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Abstract

The joint task of optimal portfolio selection and bank capital adequacy management is a

real and challenging problem to portfolio managers in the banking industry. In this work, we

investigate the problem of optimal portfolio choice of an ambiguity averse portfolio manager

(AAPM) with an obligation to continuously meet her/his bank’s capital adequacy require-

ments as specified in the BASEL III Banking Agreement. Such a problem deals with the

non-linear stochastic optimal control problem whose solution is determined by means of the

dynamic programming principle applied to corresponding Hamilton-Jacobi-Bellman-Isaacs

(HJBI) equation. The analysis relies heavily on the stochastic modelling requiring a robust

portfolio optimization approach on three categories of a bank’s balance sheet items: assets,

capital and liabilities. We modelled the ambiguity by means of classical dynamic program-

ming principle and the non-linear expectation. We showed that modelling ambiguity via

the classical optimal portfolio and by the Choquet expectation have completely different im-

pacts on portfolio selection and the capital adequacy ratio by comparing the utility losses.

We explored the effects of ambiguity on optimal portfolio choice and capital adequacy and

demonstrated that the ambiguity aversion level decreases the optimal proportions of the

risky assets while the Choquet capacity increases them. We considered the portfolio man-

ager who wishes to maximize the expected utility of terminal wealth where only the price of

the assets are available but the ambiguity parameter in the market is not observable. We

used the Kalman filtering method to convert the partial information given by the observable

portfolio asset and the unobservable uncertainty parameter to a full information problem.

We then obtained the HJB equation of the resulting full information. We concluded that the

conditional Choquet expectation gives the more realistic assumption in the derivation of the

robust portfolio selection and capital adequacy.
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1. Introduction

1.1 Background of the study

Optimal portfolio selection is of fundamental importance in the banking industry for investor’s

maximum utility from terminal wealth. The severity and the global financial crises that have

been essentially remarkable in the global financial market is the catalyst of banking regula-

tions to focus on the choice of an optimal portfolio and the capital adequacy requirements.

In the African financial markets, this problem is further compounded by low-quality data and

political ambiguity. If the data’s quality is low, portfolio choices are based on model param-

eters which are extremely difficult to estimate, creating modelling risk due to ambiguity. But

as Montesano (2008) points out, ambiguity aversion seems important in financial markets,

where agents are deeply concerned over the level of transparency (i.e. the reliability of the

probability distribution of outcomes they refer to).

The Basel committee on Bank supervision was established to strengthen the capital regu-

latory framework. The Basel I contributed to the growth of securitization by assigning lower

capital charges to securitized assets, thereby encouraging banks to move assets into off-

balance sheet vehicles. Basel II reduced the overall demand for bank capital and conse-

quently, its cost, leading to lower average rates for both high and low risk firms ( see Repullo

and Suarez (2004)). The Basel III Accord builds on the Basel I and II documents and seeks

to improve the banking sector’s ability to deal with financial and economic stress, improve

risk management, strengthen the banks transparency (see Muller and Witbooi (2014)) and

increase the amount of money banks hold as capital.

Mathematical modelling on portfolio selection dates back to the seminal work of Markowitz
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(1952). In mean-variance portfolio selection model, the return on a portfolio is measured by

the expected value of the portfolio return, and the associated risk is quantified by the vari-

ance of the portfolio return. This mean-variance model has had a profound impact on the

economic modelling of financial markets and the pricing of assets because despite the ele-

gance of the mean-variance model, the powerful optimization theory supporting this model,

and the availability of efficient software to solve the resulting problem, the mean-variance

optimization has constantly encountered doubts among investment practitioners. One of the

reasons for its being doubted is that optimal portfolios are often sensitive to changes in input

parameters, leading to large turnover ratios with periodic readjustment of input estimates

such as the mean and covariance matrix, especially the mean (see Black and Litterman

(1992)).

