜍 𝑡  

𝑉𝑎𝑅 𝜑 

1−𝜉 
+

𝜓 𝜏+𝜉 𝜏

1−𝜉 
                                                                                   (5.4) 

Where 𝑈𝑉𝑎𝑅 
𝜑 is unconditional VaR which can be compared as 𝑒 𝜑≥0.95.The 

Conditional Expected Shortfall estimate is presented in plots below. 
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5.12.a) Frw/Ksh 

 

5.12.b) Frw/USD 

 

5.12.c) Frw/Euro 

 

5.12.d) Frw/GBP 

 

Figure5.52: Exchange Rate Returns with Conditional Expected Shortfall 
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From Figure 5.12, the plots in black color give the Expected Shortfall on the daily 

returns (orange). When you compare Plots in Figure 5.12 of Expected Shortfall and 

that in Figure5.11 of VaR it is clear that Expected Shortfall contains some 

information beyond VaR. The CVaR and CES values change dynamically to reflect 

exchange rate markets conditions in periods of extreme changes and when these 

values increase the exchange rate markets makers should be careful. 
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CHAPTER SIX 

 CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions  

In this work, the estimate extreme risk in Rwanda exchange rate series using 

conditional Value at Risk and conditional Expected Shortfall estimates has been 

given. These estimates are obtained by combining GARCH model in the estimation 

of volatility and concepts from Extreme Value Theory. Quasi-Maximum likelihood 

procedure is used to estimate parameters in GARCH. The estimators are found to be 

consistent and asymptotically normal. The exploratory analysis showed that exchange 

rates data are not normally distributed and exhibit leptokurtosis. The distributions of 

the returns in Frw/Ksh and in Frw/USD exhibit negative skewness this implies that 

investors can have frequent small gain and few extreme losses. The returns series of 

Frw/Euro and that of Frw/GBP have positive skewness coefficients this implies that 

depreciations in the exchange rates occur slightly more often than appreciation. This 

indicates that investors can have frequent small negative outcomes and few extreme 

gains. Lagrange Multiplier test showed presence of ARCH effects in both returns 

series and residuals.  

Generalized Pareto Distribution was fitted to the standardized residuals and then, the 

estimated distribution inverted to obtain extreme quantiles at 99% and at 99.5% 

probability levels. The Maximum Likelihood estimator of parameters was found to be 

consistent and asymptotically normal. The conditional value at risk and conditional 

Expected Shortfall are obtained by combining the two consistent estimators. 
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 A robust risk measure of exchange rate data has been provided. Estimating the 

uncertainty of value at risk and Expected Shortfall is significant since it allows policy 

makers and risk managers to make good decisions about direction of portfolio.  When 

compare these models to other single modeling methods for financial data estimation 

it is clear that dynamic method such as GARCH model with normal distribution 

assumption provides good estimates as well as the extreme value theory with 

independent and identically distribution residuals assumption. However, both tend to 

be violated more often because they do not take into account the leptokurtosis of the 

residuals. Finally, market makers, risk practitioners, traders, investors and risk 

managers should understand well the development of GARCH model and Extreme 

Value Theory approach to estimate conditional value at risk and conditional Expected 

Shortfall which are crucial in decision making. 
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6.2 Recommendations  

Nelson (1991) introduced Exponential Generalized Autoregressive Conditional 

Heteroscedasticity (EGARCH) model, listed three shortcomings with the GARCH 

models; the lack of symmetry in the response of shocks, restrictions imposed to 

GARCH models to ensure that the conditional variance is positive and the difficulty 

in measuring persistence using standard GARCH models. From these drawbacks it is 

recommended that future research should focus on asymmetric models to see whether 

these shortcomings have significance impact to extreme risk estimation. The 

threshold level selection is another challenge, since a low threshold value estimator 

results in biased estimator and setting a too high threshold leads to a reduction of the 

number of extreme observations and hence increased variance. Therefore the 

challenge to find optimal threshold forms part of future problem in this area. 
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