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ABSTRACT

In this thesis, attempt to study the e�ects of extreme observations on one ap-

proximator of �nite population total is made. We are particularly approximating

the �nite population totals using the Lagrange polynomial of �nite population

totals given di�erent �nite populations. The study revealed that both the clas-

sical and the non parametric estimator based on the local linear polynomial give

good outcomes when the auxiliary and the study variables are highly correlated.

It is however realized that in the presence of outliers the local linear polynomial

performs better with respect to design mean square error. However, this approach

relies entirely on the bandwidth selection in order to attain a better precision.

The Lagrange polynomial has been proposed which does not put emphasis on

choice of bandwidth selection. The study developed a Lagrange polynomial and

showed how to obtain the error term. However, the asymptotic properties are also

determined with the use of the Karl Weierstrass theorem. This revealed that, the

linear polynomial is the best approximating polynomial which can converge faster

than other higher degree polynomials with high precision. Finally, the empirical

analysis showed a good outcome which is in conformity with what the theorem

revealed and gave a good projection of the population total for the coming census

in Kenya in 2019.

ix



CHAPTER ONE

1 INTRODUCTION

1.1 Background information

Survey sampling often provides information about a study variable only for sam-

pled elements. However, auxiliary information is often provided for the whole

population. The relationship of the auxiliary information with the study vari-

able across the sample permits inferences about the non-sampled portion of the

population. Thus, the use of auxiliary information at the estimation stage of a

survey increases the accuracy of the estimates parameters studied. One approach

to using this auxiliary information in estimation is to assume a working model

describing the relationship between the study variable of interest and the auxil-

iary variables. Estimators are then derived on the basis of this model. Previous

studies have shown how this can be done to estimate the population total.

However, other literature have also shown the non parametric technique used in

increasing the precision of our outcome in estimating the �nite population totals.

Usually a parametric approach is used to represent the relationship between the

auxiliary variables and the study variable. But in some situations, the paramet-

ric model is not appropriate, and the resulting estimators do not achieve any

e�ciency gain over pure estimators. A natural alternative was �rst proposed by

(KUO, 1988) for the distribution function, that adopts a nonparametric approach,

which does not place any barriers on the relationship between the auxiliary data

and the study variable. Other signi�cant works in this topic are (Chambers, 1986)

and(Martanez et al., 2011).

(Johnson et al., 2008) used the traditional local polynomial regression estima-
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tor for the unknown regression function m(x). They assumed that m(x) is a

smooth function of x and obtained an asymptotically design-unbiased and con-

sistent estimator of the �nite population total. The local polynomial regression

estimator has the nature of the generalized regression estimator, but is based on

a non parametric super population model applicable to a much larger class of

functions. (Breidt, 2005) considered a related nonparametric model-assisted re-

gression estimator, replacing local polynomial smoothing with penalized splines.

(Johnson et al., 2008) extended the local polynomial non parametric regression

estimation to two-stage sampling, in which a probability sample of clusters is se-

lected, and then sub-samples of elements within each selected cluster are obtained.

In this paper, we are concerned with the estimation of the �nite population total

in the presence of one auxiliary variable using the local polynomial regression.

General e�ects of outliers: (Barnett and Moore, 1997) suggested accommodation

and transformation as methods of dealing with outliers in a set of data. They

explored the use of nonparametric methods in accommodation of outlying obser-

vations and further suggested transformations such as the use of square roots or

natural logarithms when data points are non-negative to pull outliers into prox-

imity with the rest of the data. Finally they suggested that deletion of outliers

may be necessary if they are found to be errors that cannot be corrected.

(Welsh and Ronchetti, 1998) investigated the e�ects of outliers on a regression

line.In their work, a high leverage point that does not conform to the linear

relationship between the variables in the question is in�uential and would con-

siderably change p-values from signi�cance tests. (Osborne and Overbay, 2004)

discussed e�ects of both deterministic and random outliers. His work consid-

ered the e�ects of outliers on sample means and variances. He suggested the

use of visual aids, dot plots, scatter plots for identi�cation of outliers before one
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proceeds with the analysis of a given set of data. He further explored a non-

parametric or distribution free approach to detect outliers based on computing

medians.(Cellmer, 2014) investigated e�ects of outliers on mean square curves

and variance. (Webster et al., 2006) outlines the e�ects of outlying observations

on regression analysis.

Outlier Robust Estimation: (Cassel et al., 1976) and (Rao et al., 1980) con-

sidered the generalized regression estimators which feature great robustness to

model misspeci�cation. Aspects of the ratio and local polynomial regression esti-

mators of �nite population total considered in this document have been discussed

by various researchers. (Cochran, 1946) constructed a modi�ed ratio estimator

corrected for bias. (Barnett and Moore, 1997) showed that the ratio estimator

makes use of parametrically speci�ed models and that it is applicable as an es-

timator in a bivariate set of data where the two population characteristics are

highly correlated. (Breidt, 2005) considered estimation of �nite population totals

in the presence of auxiliary information based on the local polynomial regression.

Design-based approaches to dealing with outliers in survey estimation have been

described by (Searls, 1964). (Chambers, 1986) developed model-based outlier ro-

bust techniques for sample surveys.

This research work is using an approximation technique to approximate the �nite

population total called the Lagrange polynomial that doesn't require any selec-

tion of bandwidth as in the case of local polynomial regression estimator. The

Lagrange polynomials are used for polynomial interpolation and extrapolation.

For a given set of distinct points xj and numbers yj, the Lagrange polynomial

of lowest degree that assumes at each point xj the corresponding value yj(ie the

functions coincide at each point).
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1.2 Statement of problem

In the recent years, census has become a serious challenge to the growing economy

and have received a great deal of interest from various stakeholders including aca-

demicians, statisticians and policy makers. There has been considerable amount

of research on estimation of �nite population totals using di�erent approaches in

estimation of �nite population totals; however, no single model has performed well

without gaps. (Kai et al.,2010) proposed the local composite quantile regression

(LCQR) as an alternative to the local polynomial regression (LPR) known to be

better than the existing estimators. (Breidt, 2005) also proposed using penalized

splines instead of local polynomial smoothing.Which simply means, there is still

room for improvement in this area. Prior to any survey taking place, the survey

administrator needs to identify the target population to who questions would be

asked (Fraenkel J.and Wallen, N.E., 2006). In order to do this, the survey admin-

istrator must take into account every one who could possibly be represented by

the survey; and must not include anyone who could not be a�ected by the survey

(Foddy, 1993). After the target population has been identi�ed, the mode of data

collection is considered (Briggs, 1986); (Lavrakas, 1993) and (Shuy, 2002). This

largely depends upon �nancial resources, human resources, time frame, accessi-

bility, and other issues that can act as catalysts or deterrents to collecting survey

responses (Arleck and Settle, 2004); (Fowler, 2002); (Singleton,R and Straits,

B. C., 2002). In view of these problems, it is very di�cult to have data that can

correlate with another data collected from a survey to satisfy the conditions of

the ratio estimator and if the sample size collected is very small, that will also

have an impact in obtaining a smooth curve along the knots, since the presence

of outliers may be limited. That is why, this study has proposed the Lagrange

polynomial approximator.
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1.3 General objective

The main objective of the study is to approximate �nite population totals using

Lagrange polynomial.