The first mathematical framework for this type of banking problem which is close to our inter-

est, addressing the optimal portfolio selection and capital adequacy management problem

by adopting stochastic optimization, Hamilton Jacobi Bellman (HJB) equations, and dynamic

programming principles was first proposed by Mukuddem-Petersen and Petersen (2006). In

a complete market setting, they minimize the capital adequacy risk by solving a nonlinear

stochastic optimal control problem by means of dynamic programming principle with con-

stant interest rate.

Chakroun and Abid (2016) used the Vacisec model as the dynamic of the interest rate by

considering assets for bank account, loans, securities and liabilities as deposits, and bank

capital in a complete market. An explicit risk aggregation and capital expression was pro-

vided regarding the portfolio choice and capital requirements. While control theoretic ap-

proaches can be highly useful in optimal portfolio selection and capital adequacy manage-

ment, they are often constrained by the low quality of real emerging market data. Recently,
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Yi et al. (2015) published a paper on model ambiguity but in the context of insurance invest-

ments and portfolio management. In a separate effort to deal with model ambiguity under

stochastic volatility, the work of Yi et al. (2015) on estimation of volatility memory parameters

adapted del Moral’s filters - a class of genetic algorithm to finance.

Due to the upper expectation, the probabilities are no longer additive. In this work, we ad-

dress this problem by a non linear Choquet expectation described as an expected capacity

in Graf (1980). The aim of this method is to derive a value function approximation (and it’s

iteration) close enough to the true value function while at the same time achieving computa-

tional savings.

With the fact that, only the past price movements of the portfolio assets can be the only

information available in the market. This lead to the optimal portfolio selection under partial

information ( see Sass and Haussmann (2004)) where the expected Choquet capacity is the

unobservable process. To solve the partial information-based on optimal portfolio selection

problem of square integrable observable and non-observable processes we convert them to

a full information problem through the utilization of the Kalman filtering technique described

in Applebaum and Blackwood (2015).

To complement current phenomenological frameworks used to study optimal portfolio se-

lection and capital adequacy management, we examine the optimal choice of an ambiguity

averse portfolio manager who wants to maximize the expected utility from terminal wealth of

her investors while meeting regulators’ capital adequacy requirements. We use modelling,

simulation, stochastic filtering and control-theoretic approaches.
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1.2 Problem Statement

In this work, we consider the optimal portfolio allocation of a portfolio manager who wants

to maximize the utility from terminal wealth of her investors while meeting regulators’ capital

adequacy requirements of her bank. In addition, she is also concerned about ambiguity in

financial market models. We assume that capital allocations in the banking industry and

trading in financial market securities happen in continuous time, without taxes or transaction

costs.

The balance sheet items for the bank behave unpredictably from uncertain economic ac-

tivities related to the evolution of treasuries, loan demand, risky and risk less investments,

deposits, loans payments, borrowing and eligible regulatory capital. In most economic situa-

tions, particularly in the African financial markets, a portfolio manager cannot be confident of

the probability distribution of assets in the market. This can be attributed to model ambiguity

in the sense that accurate calibration of model parameters is very difficult to achieve because

of poor reliability of market data. This motivated us to continue the work of Chakroun and

Abid (2016) in case there is more than one equivalent martingale measure in the market.

1.3 Justification of the study

The capital management in banking industry describes why the capital requirements are

the main object for the portfolio choice. It identifies what a bank should invest on and the

measurements to be taken to deal with the benchmark which depends on the bank capital

and the total asset portfolio.

This work is a fundamental, transformative shift in portfolio choice and capital adequacy
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management, enabling accurate modelling of investor’s behaviour in the context of African

financial market characterized by low quality data. This work evaluates the fundamental

choices and trade-offs of investments in risky assets in emerging African Financial Markets

while ensuring the financial safety and soundness of the banking industry. The effects of

ambiguity in regulatory policies, partial observability of key economic parameters, investor’s

attitude towards uncertainty and political rivalry is evaluated in details. This work covers

fundamental computational issues for this and another modelling, analytical questions in-

cluding the effect of ambiguity aversion on optimal portfolio choice and capital adequacy

requirements, through both simulation and analytical approaches. This work presents a fun-

damental investment choice and decision-making framework needed at this time, as appli-

cations of computational techniques in corporate finance and capital budgeting in emerging

markets surge and policy ambiguity and hidden signals from political leaders are the order

of the day.