Objectives of the study

1. To develope a Lagrange polynomial to approximate the �nite population total

2. To determine the convergence properties of the Lagrange polynomial approxi-

mate of �nite population totals.

3. To perform an empirical study using the Lagrange polynomial to extrapolate

the population totals at a speci�ed year (2019).

1.4 Signi�cance of the study

Most oftenly, the population structure of the study variable is mostly not known

and stakeholders like government departments and other private sectors are al-

ways interested in knowing the population total in order to help in budgeting

and other macroeconomic engagements. That is why governments spend a lot of

money in census. This issue of spending money on counting the entire population

provoked the thinking of researchers, politicians and academicians on how to min-

imize cost and not compromising accuracy. However, this phenomenon brought

about the various techniques to be used to solve it, but still none is completely ac-

curate. That is why, this study has proposed an approximation technique known

as the Lagrange polynomial to help address this problem.

5



Theoretical results of the study would improve the estimation techniques of the

�nite population total. Given the wide application of other estimators used earlier

on in estimating the �nite population totals, better estimators are still required

to help improve the precision with less cost especially for governments around

the world in conducting censuses and other related surveys that are allocated by

governments and other stakeholders high amount of money. Empirical results of

the study would help inform various users of such data on certain macroeconomic

plans that are e�cient and money saving. This will also help emerging economies

to save money that could have been used to conduct surveys.
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CHAPTER TWO

2 LITERATURE REVIEW

2.1 Estimators of �nite population total

Ratio estimator

(Deville and Sarndal, 1992) in the context of using auxiliary information from

survey data to estimate the population total de�ned U1, U2...UN as the set of

labels for the �nite population. Letting (yi, xi) be the respective values of the

study variable y and the auxiliary variable x attached to ith unit.Of interest is the

estimation of population total Yt =
∑N
i=1 yi e�ectively using the known population

totals Xt =
∑N
i=1 xi at the estimation stage. If we let s1, s2..., sn be the set of

sampled units under a general sampling design p, and let πi = p (i ∈ s) be the

�rst order inclusion probabilities, then the conventional calibration estimator for

total Yt is de�ned by

Ŷ =
∑
i∈s

yi
πi
................(2.0)

In 1946, Cochran made an important contribution to the modern sampling theory

by suggesting methods of using the auxiliary information for the purpose of esti-

mation in order to increase the precision of the estimates (Cochran and Goulden,

1940). He developed the ratio estimator to estimate the population mean or the

total of the study variable y. The ratio estimator of population Ȳ is of the form

ȳr =
ȳ

x̄
X̄; x̄ 6= 0...............(2.1)

The aim of this method is to use the ratio of sample means of two characters which

would be almost stable under sampling �uctuations and, thus, would provide a

better estimate of the true value. It has been well-known fact that ȳr is most

e�cient than the sample mean estimator ȳ, where no auxiliary information is
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used, if ρyx, the coe�cient of correlation between y and x is greater than half the

ratio of coe�cient of variation of x to that of y, that is, if

ρyx >
1

2
(
Cx
Cy

)........(2.2)

Thus, if the information on an auxiliary variable is either already available or

can be obtained at no extra cost and it has a high positive correlation with the

main character, one would certainly prefer ratio estimator to develop more and

more superior techniques to reduce bias and also to obtain unbiased estimators

with greater precision by modifying either the sampling schemes or the estima-

tion procedures or both. (Cochran, 1946) further extended the work of (Madow

and Madow, 1944) on systematic sampling. (Searls, 1964) also dealt with the

problem of estimation using some a priori-information. Contrary to the situation

of ratio estimator, if variables y and x are negatively correlated then the product

estimator of population mean Ȳ is of the form

ȳq =
ȳ

X̄
x̄..............(2.3)

;

X̄ 6= 0..............(2.4)

This was proposed by (Robson, 1957). It has been observed that the product

estimator gives higher precision than the sample mean estimator ȳ under the

condition that is if

ρyx < −
1

2
(
Cx
Cy

).....(2.5)

The expressions for bias and mean square errors of ȳr and ȳq have been de-

rived by (Cochran and Goulden, 1940), which are also available in the books by

(Sukhatme, 1984).

(Hansen et al., 1953) made use of known value of X̄ for de�ning the di�erence

estimator

ȳd = ȳ + β(X̄ − x̄).......(2.6)
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where β is a constant. The best choice of β which minimizes the variance of the

estimator is seen to be

β =
Syx
S2
x

........(2.7)

which is the population regression coe�cient of y on x. Since, β is generally

unknown in practice, therefore, it is estimated by sample regression coe�cient

b =
syx
s2x
.........(2.8)

Using sample regression coe�cient (i.e. b),(Watson, 1964) de�ned simple linear

regression estimator as

ȳ1r = ȳ + b(X̄ − x̄)........(2.9)

This estimator is biased, the bias being negligible for large samples.

The most common way of de�ning a more e�cient class of estimators than usual

ratio (product) and sample mean estimator is to include one or more unknown

parameters in the estimators whose optimum choice is made by minimizing the

corresponding mean square error or variance. Sometimes, such modi�cations or

generalizations are made by mixing two or more estimators with unknown weights

whose optimum values are then determined which generally depend upon popula-

tion parameters. In order to propose e�cient classes of estimators, (Singh et al.,

1994) suggested a one-parameter family of factor-type (F-T) ratio estimators de-

�ned as

ȳf = ȳ[
(A+ C)X̄ + fBx̄

(A+ fB)X̄ + Cx̄
]........(2.10)

where A=(d-1)(d-2), B=(d-1)(d-4), C=(d-2)(d-3)(d-4), d ≥ 0, f = n
N
. In some

situations of practical importance, the information on more than one auxiliary

character correlated with the study variable is available. To cope with such

situations, (Olkin, 1958) proposed a weighted multivariate ratio estimator. (Sri-

vastava, 1983) extended his work for positive correlation in the population while
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(Rao and Mudholkar, 1967), (Singh, 1967) and (Ray and Sahai, 1980) proposed

similar estimators using multi-auxiliary characters for negative correlation in the

population. For positive correlation in the population,(Sukhatme, 1962) devel-

oped multivariate ratio-type estimators.

Another way of using multi-auxiliary information in double sampling is chain-

ing of estimators. If the population mean of the main auxiliary variable is un-

known, it may be estimated more e�ciently with the help of another auxiliary

variable whose population mean is known, using ratio, product or regression

type estimators as the case may be. The process was termed as 'chaining' by

(Lu and Yan, 2014) who used ratio estimator in the �rst-phase sample to esti-

mate the population mean of the main auxiliary variable. Later on (Ray and

Sahai, 1980), (Mukerjee et al., 1987) extended his work and proposed ratio-in-

regression and regression-in-regression chain type estimators. Further, (Singh

et al., 1994),(Swain et al., 2013), (Singh and Espejo, 2000), (Singh and Vish-

wakarma, 2008), (Dash and Mishra, 2011), (Choudhury and Singh, 2012), (Khan

et al., 2014) and (Solanki et al., 2014) among others proposed various chain type

estimators of population mean of study variable. Successive (rotation) sampling

resembles two-phase sampling, hence, there is a greater scope to consider the

chain-type estimators in successive sampling over di�erent occasions.