1.4 Objectives of the Study

1.4.1 General Objective. To investigate optimal portfolio strategies for investor’s maximum

utility from terminal wealth under strict conditions on bank capital adequacy requirement and

uncertainties in emerging economic policies.

1.4.2 Specific objectives. This work addresses the following specific objectives:

1. to determine the robust portfolio that meet capital adequacy requirements using the

classical approach;

2. to model the ambiguity in optimal portfolio choices by the non linear expectation method
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1.5 Outline of the thesis

This work is subdivided into four chapters, chapter one introduces the study, gives the back-

ground, problem statement, objectives and the justification of the study. Chapter 2 shows

what has been done in the past on Optimal Portfolio choice, chapter 3 is some of the math-

ematical preliminaries on Stochastic Optimal control theory and the methodology used to

achieve the objectives. Chapter 4 is for results and discussions and chapter 5 is the conclu-

sion.
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2. Literature review

In this chapter, we consider the relationship between our study and previous literature. Uti-

lizing more capital increases asset earnings and leads to higher returns on equity. In Muller

and Witbooi (2014), Grant et al. modelled a Basel III compliant commercial bank that oper-

ates in a financial market consisting of a treasury security, a marketable security, and a loan

regarding the stochastic interest rate in the market where the term structure of the interest

rates was affine under the Vasisec and Coss-Ingersol Ross (CIR)dynamics. They came up

with an investment strategy that maximizes an expected utility of the bank’s asset portfolio

at a future date.

In their paper, Mukuddem-Petersen and Petersen (2006) discussed optimal behaviour of

a bank with respect to equity and capital adequacy risk. They have been able to find the

solution of an optimal stochastic control problem that minimizes bank market and capital

adequacy risks by making choices about security allocation and capital requirements, re-

spectively. The dynamics of the lending rate was assumed to follow the geometric Brownian

motion.

Lin and Li (2011) considered an optimal reinsurance-investment problem of an insurer whose

surplus process follows a jump-diffusion model where the insurer transfers part of the risk

due to insurance claims via a proportional reinsurance and invests the surplus in a “simpli-

fied” financial market consisting of a risk-free asset and a risky asset. They obtained explicit

forms for the optimal reinsurance-investment strategy and the corresponding value function.

Witbooi et al. (2011), derived an optimal equity allocation strategy for the bank and monitored

the performance of the Basel II Capital Adequacy Ratio(CAR) under the allocation strategy.

In their methods, they combined the Cox-Ingersoll and Ross interest rate model and the
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Cox-Huang for modelling a bank portfolio consisting of three assets: treasuries, securities

and loans regarding the case of a power utility function.

An application of stochastic optimization theory to asset and capital adequacy management

in banking has also been considered by Mukuddem-Petersen and Petersen (2008) who

computed the dynamics of the capital adequacy ratio (CAR) in a stochastic setting by di-

viding regulatory bank capital (RBC) by risk weighted assets (RWAs). In their study, they

demonstrated how the CAR can be optimized in terms of bank equity allocation and the rate

at which additional debt and equity is raised.

Although these researches have been done, studies have been conducted in incomplete

market but there have not been studies on optimal portfolio on incomplete market and capital

adequacy.

Maenhout (2006) did an analysis of the optimal portfolio problem of an investor who wor-

ries about model misspecification and insists on robust decision rules when facing a mean-

reverting risk premium. They presented a methodology for calculation of detection-error

probabilities based on Fourier inversion of the conditional characteristic functions of the

Radon–Nikodym derivatives and found that the quantitative effect of robustness is more

modest than in independent and identically distribution settings.