Local polynomial regression estimator

Parametric regression �nds the set of parameter estimates that �t the data best

for a predetermined family of functions.In many cases, this method yields easily

interpretable models that do a good job of explaining the variation in the data.

However, the chosen family of functions can be overly-restrictive for some types

of data. (Fan and Gijbels, 1996) present examples in which even a 4th-order poly-

nomial fails to give visually satisfying �ts. Higher order �ts may be attempted,
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but this leads to numerical instability. An alternative method is desired.

One early method for overcoming these problems was the (Nadaraya, 1964) and

(Watson, 1964). To �nd an estimate for some function, m(x), we take a simple

weighted average, where the weighting function is typically a symmetric proba-

bility density and is referred to as a Kernel function. (Gasser and Muller, 1984)

proposed a similar estimator. Given n observations, (Xi,Yi)

m̂(x) =
n∑
i=1

Yi

∫ si

si−1

K(u− x)du..........(2.11)

where si = (Xi + Xi+1)/2, s0 = −∞ and sn+1 = ∞. This estimator is able to

pick up local features of the data because only points within a neighborhood of

x are given positive weight by K. However, the �t is constant over each interval,

(si,si+1), and a constant approximation may be insu�cient to accurately repre-

sent the data. A more dynamic modeling framework is desired.

The concept of nonparametric models within a model assisted framework was

�rst introduced by (Johnson et al., 2008) in estimating population parameters

like population total and mean. The estimator was based on local polynomial

smoothing. For a population of size N and where values for y are fully observed,

they proposed the following estimator for population total of the variable y.

Ŷgen =
∑
i∈s(

yi−µ̂(xi)
πi

) +
∑N
j=1 µ̂(xj).........(2.12)

Where j=1,2,...,N and i=1,2,...,n. µ̂(xi) were obtained using local polynomial,

a kernel nonparametric method. πi is the inclusion probability into the sample.

µ̂(xi) is a smooth function of a single variable x. The �rst term in (2.12) is an

adjustment for bias while the second is an estimator of population total. The

estimator could also be written as

Ŷgen =
∑
i∈s

yi
πi

+ (
∑N
j=1 µ̂(xj)−

∑
i∈s

µ̂(xi)
πi

).......(2.13)

The �rst term in (1.13) is a design estimator while the second is model compo-

nent. Therefore, when the sample comprises of the whole population, the model

11



component reduces to zero since πi = 1 and s = N . We therefore have the actual

population total. (Wu and Sitter, 2001) proposed more complex models and gen-

eralized the calibration procedure by means of model calibration. In particular,

they considered generalized linear models and nonlinear parametric regression

models for the super population model ξ, such that Eξ(yi) = µ(xi) where µ(xi)

is a known function of xi. They proposed model calibration estimator for popu-

lation total Yt to be Ỹ =
∑
i∈s

yi
πi
.

In local polynomial regression, a lower-order weighted least squares (WLS) re-

gression is �t at each point of interest, x using data from some neighborhood

around x. Following the notation from (Fan and Gijbels, 1996), let the (Xi,Yi)

be ordered pairs such that

Yi = m(Xi) + σ(Xi)εi, ...........(2.14)

where ε N(0, 1), σ2(Xi) is the variance of Yi at the point Xi, and Xi comes from

some distribution, f . In some cases, homoskedastic variance is assumed, so we

let σ2(X) = σ2. It is typically of interest to estimate m(x). Using Taylor's

expansion:

m(x) ≈ m(x0) +m′(x0)(x− x0) + ....+
mn(x0)

n!
(x− x0)n........(2.15)

We can estimate these terms using weighted least squares by solving the following

for β:
n∑
i=1

[Yi −
q∑
j=0

βj(Xi − x0)j]2Kh(Xi − x0)........(2.16)

In (1.16 ), h controls the size of the neighborhood around x0, and Kh(.)

controls the weights, where Kh(.) ≡
K( .

h
)

h
, and K is a kernel function. De-

note the solution to (2.16) as β̂. Then estimated mv(x0) = v!β̂v. It is often

simpler to write the weighted least squares problem in matrix form. Therefore,

denote X as the design matrix centered at x0:

12



X=



1 x1 − x0 . . (x1 − x0)p

. . . . .

. . . . .

. . . . .

1 xn − x0. .. . (xn − x0)p


..............................(2.17)

Let W be a diagonal matrix of weights such that

Wjj = Kh(Xi − x0)

Then the minimization problem

argminβ(y −Xβ)TW (y −Xβ)........(2.18)

is equivalent to (2.16), and β̂ = (XTWX)−1XTWy (Fan and Gijbels, 1996). We

can also use this representation to express the conditional mean and variance of β̂:

E(β̂|X) = β + (XTWX)−1XTWs............(2.19)

var( ˆβ|X) = (XTWX)−1(XTΣX)(XTWX)−1.............(2.20)

where s = (m(X1),.....,m(X2)) − Xβ and σ = diag[K2
h(Xi − x0)σ2(Xi)]. There

are critical parameters whose choice can have an e�ect on quality of the �t.

These are the bandwidth, h, the order of the local polynomial being �t, p, and

the kernel or weight function, K (often denoted Kh to emphasize its dependence

on the bandwidth). While we focus mainly on estimation of m(x), many of

these results can be used for estimating the rth derivative of m(x) with slight

modi�cation.
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Horvitz-Thompson(HT) Estimator

This method of estimating the �nite population totals doesn't make use of the

auxiliary information xi but instead uses only the study variable yi to obtain the

population totals.

Consider the population of size N with units y1, y2, y3, ......yN . Suppose we want

to select sample s of size ns, de�ne an indicator variable:

Ii =


1 if i ∈ s

0 otherwise

Let πi be the probability of including i
th unit of the population in sample s. This

is called the inclusion probability or �rst order inclusion probability of ith unit in

the sample.

Let πij be the probability of including ith and jth units in the sample. This is

called the joint inclusion probability or second order inclusion probability. The

�rst order inclusion probabilities satisfy

N∑
i=1

πi = n...............(2.21)

where n is the sample size. If the sampling design is a �xed-size sampling design

such that

V (n) = 0..................(2.22)

N∑
i=1

πij = nπj..................(2.23)

Given the sample index set s, de�ne the following indicator function
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Ii =


1 if i ∈ s

0 otherwise

In this case, Ii is a random variable with E(Ii) = πi and E(IiIj) = πij. Further-

more, by the de�nition of sample size n,

N∑
i=1

Ii = n...................(2.24)

Thus, taking expectations of both sides of (2.24), we can get (2.21). Also, multi-

plying both sides of (2.24) by πj and taking expectations again, we get (2.23)

When the sample is obtained from a probability sampling design, an unbiased

estimator for the total Y =
∑N
i=1 yi is given by

ŶHT =
N∑
i=1

yi
πi

=
N∑
i=1

yiπ
−1
i ......................(2.25)

This often called Horvitz- Thompson (HT) estimator, which is originally discussed

by (Horvitz and Thompson,1952). This method doesn't make use of the auxiliary

information xi but instead uses only the study variable yi to obtain the population

total.

The Horvitz -Thompson estimator, given by (2.25), satis�es the following prop-

erties:

E(Ŷ ) = Y where πi is the inclusion probability. Next, we observe that

E[ŶHT ]E[
N∑
i=1

yi
πi

] = E[
N∑
i=1

[
Iiyi
πi

]].......(2.26)
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N∑
i=1

{yi
πi
E[Ii]}.................(2.27)

N∑
i=1

yi
πi
πi =

N∑
i=1

yi = Total = Y..............(2.28)

ie

E[ŶHT ] =
N∑
i=1

yi = T = Y......................(2.29)

ŶHT is unbiased of T

ie ŶHT is unbiased under design based approach (SainiandKumar, 2016)

Variance

V (ŶHT ) =
N∑
i=1

N∑
j=1

(πij − πiπj)
yiyj
πiπj

....................(2.30)

Similarly, we have

V (ŶHT ) =
N∑
i=1

N∑
j=1

yi
πi

yj
πj

(πij − πiπj)............................(2.31)

The variance of this estimator can be minimized when πi ∝ yi. That is, if the

�rst order inclusion probability is proportional to yi, the resulting HT estimator

under this sampling design will have zero variance. However, in practice, we can't

construct such design because we don't know the value of yi in the design stage.

If there is a good auxiliary variable xi which is believed to be closely related with
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yi, then a sampling design with πi ∝ xi can lead to very e�cient sampling design.

2.2 Asymptotic properties

Statisticians in �elds such as demography sometimes insist on benchmarking over

lots of variables to match the known totals from a census at the risk of worsening

the e�ciency of the estimations. On the other hand, if complete auxiliary infor-

mation x1, x2, ...xN is known which is usually the case in most survey problems, a

very compelling question to ask would be; What is the best calibration equation

to be used in the construction of the calibration estimator?

By noting that it is the relationship between y and x hopefully captured by the

working model that determines how well the auxiliary information should be used.

Research in the theory of sampling for surveys has been concerned with the devel-

opment of more e�cient sampling systems, the system including both the sample

design and the method of estimation. One sampling system is said to be more

e�cient than the other if the variance or mean square error of the estimate with

the �rst system is less than that of the second, provided the cost of obtaining the

data and results is the same for both. The development of strati�ed, multi-stage,

multiphase, cluster, systematic, and other sample designs beyond simple or unre-

stricted random sampling, as well as alternative methods of estimation, have all

resulted in increased e�ciency in speci�c circumstances. As indicated above, the

appropriate use of variable probabilities for the selection of the sample elements

can lead to gains in e�ciency over systems using equal probabilities of selection.

It is well know that if samples of size one are with probabilities proportionate to

the exact measure of the characteristic under observation, unbiased estimates of

means or totals for the population exist which have zero sampling error (Horvitz

and Thompson,1952).
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One of the most useful and well-known classes of functions mapping the set of

real numbers into itself is algebraic polynomials, the set of functions of the form

Pn(x) = anx
n + an−1x

n−1 + ......+ a1x+ a0...................(2.32)

where n is a non negative integer and a0......an are real constants. One reason

for their importance is that they uniformly approximate continuous functions.

By this we mean that given any function, de�ned and continuous on a closed

and bounded interval, there exists a polynomial that is as - close - to the given

function as desired (Burden and Faires, 2001)

Ratio estimator

The literature on survey sampling describes a great variety of techniques of using

auxiliary information to obtained more e�cient estimators. Ratio, product, and

regression methods of estimation are good examples in this context . In the sit-

uation where the relation between the study variate Y and the auxiliary variate

X is a straight line and passing through the origin, the usual ratio and product

estimators have e�ciencies equal to the usual regression estimator. But in many

practical situations the line does not pass through the origin, and in such cir-

cumstances the usual ratio and product estimators do not perform equally well

as the regression estimator. Keeping this fact in view, a large number of authors

have paid their attention toward the formulation of modi�ed ratio and product

estimators using information on an auxiliary variate, for instance, see (Solanki

et al., 2014) and (Singh et al., 2016).

Suppose n is large and MSE(R̂) = V ar(R̂). We assume that x̄ and X̄ are quite

close such that

R̂−R =
ȳ −Rx̄
x̄

=
ȳ −Rx̄
X̄

.............(2.33)
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so that the bias of R̂ becomes quite small.

Local polynomial regression estimator

(Montanari and Ranalli, 2003) proposed to use nonparametric method to ob-

tain µ(.).We note that any nonparametric method such as kernel methods can

be used to recover the �tted values for the non sampled units. Such estimators

are however challenging to employ in cases of multiple covariates and when data

is sparse. Another challenge is how to incorporate categorical covariates. It is

therefore necessary to consider other methods to recover the �tted values such as

splines.

The term spline originally referred to a tool used by draftsmen to draw curves.

According to (Keele, 2008), splines are piecewise regression functions we con-

strain to join at points called knots. In their simplest form,splines are regression

models with a set of dummy variables on the right hand side of the model that

are used to force the regression line to change direction at some point along the

range of auxiliary variable x.A higher degree polynomial yields a smoother µ̂(.)

but worsens the boundary variance (Lairez, 2016)

Like local polynomial regression, the analyst must make several modeling deci-

sions with splines. With splines, one must choose the degree of polynomial for

the piecewise regression functions, the number of knots and the location of knots,

(Breidt, 2005). For some types of splines, the number of knots will control the

amount of smoothing, while for other types of splines, a smoothing parameter

controls the smoothing (Breidt, 2005).

Piecewise polynomials o�er two advantages; First, piecewise polynomial regres-

sion functions ensure that the �rst derivatives are de�ned at knots which guar-

antees that the spline estimate will not have sharp corners. A spline with two
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knots will be linear and globally smooth since there is only one piecewise function.

Increasing the number of knots increases the number of piecewise functions �t to

the data allowing for greater �exibility. If one selects a large enough number of

knots, the spline model will interpolate between the data points, since more knots

shrink the amount of data used for each piecewise function. The number of knots

e�ectively acts as a span parameter for splines. If one uses a small number of

knots, the spline estimate will be overly smooth with little variability but may be

biased. Using a high number of knots implies little bias but increases variability

in the �t and may result in over �tting, (Breidt, 2005) but this can be solved.

The �rst order linearization is widely used in survey practice, but that in general

it is very di�cult to evaluate the quality of approximation analytically. Therefore,

simulations are presented that show reasonable results (Al-Jararha and Bataineh,

2014).