Shen et al. (2014) provided a robust optimal hedging strategy in an incomplete market where

the investor aims to minimize a function of hedging error under the worst case scenario by

means of solving a min-max robust optimization problem. They applied this methodology to

the asset and liability management and employed an expected shortfall hedging criterion for

the value function.

In Del Vigna et al. (2011), the review of well-known simple models for portfolio selection
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under ambiguity, and the computation of a number of explicit optimal portfolio rules using

elementary mathematical tools has been done. In the case of a single period financial

market, new results arise for an agent who is risk neutral and smoothly ambiguity averse,

for a loss averse and smoothly ambiguity averse agent, for a Mean-Variance and α-Maxmin

Expected Utility agent.

Yi et al. (2015) studied an ambiguity-averse insurer whose surplus process is approximated

by a Brownian motion with drift, hoping to manage risk by both investing in a Black–Scholes

financial market and transferring some risk to a re-insurer, but worries about uncertainty

in model parameters. She chooses to find investment and reinsurance strategies that are

robust with respect to this uncertainty, and to optimize her decisions in a mean-variance

framework. By the stochastic dynamic programming approach, they derived expressions for

a robust optimal benchmark strategy and its corresponding value function, in the sense of

viscosity solutions.

Gu et al. (2017) formulated an optimal robust reinsurance investment problem. By employing

the dynamic programming approach, they derived the explicit optimal robust reinsurance-

investment strategy and optimal value function. By studying the portfolio allocation sensitivity

to various parameters, among other things, they uncover and analyse complex behaviour

resulting from asymmetry between the mean-reversion rates of the mispriced stocks. Also

the analysis of various utility losses which explain the importance of ambiguity aversion,

surplus-jump, mispricing, and reinsurance in their model has been defined.

The analysis of the stochastic control approach to the dynamic maximization of the robust

utility of consumption and investment defined in terms of logarithmic utility and a dynamically

consistent convex risk measure have been studied by Hernández-Hernández and Schied

(2007). They modelled the underlying market by a diffusion process whose coefficients are
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driven by an external stochastic factor process. The main results gave conditions on the

minimal penalty function of the robust utility functional.

Even though, some researchers have been studying the optimal portfolio and Capital ad-

equacy management in banking industries, none has compared the two methods, that is

portfolio optimization with modelling ambiguity indirectly and portfolio optimization with mod-

elling ambiguity directly by the Choquet capacity where the probabilities are no longer ad-

ditive because of the upper expectation is the reason why we have decided to study the

portfolio optimization and bank capital adequacy with the same concept as Muller and Wit-

booi (2014) in an incomplete market using the two methods.

The theory of capacities was started by Choquet (1954) who studied the non-additive set-

functions, and tried to extract from their totality certain particularly classes, with a view to

establishing for these a theory similar to the classical theory of measurability. Then Man-

gelsdorff and Weber (1994) tested some behavioral implications of the Choquet expected

utility theory ways to assess capacities for ambiguous events.

Furthermore, Zengjing Chen (2013) with the notion of independence for random variables

under upper expectations derived a law of large numbers for non-additive probabilities.

In their work, Kast et al. (2014) characterise ambiguity in the form of Choquet random walks:

discrete-time binomial trees with capacities instead of exact probabilities on their branches,

they described the axiomatic basis of Choquet random walks with dynamic consistency and

the convergence of Choquet random walks to Choquet Brownian motion in continuous time.

This leads to deformation of the standard Brownian motion where both the drift and volatility

are modified.

Chen (2016) investigated three kinds of laws of large numbers for capacities with a new no-
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tion of independently and identically distributed random variables for sub-linear expectations

initiated by Zengjing Chen (2013).
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3. Methodology

3.1 Mathematical preliminaries on stochastic optimal contro the-

ory

Before we start the main objectives of this work, in this chapter we highlight some of the

mathematical tools which are needed. In finance, many systems are dynamic and they

acquire a good control. The optimal control theory is a branch of mathematics used to

control those systems in optimal way (see Gaimon (2002)).

3.1.1 Elementary concepts and definitions.

The optimal control problem considered in our work is commonly known as the maximization

of the expected utility of the terminal wealth. In this section, we define the essential elements

indispensable in the optimal control theory. The general references for these definitions are

Pascucci and Runggaldier (2012) and Björk (2009).

In decision making, there are several situations where agents face two or more choices.

The financial theory of choice uses the concept of a utility function to describe the way the

decision maker (the portfolio manager) makes decisions when faced with a set of options.

A utility function assigns a value to all possible choices faced by the portfolio manager. The

higher the value of a particular choice, the greater the utility derived from that choice. Here,

the utility function is defined as follows, and its output is a real value.

3.1.2 Definition. A utility function is a function of class C1, u : I −→ R which is

i) strictly increasing

ii) concave
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iii) in the case a > ∞, it holds that limv−→a+ u
′(v) = +∞; in the case a = −∞, u is

bounded from above.

where I denotes the real open interval (a,+∞) with a fixed constant a ≤ 0.

Let µ(t, x, ν) and σ(t, x, ν) be given functions such that

µ : R+ × Rm × Rn −→ Rm

σ : R+ × Rm × Rn −→ Rm×k.

For a given x0 ∈ Rm, the controlled Stochastic differential equation is given as

dXt = µ(t,Xt, νt)dt+ σ(t,Xt, νt)dWt

X0 = x0.

Then, the m-dimensional X is called state process and it is what we try to control.

Given a subset U of Rn, ν is the set of all progressively measurable processes

ν = {vt, t < T} valued in U and the elements of ν are called control processes.

W is a k-dimensional Weiner process defined as follows.

3.1.3 Definition. A stochastic process W is called a Weiner process if the following condi-

tions hold.

1. W (0) = 0.

2. The process W has independent increments, i.e. if r < s < t < u then

W (u)−W (t) and W (s)−W (r) are independent stochastic variables.

3. For s < t the stochastic variable W (t)−W (s) has the Gaussian distribution N(0, t−s).

13



4. W has continuous trajectories.

In most cases, there could be constraints on the control process which requires ν to be

adapted to the state process X. Moreover, at time t, the value νt of the control process

depends on the past observed values of the state X. To obtain an adapted control process,

we choose a deterministic function g(t, x) such that g : R+ × Rm −→ Rn and νt = g(t,Xt).

This function is called a feedback control law and ν(t, x) a control law. Then this leads us to

the definition of admissible control law.

3.1.4 Definition. A control law ν is called admissible if

• ν(t, x) ∈ U for all t ∈ R+ and all x ∈ Rn.

• For any given initial point (t, x) the Stochastic Differential Equation

dXs = µ(s,Xs, u(s,Xs))ds+ σ(s,Xs, u(s,Xs))dWs, (3.1)

Xt = x (3.2)

has a unique solution. The class of admissible control laws is denoted by A.

3.1.5 Stochastic optimal control.

Maximization of expected utility

Fixing V0 ∈ R, for a predictable process π we denote by V π the value process of a portfolio.

Having defined the utility function U defined on I, our interest is the classical problem of

portfolio optimization which consists of determining if it exists

max
π

E[U(V π)]
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where the maximum is over the predictable process π such that

V π ∈ I.