The basic idea of a population decomposition is the expression of the yi in terms

of a sum of several components, usually a linear or quadratic function of xi plus

a residual term (Deng and Chhikara, 1990). Given a �nite population (yi,xi),

i=1,2,....,N, we can write the population in terms of a �tted regression line as

follows:

yi = A+Bxi + ei, i = 1, 2, ....N...................(2.34)

where

B =

∑N
i=1(xi − X̄)(yi − Ȳ )∑N

i=1(xi − X̄)2
............(2.35)

and

A = Ȳ −BX̄......................(2.36)
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It is easy to see that the residual ei satis�es the following

N∑
i=1

ei = 0.
N∑
i=1

eixi = 0.................(2.37)

(Fan and Gijbels, 1992) established some asymptotic properties for the estimator

described in (2.38). In particular, they gave an expression for the conditional

variance of the estimator m̂(x) found by minimizing:

n∑
j=1

(Yn − β0 − β1(x−Xj))
2ω(Xj)K(

x−Xj

hn
ω(Xj))...(2.38)

This model is slightly more complex than (2.15), as it allows for a variable band-

width control by ω(Xj). Note that the linear (q=1) case of (2.15) is an equivalent

to (2.38) when ω(Xj) = 1. The conditional bias and variance are important be-

cause they allow us to look at the conditional mean squares errors, which is

important for choosing the bandwidth.

The results from (Fan and Gijbels, 1992) are limited to the case where the X ′is

are univariate. (Ruppert and Wand, 1994) gave results for multivariate data

proposing the following model:

Yi = m(Xi) + σ(Xi)εi, i = 1, ..., n........(2.39)

where m(x) = E(Y |X = x), x ∈ <d, εi are iid with mean 0 and variance 1, and

σ2(x) = var(Y |X = x) < ∞. A solution to the problem comes from slightly

modifying (2.17).

(Kai et al., 2010) proposed an alternative to local polynomial regression(LPR) in

the form of local composite quantile regression(LCQR). While LPR is the best

linear smoother, CQR is not a linear estimator, so it may still be an improve-

ment. Indeed, for many common error distribution, this method appears to be

more e�cient asymptotically than LPR. LCQR can also be applied to derivative

estimation.
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2.3 Comparative empirical studies

Research literature have revealed that the ratio estimator performs better than

the local linear polynomial estimator when the population is linear no matter

which variance is used. The local linear polynomial regression estimator becomes

a better estimator when the population used is either quadratic or exponential.

The relative mean square errors (MSE) increases as the bandwidths increase as

well which shows robustness of the local linear polynomial regression estimator

when the quadratic Kernel is with a smaller bandwidth. This is also true with

an increase in the sample size which increases the likelihood of outliers in the

sample, the non parametric estimator performs better (Cochran, 1946).

22



CHAPTER THREE

3 METHODOLOGY

3.1 Approximation of �nite population totals

In this chapter, an approximator is being introduced, that is the Lagrange poly-

nomial approximate of the �nite population totals.

Lagrange Polynomial

Consider a �nite population U = {U1, U2, ...., UN} of N units. Let (y, x) be the

(total,year) variables taking non negative real values (yi,xi) respectively, on the

unit Ui(i = 1, 2, ....N). From the population U , a simple random sample of size

n is drawn without replacement. Then, the Lagrange interpolating polynomial

is the polynomial p(x) of degree ≤ (n − 1) that passes through the n points

(x1,y1=f(x1)),(x2,y2=f(x2)),....,(xn,yn=f(xn)) and is given by:

p(x) =
∑n
j=1 pj(x), where pj(x) = yj

∏n
k=1

x−xk
xj−xk

written explicitly,

p(x) =
(x− x2)(x− x3)...(x− xn)

(x1 − x2)(x1 − x3)...(x1 − xn)
y1+

(x− x1)(x− x3)...(x− xn)

(x2 − x1)(x2 − x3)...(x2 − x3)...(x2 − xn)
y2+.....

+
(x− x1)(x− x2)...(x− xn−1)

(xn − x1)(xn − x2)...(xn − xn−1)
yn

The problem of determining a polynomial of degree one that passes through the

distinct points (x0, y0) and (x1, y1) is the same as approximating a function f

for which f(x0) = y0 and f(x1) = y1 by means of a �rst-degree polynomial

interpolating, or agreeing with, the values of f at the given points. Using this

polynomial for approximation within the interval given by the endpoints is called

polynomial interpolation. Also, using this polynomial for approximation outside
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the interval given by the endpoints is called polynomial extrapolation. On the

other hand, extrapolation is the process of estimating a value of f(x) that lies

outside the range of the known base points, x1, x2, x3, ..., xn (Burden and Faires,

2001).

De�ne the functions

L0 =
x− x1
x0 − x1

and

L1 =
x− x0
x1 − x0

The linear Lagrange interpolating polynomial through (x0,y0) and (x1,y1) is

p(x) = L0(x)f(x0) + L1(x)f(x1) =
x− x1
x0 − x1

f(x0) +
x− x0
x1 − x0

f(x1)

Note that

L0(x0) = 1, L0(x1) = 0, L1(x0) = 0, and L1(x1) = 1,

which implies that

p(x0) = 1.f(x0) + 0.f(x1) = f(x0) = y0

and

p(x1) = 0.f(x0) + 1.f(x1) = f(x1) = y1

So p is the unique polynomial of degree at most one that passes through (x0, y0) and (x1, y1).
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3.1 Theorem: (Burden and Faires, 2001)

If x0, x1, ...., xn are n + 1 distinct numbers and f is a function whose values are

given at these numbers, then a unique polynomial p(x) of degree at most n exists

with

f(xk) = p(xk), for each k = 0, 1, ....., n,

This polynomial is given by

p(x) = f(x0)Ln,0(x) + .....,+f(xn)Ln,n(x) =
n∑
k=0

f(xk)Ln,k(x).....(3.11)

where, for each k=0,1,.....,n

Ln,k(x) =
(x− x0)(x− x1)(x− x2).....(x− xk−1)(x− xk+1)....(x− xn)

(xk − x0)(xk − x1)(xk − x2).....(xk − xk−1)(xk − xk+1)....(xk − xn)

We will write Ln,k(x) simply as Lk(x).

3.2 Theorem: (Burden and Faires, 2001)

Suppose x0, x1, ..., xn are distinct numbers in the interval [a, b] and f ∈ Cn+1[a, b].

Then, for each x in [a, b], a number ζ(x)(generally unknown) between x0, x1, ...., xn,

and hence in (a, b), exists with

f(x) = p(x) +
fn+1(ζ(x))

(n+ 1)!
(x− x0)(x− x1)....(x− xn).......(3.12)

where p(x) is the interpolating polynomial given in (3.11).