The control Problem has been shown to be equivalent to finding the solution to the Hamilton-

Jacobi-Bellman(HJB) equation under the assumptions :

1. There exists an optimal control law ũ

2. The optimal value function V is regular in the sense that V ∈ C2

Under these assumptions the following hold

1. V satisfies the HJB 
∂V (t,x)
∂t + supu∈U{F (t, x, u) +AuV (t, x)}

V (T, x) = Φ(x),∀x ∈ Rn
(3.3)

2. For each (t, x) ∈ [0, π]× Rn the supremum in the HJB is attained by u = ũ(t, x).

3.1.6 Capacities and Choquet Integrals.

By Graf (1980), the capacity is defined as follows

3.1.7 Definition. Let (X,F) be a measurable space, a map C −→ R+ is called a capacity if

the following conditions hold :

1. C(∅) = 0

2. ∀A,B ∈ F : C(A ∪B) 5 C(A) + C(B)

3. ∀A,B ∈ F : A ⊂ B =⇒ C(A) 5 C(B)
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4. For every increasing sequence (An)n∈N in F the equality

C

(
∪n∈N An

)
= lim

n−→∞
C(An) holds.

5. ∀A,B ∈ F : C(A ∩B) + C(A ∪B) 5 C(A) + C(B).

Where 5 is the canonical order relation of all the set of all capacities on F .

Let T ∈ (0,∞) be a horizon time. Given a filtrated probability space (Ω, F, Ft,P) with F = FT

and Ft = σ(Ws : s ≤ t), where (Wt)0≤t≤T is a one-dimensional Brownian motion. Define the

set

Q =

{
Qv :

dQv

dP
= exp

{
− 1

2

∫ T

0
|vs|2ds+

∫ T

0
vsdWS

}
, sup

0≤t≤T
|vs| ≤ k

}

Then we have the that

C(A) = inf
Q∈Q

Q(A),

C(A) = sup
Q∈Q

Q(A)

(3.4)

C(A) and C(A) are capacities

3.2 Banking Industry model

We consider a complete probability space (Ω,F ,P) on a time horizon, T , with filtration,

{Ft}, t ≥ 0,

generated by two independent standard Brownian motions {WS(t),WL(t)}, t ≥ 0 and P is a

probability measure on Ω.

The bank’s balance sheet assets, capital and liabilities satisfy the relation,

total asset = total liabilities + bank capital.
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In particular, at any time t, the bank’s stylized balance sheet is represented as follows:

R(t) + L(t) + S(t) ≡ B(t) +D(t) + C(t), (3.5)

where R(t), L(t) , S(t), B(t), D(t) and C(t) are respectively reserves, loans, securities,

deposits, borrowings and bank capital. Each of these variables is given as a function defined

from Ω× T −→ R+. We further assume equal proportionality between the reserves and the

borrowing plus deposit. Here, equation (3.5) becomes

L(t) + S(t) ≡ C(t), (3.6)

Following the standard practice in the banking industry (see Mukuddem-Petersen and Pe-

tersen (2006)), we put the bank securities into two categories; The first contains the riskless

assets called treasuries issued by national treasuries in most countries as means of borrow-

ing money to meet government expenditure not covered by tax revenues. The second group

contains risky assets called market securities (e.g. loans, equities etc.). The dynamics of

treasury is given as follows :

dS0(t)

S0(t)
= r(t)dt. (3.7)

On the other hand, the dynamic of market security price is given by:

dS(t)

S(t)
= (r(t) + λS)dt+ σSdWS(t) (3.8)

where σS is the security volatility and λS denotes the risk premium. Under the Capital Asset

Pricing Model (CAPM), the risk premium can be quantified by the relation

λS = β[E(Rm) − Rf ], with E(Rm) representing the market expected return, Rf the risk-

free interest rate, and β the sensitivity of the expected excess asset returns to the expected

excess market return. The dynamics of the loans is given as follows:

dL(t)

L(t)
= (r(t) + λL)dt+ σLdWL(t), (3.9)
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where, λL = λrσL + δ, σL the loan volatility, δ the default risk premium and λr the constant

premium of interest rate risk.