Proof of theorem 3.2: Note �rst that if x = xk, for any k = 0, 1, ...., n, then

f(xk) = p(xk), and choosing ζ(xk) arbitrarily in (a,b) yields (3.12)
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If x 6= xk, for all k = 0, 1, ...., n, de�ne the function g for t in [a, b] by

g(t) = f(t)− p(t)− [f(x)− p(x)]
(t− x0)(t− x1).....(t− xn)

(x− x0)(x− x1).....(x− xn)

g(t) = f(t)− p(t)− [f(x)− p(x)]
n∏
i=0

(xk − xi)
(x− xi)

= [f(x)− p(x)].0 = 0

.

Moreover,

g(x) = f(x)− p(x)− [f(x)− p(x)]
n∏
i=0

(x− xi)
(x− xi)

= f(x)− p(x)− [f(x)− p(x)] = 0

.

Thus g ∈ Cn+1[a, b], and g is zero at the n+ 2 distinct numbers x0, x1, ...., xn. By

generalized Rolle's theorem, there exists a number ζ in (a, b) for which gn+1(ζ) =

0.

So

0 = g(n+1)(ζ) = f (n+1)(ζ)−pn+1(ζ)− [f(x)−p(x)]
dn+1

dtn+1
[
n∏
i=0

(t− xi)
(x− xi)] t−ζ

......(3.13)

However, p(x) is a polynomial of degree at most n, so the (n + 1)st derivative,

p(n+1)(x), is identically zero. Also
∏n
i=0

(t−xi)
(x−xi) is a polynomial of degree (n + 1),

so
n∏
i=1

(t− xi)
(x− xi)

= [
1∏n
i=0

(x− xi)]tn+1 + (lower degree terms in t)

and

dn+1

dtn+1

n∏
i=0

(
t− xi
x− xi

) =
(n+ 1)!∏n
i=0(x− xi)
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. Equation (3.13) now becomes

0 = f (n+1)(ζ)− 0− [f(x)− p(x)]
(n+ 1)!∏n
i=0(x− xi)

and upon solving for f(x), we have

f(x) = p(x) +
(n+1)(ζ)

(n+ 1)!

n∏
i=0

(x− xi)

The Lagrange polynomial of degree n uses information at the distinct numbers

x0, x1, x2, ...., xn and, in place of (x−x0)n, its error formula uses a product of the

n+1 terms (x− x0)(x− x1)....., (x− xn):

f (n+1)(ζ)

(n+ 1)!
(x− x0)(x− x1).....(x− xn)

Convergence properties of polynomial approximations

Let x1, x2, ...., xn be di�erent real numbers and let f1, f2, ....., fn be the corre-

sponding values of a function f . The approximating polynomial is denoted by p.

The whole of the methods for polynomial approximations and interpolations can

be put into 4 groups but only 3 are considered in this study as follows:

1. The method of Lagrange interpolation determines the unique polynomial p of

least degree, which has the values f1, ...., fn at the points x1, ....., xn, i.e., for which

p(xi) = fi, 1 ≤ i ≤ n. We shall see later that, in some tricky cases, Lagrange

interpolation polynomials p based on n interpolation points will not converge to

a continuous target function f as n increases, despite the Weierstrass theorem

which states that, "every bounded sequence has a convergent subsequence". He

further stated that, "if f is continuous on the unit interval, then there exists a
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sequence of polynomials Pn that converges uniformly to f". That is

max
0≤x≤1

|Pn(x)− f(x)| −→ 0 as n −→∞

In many practical applications we wish to approximate the function f by a poly-

nomial Pm of degree m much less than n, the number of data points. In this case

the problem is as follows: �nd the polynomial or polynomials of degree m that

are "closest" to the function values at the given distinct points. The construction

of the required approximating polynomial depends on the selected measure of

distance between given functions and their approximating polynomials. Points 2

and 3 below give the most popular distance measures in polynomial approxima-

tion applications.

2. Let us de�ne the distance between the given function and an mth-degree poly-

nomial Pm by the discrete uniform distance formula

max
1≤i≤n

|fi − Pm(xi)|.........(3.14)

In this case, we choose the polynomial of given degree m for which the quantity

(3.14) has a minimum. Such a polynomial is called a best-approximating poly-

nomial (BAP) of degree m based on the n points x1, ....., xn.

3. In the least squares method we measure the distance between the given func-

tion and polynomial Pm by the value of

[
n∑
i=1

[fi − Pm(xi)]
2]

1
2 ..............(3.15)

and the least squares approximation of the function is de�ned by the polynomial

of degree m for which the value (3.15) has a minimum.

One of the most useful and well-known classes of functions mapping the set of
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real numbers into itself is the algebraic polynomials, the set of functions of the

form

Pn(x) = anx
n + an−1x

n−1 + .....+ a1x+ a0

, where n is a nonnegative integer and a0, ....., an are real constants. One reason

for their importance is that they uniformly approximate continuous functions.

By this we mean that given any function, de�ned and continuous on a closed and

bounded interval, there exists a polynomial that is as "close" to the given function

as desired. This result is expressed precisely in the Weierstrass approximation

Theorem as shown below. The simplest polynomial is a constant, i.e.

P (x) = K = f(0)

3.3 Intermediate Value Theorem for derivatives: (Burden and Faires, 2001)

Let f be di�erentiable on [a, b], and let K be a number between f ′(a) and f ′(b).

Then there is a c ∈ (a, b) such that f ′(c) = K .

Proof of theorem 3.3:

Suppose f ′(a) < f ′(b). Then f ′(a) < K < f ′(b). Let g(x) = f(x) − Kx. Then

g′ = f ′(x)−K. So g′(a) = f ′(a)−K < 0 and g′(b) = f ′(b)−K > 0. Since g is

continuous on a closed interval, it must have a minimum on that interval. Then

minimum cannot be at either endpoint. So the minimum has to be at some point

c ∈ (a, b), so g′(c) = 0. Then f ′(c)−K = 0, so f ′(c) = K

3.4 Rolle's Theorem: (Burden and Faires, 2001)

If f is continuous on the interval [a, b] and di�erentiable on (a, b) and if f(a) =

f(b), then there is a c ∈ (a, b) such that f ′(c) = 0.

Proof of theorem 3.4:

Since f is continuous on [a, b] it must have both a minimum and a minimum on

[a, b]. If both the maximum and the minimum are at the endpoints, then the

function must be constant. Then the derivative would be 0 everywhere. If the

maximum is not at an endpoint, but at an interval point c, then f ′(c) = 0.
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If the minumum is not at an endpoint, but at an interior point c, then f ′(c) = 0.

In every case, f ′(c) = 0 at one point (or more)

3.5 Cauchy Mean Value Theorem (CMVT): (Burden and Faires, 2001)

Let f and g be functions continuous on [a, b] and di�erentable on (a, b). Then

there is a c ∈ (a, b) such that

[f(b)− f(a)]g′(c) = [g(b)− g(a)]f ′(c)

What if g(x) = x?

[f(b)− f(a)]1 = [b− a]f ′(c),

so

f(b)− f(a)

b− a
= f ′(c)

Written in fraction form:

f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)

But we can only write it this way if we know that the denominators are not zero.