Then by equations (3.7)-(3.9), the dynamics of the total asset portfolio is represented by the

following equation

dX(t)

X(t)
= (1− πL(t)− πS(t))

dS0(t)

S0(t)
+ πL(t)

dL(t)

L(t)
+ πS(t)

dS(t)

S(t)
,

= (r(t) + πL(t)λL + πS(t)λS)dt+ πL(t)σLdWL + πS(t)σSdWS (3.10)

X(0) = X0.

where (1− πL(t)− πS(t)), πL(t) and πS(t) are the proportions, invested in treasuries, loans

and market securities respectively.

In the Basel III accord, the regulatory capital can be divided into Tier 1 and Tier 2 capital

(see Eubanks (2010)). Then the bank capital at time t ≥ 0 is given by;

C(t) = CT1(t) + CT2(t).

The Tier 1 capital which describes the capital adequacy of a bank includes equity capital

E(t) and retained earnings. Tiers 2 capital includes subordinated debt SD(t), limited life

preferred stocks, loans losses reserves and good will. Since the nature of retained earnings,

life preferred stocks and loan-loss reserves are not dynamic, we do not consider these as

active constituents of bank capital. Thus, the total bank capital is given as:

C(t) = E(t) + SD(t).

Assuming that the market value of the sum of subordinate debt is given by

SD = SD(0)e
∫ t
0 r(s)ds. (3.11)

In what follows, the bank is assumed to hold capital in n+ 1 categories, one of which is risk

free and corresponds to subordinated debt, and n categories for bank equity when each one
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of them is modelled as follows:

dE(t)

E(t)
= (r(t) + λE(t))dt+ σEdWE(t) (3.12)

where λE represents the market price of risk and σE the equity volatility. Hence, the total

bank-capital dynamics becomes

dC(t)

C(t)
=

n∑
i=1

πi(t)
dE(t)

E(t)
+
(

1−
n∑
i=1

πi(t)
)dSD(t)

SD(t)
− ρX(t)dt

= (r(t) + πtp(t)λE)dt+ πtp(t)σEdWE(t)− ρX(t)dt

where πtp(t) is the transpose vector of the optimal proportions invested in loans and se-

curities. At time t, the bank capital is converted into loans and securities at the rate of

ρX(t) = ρX(t)dt for a constant ρ.

Let Xr(t) denotes the total risk-weighted assets defined by placing each of the on-and-off

balance sheet items into a risk category such that the Capital Adequacy Ratio (CAR) is

defined as,

CAR =
C(t)

Xr(t)
. (3.13)

So, one of the portfolio manager’s problems is to consider the capital constraints such that

CAR ≥ ρ.

In most economic situations, particularly in the African financial markets, a bank manager

cannot be confident of the probability distribution of assets in the market. This can be at-

tributed to model ambiguity in the sense that accurate calibration of model parameters is

very difficult to achieve because of poor reliability of market data. This means that there is

more than one equivalent martingale measure in the market. Let P be a reference prob-

ability measure and Q denote the set of probability measures Q such that Q ∼ P. Then
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the robust strategy has to deal with this by following the approach of an equivalent martin-

gale measure Q to P (see Hernández-Hernández and Schied (2007))to penalize each such

model with a penalty ϕ(Q). Now, for a bank with a strictly initial asset value X(0), and share-

holders enjoying a power utility function U , the bank manager faces an additional problem

of maximizing share-holder’s utility from terminal wealth with model ambiguity. This leads to

a search for robust optimal strategies of the following form;

sup
π(t)∈A

inf
Q∈Q

EQ(π)
t

[
U(XT ) + ϕ(Q(π))

]
(3.14)

where, A is the set of control processes for an ambiguity-neutral regulator in a given market

and EQ
t [·] = EQ[·|Ft] represents the conditional expectation under the probability measure

Q.

Approach and Strategies: In order to tackle the ambiguity, the regulators has to consider

some alternatives to P. Every alternative model is characterized by a stochastic process θ

and the associated probability measure Q , which is equivalent to the reference measure P

(see Gu et al. (2017)). Let us denote this class of probability measures by Q = {Q : Q ∼ P}.