Proof of theorem 3.5:

Let h(x) = [f(b) − f(a)]g(x) − [g(b) − g(a)]f(x). This h is continuous on [a, b]

and di�erentiable (a, b)

h(a) = [f(b)− f(a)]g(a)− [g(b)− g(a)]f(a) =f(b)g(a)− g(b)f(a)

h(b) = [f(b)− f(a)]g(b)− [g(b)− g(a)]f(b) =−f(a)g(b) + g(a)f(b)

So h(a) = h(b)

So by Rolle's theorem, there is a c ∈ (a, b) such that h′(c) = 0

h′(x) = [f(b)− f(a)]g′(x)− [g(b)− g(a)]f ′(x)

h′(c) = [f(b)− f(a)]g′(c)− [g(b)− g(a)]f ′(c) = 0

[f(b)− f(a)]g′(c) = [g(b)− g(a)]f ′(c)
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f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)

or

f(b)− f(a)

b− a
= f ′(c)

Here, we assume f is once di�erentiable. The mean value theorem is a special

case of Taylor's theorem. If we assume f to be n + 1 times di�erentiable we get

the Taylor's theorem shown below:

3.6 Taylor's Theorem: (Burden and Faires, 2001)

Suppose f ∈ Cn[a, b], f (n+1) exists on [a,b], and x0 ∈ [a, b]. For every x ∈ [a, b],

there exists a number η(x) between x0 and x with

f(x) = pn(x) = f(x0)+f ′(x0)(x−x0)+
f ′′(x0)

2!
(x−x0)2 + .....+

f (n)(x0)

n!
(x−x0)n

=
n∑
k=0

f (k)(x0)

k!
(x− x0)k

and

Rn(x) =
f (n+1)(η(x))

(n+ 1)!
(x− x0)n+1

.

pn(x) is called the nth Taylor polynomial for f about x0, and Rn(x) is referred to

as the remainder term (or truncation error) related to pn(x). Since the number

η(x) in the truncation error Rn(x) relies on the value of x at which the polynomial

pn(x) is being evaluated, it is a function of the variable x. However, we should

not expect to be able to explicitly determine the function η(x). Taylor's Theorem

simply ensures that such a function exists and that its value lies between x and x0.

In fact, one of the common problems in numerical methods is to try to determine

a realistic bound for the value of f (n+1)(η(x)) when x is in some speci�ed interval.

The in�nite series obtained by obtaining the limit of pn(x) as n tends to in�nity
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is called the Taylor series for f about x0. Where x0 = 0, the Taylor polynomial is

referred to as a Maclaurin polynomial, and the Taylor series is called a Maclaurin

series.

3.7 Polynomial Approximation of Functions:

(1) Within a given neighbourhood of a value

Note that p(x) = K = f(0) is the simplest polynomial. Therefore, p(0) = f(0).

Also, p′(0) = f ′(0) Suppose we have a linear polynomial as

P (x) = f(0) + f ′(0)x.........(3.16)

substituting x = 0 we have

P (0) = f(0)

If we �nd the derivative of (3.16) we have

P ′(x) = 0 + f ′(0)

We do it with a quadratic equation

p(x) = f(0) + f ′(0)x+ f ′′(0)
x2

2
........(3.17)

At x=0 we have

p(0) = f(0) + 0 + 0

If we �nd the derivative of (3.17) and substitute x = 0 we have

p′(x) = 0 + f ′(0) + f ′′(0)x

P ′(0) = 0 + f ′(0) + 0

Similarly, we do it for cubic equation

p(x) = f(x) + f ′(x)x+
f ′′(x)x2

2
+
f ′′′(x)x3

3!
........(3.18)

If we �nd the second derivative of (3.18) and substitute x = 0 we will have

p′′(x) = f ′′(x) + f ′′′(x)x
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P ′′(0) = f ′′(0) + 0 = f ′′(0)

Therefore,

p(x) = f(0) + f ′(0)x+
f ′′(0)x2

2
+
f ′′′(0)x3

3!
+ ...

In general;

p(x) =
∞∑
n=0

f (n)(0)xn

n!

This is called the Maclaurin series which is a special case of the Taylor series.

Suppose we want to approximate f(x) using a polynomial at the point c, we have

p(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 +

f ′′′(c)

3!
(x− c)3 + ...., .........(3.19)

If x = c we have

p(c) = f(c)

, then

p′(c) = f ′(c)

Therefore, �nding the derivative of (3.19) we have

p′(x) = f ′(c) + f ′′(c)(x− c) +
f ′′′(c)

2!
(x− c)2

The advantage of Taylor's polynomial is that it will be a good approximation in

a particular neighbourhood of a value and not in the whole interval. This takes

us to Karl Weierstrass Theorem.

(2)Within the whole interval

3.8 Weierstrass Theorem: (Burden and Faires, 2001)

f : [a, b] −→ < continuous

Then there exists a sequence of polynomials Pn(x) such that ||f − Pn||∞ =

maxx∈[a,b]|f(x)− Pn(x)| −→ 0 as n −→∞

Proof of theorem 3.8:

f : [a, b] = [0, 1] −→ < continuous.
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Pn(x) = Bn(f)(x) =
n∑
k=0

(
n!

k!(n− k)!
)f(

k

n
)xk(1− x)n−k

(Bernstein Polynomial)

||f − Pn||∞ −→ 0 as n −→∞

We are going to consider three functions: f(x) = 1, f(x) = x and f(x) = x2 and

show convergence.

Bn(f)(x) =
n∑
k=0

n!

k!(n− k)!
f(
k

n
)xk(1− k)n−k

f(x) = 1

Bn(f)(x) =
n∑
k=0

n!

k!(n− k)!
xk(1− k)n−k

= (x+ 1− x)n = 1, n ≥ 0

Hence

||f −Bn(f)||∞ = 0

Also,

f(x) = x

Bn(f)(x) =
n∑
k=0

n!

k!(n− k)!

k

n
xk(1− k)n−k

=
n∑
k=1

(n− 1)!

(k − 1)!(n− k)!
xk(1− x)n−k

Let k-1=L

= x
n−1∑
L=0

(n− 1)!

L!(n− 1− L)!
xL(1− x)n−1−L

= x{x+ 1− x}n−1 = x, n ≥ 1
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Hence

||Bn(f)− f ||∞ = 0, n ≥ 1

f(x) = x2

Bn(f)(x) =
n∑
k=0

n!

k!(n− k)!

k2

n2
xk(1− k)n−k

=
n∑
k=1

(n− 1)!

(k − 1)!(n− k)!

k − 1 + 1

n
xk(1− x)n−k

=
n∑
k=2

(n− 1)!

(k − 2)!(n− k)!

1

n
xk(1− x)n−k +

1

n

n∑
k=1

(n− 1)!

(k − 1)!(n− k)!
xk(1− x)n−k

Bn(f)(x) =
(n− 1)

n
x2

n∑
k=2

(n− 2)!

(k − 2)!(n− k)!
xk−2(1− x)n−k +

1

n
x(x+ 1− x)n−1

Bn(f)(x) =
n− 1

n
x2 +

1

n
x

= x2 +
1

n
x(1− x)

|f(x)−Bn(f)(x)| = 1

n
|x(1− x)|, for n ≥ 2

||f −Bn(f)||∞ =
1

4n
−→ 0 as n −→∞

In order to obtain a best approximating polynomial that has less error, one needs

to choose a linear interpolating points that is closest to the target point
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CHAPTER FOUR

4 RESULTS AND DISCUSSIONS

4.1 Results

In this chapter, data from the Kenya National Bureau of Statistics (KNBS) was

obtained from 1969 to 2009 to carryout the empirical analysis. A simple random

sampling technique without replacement (SRSWOR) was used to obtain a sample

size of two as clearly stated by the Karl Weierstrass theorem in order to �t

in polynomials to approximate the function (i.e. the population trend line in

green). However, this investigative approach will reveal the Best Approximating

Polynomial (BAP) that can be used to extrapolate the population total in 2019

census as shown below:

Data Exploration

Figure 1: Kenya population Census data from 1969 to 2009.
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The Kenya population census data since 1969 to 2009 were plotted in Figure

1 above to see the behaviour of the data as soon shown. The plot showed an

upward growth in the population of Kenya.

However, we aimed at selecting a sample size of two from 1969 to 2009 population

census using a technique of simple random sampling without replacement making

a sample total of ten. A pair of linear samples selected were plotted on the same

charts to approximate the function f(x) in green colour as shown below for each.

Figure 2: Polynomials in [1969,1979] and [1969,1989] approximating the function.

This chart was obtained from a set of data ranging from [1969,1979] in yellow to

[1969,1989] in blue shown in Figure 2 above in order to give a better approximate

to the population total in 2019. As can be seen, the two linear plots are not
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showing any better approximate of the function f(x) in green in order to help us

extrapolate the population total in 2019.

Figure 3: Polynomials in [1969,1999] and [1969,2009] approximating the function.

This chart shown in Figure 3 was obtained from a set of data ranging from

[1969,1999] in red to [1969,2009] in blue which was used to approximate the func-

tion f(x) in green so as to help us extrapolate the population total in 2019. This

was clearly seen to have obtained high variation in the approximation. The blue

line appeared to be better than the red at the end point.
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Figure 4: Polynomials in [1979,1989] and [1979,1999] approximating the function.

This chart shown in Figure 4 was obtained from a set of data ranging from

[1979,1989] in green dotted line to [1979,1999] in red as a way to help us approx-

imate better the function f(x) in green. Unfortunately, the two approximating

lines are not suitable to help extrapolate the population total in 2019.
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Figure 5: Polynomials in [1979,2009] and [1989,1999] approximating the function.

The chart in Figure 5 above was obtained from a set of data ranging from

[1979,2009] in black to [1989,1999] in blue to help us approximate the function

f(x) in green representing the trend of the entire population. As seen on the

chart, the black line appeared to perform better at the end point than the blue

but showed some variations.
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Figure 6: Polynomials in [1989,2009] and [1999,2009] approximating the function.

The chart in Figure 6 above was obtained from a set of data ranging from

[1989,2009] in red dotted line to [1999,2009] in black dotted line as an approach

to help us approximate the function f(x) representing the total population trend

per each year. The chart has clearly shown that, the black dotted line depicted

the best approximate on its entire interval which is [1999,2009] as the place for

the Best Approximating Polynomial (BAP) to approximate the function f(x)

uniformly to any degree of accuracy.
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Calculating missing values via interpolation

x[1]=[1999] and y[1]=[28,686,607] x[11]=[2009] and y[11]=[38,610,097]

Columns 1 through 8

28686607 29678956 30671305 31663654 32656003 33648352 34640701 35633050

Columns 9 through 11

36625399 37617748 38610097

y[i] = y[i− 1] + (y[11]− y[i− 1])/h

where i ≥ 2 and h= annual step size

Approximation of population total in 2009

x[11] = [2009] and y[11] = [38, 610, 097] given

x[10] = [2008] and y[10] = [37, 617, 748] approximated

x[9] = [2007] and y[9] = [36, 625, 399] approximated

L9 = (x[11]− x[10])/(x[9]− x[10]) ∗ y[9]

L10 = (x[11]− x[9])/(x[10]− x[9]) ∗ y[10]

Approximated value=L9+L10

Approximated population total=38,610,097

Error=0

Extrapolation of 2019 population total

x[11] = [2009]andy[11] = [38, 610, 097]
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x[10] = [2008]andy[10] = [37, 617, 748]

L19 = (2019− x[11])/(x[10]− x[11]) ∗ y[10]

L20 = (2019− x[10])/(x[11]− x[10]) ∗ y[11]

Approximated value=L19+L20

Approximated population total=48,533,587

4.2 Discussions

Several authors documented criteria that assess the quality of the a model or tech-

nique. These criteria are based on the di�erence between the estimated model

and the presumed known theoretical model. In the present study, the criter-

rion used compares to new observations resulting from the same population as

individuals of the sample, the variability of the errors of predictions are carried

out by a linear polynomial on the other hand these predictions are equal to the

improvement of the quality of approximation by taking into account the degree

of the polynomial. It also informs about the validity limits of the degree of the

approximation polynomial. The empirical analysis demonstrated graphically in

chapter four from �gure one to six showed the approximation of the function (i.e.

the population trend) with a set of two polynomials. The pictorial representa-

tions showed that, �gure six portrayed a more accurate polynomial depicted by

the linear polynomial in black line, formed by 1999 and 2009. However, annual

population totals were obtained from 1999 to 2009. The Lagrange polynomial

was then used to interpolate through 2007,2008 and 2009 with their correspond-

ing population totals as 36,625,399; 37,617,748 and 38,610,097 respectively. The

linear polynomial obtained from 'best �tting' was used to extrapolate the 2019

population total in Kenya as 48,533,587.
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CHAPTER FIVE

5 CONCLUSIONS ANDRECOMMENDATIONS

5.1 Conlusions

In this work, the Lagrange polynomial has proven to be a good technique in ap-

proximating the population total from data obtained from the Kenya National

Bureau of Statistics (KNBS).

The research revealed that, subsequent population totals can better be approxi-

mated using a sample closest to the target population being approximated. There-

fore, the best approximating polynomial must be a linear form in order to obtain

convergence with a diminishing variation in a given interval.

5.2 Recommendations

Since estimation techniques are faced with a trade o� between bias and variance.

Regression models are not exceptions in this problem hence exposed to the e�ect

of bias or variance problem. Thus, the researcher is faced with the choice of

compromising with one in order to minimise the other. However, this research

is recommending the use of quantile regressions instead of the usual regression

techniques to narrow down these problems and avoid the e�ect of ill-conditions

faced in regression analysis, since population is a function of time and considered

to be nonlinear. However, ill-conditions are as a result of weak regression coef-

�cients and this can be removed with the use of QR decomposition in order to

improve the precision of the estimates.
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