The property of the Radon-Nikodym Theorem (see Chorro (2009)) is used to find the set

of equivalent martingale measures to the reference probability measure. Let (Ω,F ,P) be a

probability space satisfying the usual conditions and Q be another probability measure on

(Ω,F ,Q) under the assumption that Q� P, then there exist a non negative random variable

dQ
dP = Z and we call Z the Radon-Nikodym derivative of Q with respect to P. Then, by the

Cameron-Martin-Girsanov theorem (see Björk (2009)), we consider, an adapted process

θ(t) = (θL(t), θS(t)) such that for every Q ∈ Q, dQdP = Z(t), where

Z(t) = e
∫ t
0 θL(u)dWL(u)+

∫ t
0 θS(u)dWS(u)− 1

2

∫ t
0 (θ2L(u)+θ2S(u))du
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and Z(t) is a positive (WL,WS) martingale under P for 0 ≤ u < t < T .

To ensure the martingale property, we assume that θ(t) satisfies the bounded condition, that

is there exists a constant c > 0, ∀t ∈ [0, T ] such that

‖ θ(t) ‖2< c a.s. (3.15)

Furthermore, by the Girsanov’s theorem, to achieve the model uncertainty we allow the drift

parameters in the incomplete market to be undetermined. This means that we add the drift

term θ(t) to the independent standard Brownian motions (dWL, dWS) under P, and we have

dWQ
L = dWL + θL(t)dt (3.16)

dWQ
S = dWS + θS(t)dt (3.17)

two standard independent Brownian motion under Q ∈ Q.

3.3 Classical Optimal portfolio choice problem

A myriad of attributes has been linked to investors in African financial market. Some are

ambiguity averse due to complex information structures while others can be regarded as

either ambiguity neutral or seeking Epstein and Miao (2003). We want to determine a unique

strategy π∗ from the set of admissible strategies A and a unique measure Q ∈ Q such that

the portfolio manager can maximize the utility from terminal wealth of her ambiguity aversed

investors. From equations (3.16) and (3.17) into (3.10), we can write the dynamics of the

total asset portfolio under the alternative model Q:
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dX(t)

X(t)
= [r(t) + πL(t)(λL − σL(t)θL) + πS(t)(λS − σSθS(t)]dt+ πL(t)σLdW

Q
L + πS(t)σSdW

Q
S

(3.18)

A strategy, π, from the set;

A =
{
π(·) = π(t)t∈[0,T ],F − adapted.

}
is admissible if

• Xt ≥ K for a constant K > 0, 0 ≤ t ≤ T ;

• EQ∗
[
∫ t

0 (πSσs)
2 + (πLσL)2dt] <∞;

• ∀(t, x) ∈ [0, T ]×R, equation (3.10) has a unique solution {X(t)}t∈[0,T ] with EQ∗
[U(X(t)] <

∞ where Q∗ is the model worst-case-scenario probability measure.

In our work, we propose that the worst case scenario measure Q∗(π) is the required unique

measure Q∗(π) ∈ Q that satisfies the above conditions. To determine this measure explic-

itly and the corresponding value function V (t, x), we set up and solve a stochastic optimal

control problem through the dynamic programming approach in a Brownian motion setting.

In particular, the following expression holds

V (t, x) = EQ
∗(π∗)

t [U(XT )] = sup
π∈A

inf
Q∈Q

{
EQ(π)
t

[
U(XT ) + ϕ(Q(π))

]}
(3.19)

We now solve the corresponding Hamilton-Jacobi-Bellman-Isaacs (HJBI) Forsyth and Labahn

(2007) equation for a power utility function over the time horizon T . That is:

U(X) =
X1−γ

1− γ
, 0 < γ < 1. (3.20)
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and the boundary condition given by V (T, x) = U(x). This implies that

sup
π∈A

inf
(θL,θS)∈θ(t)

{4πV + ϕ(θ(t))} = 0 (3.21)

where the differential operator 4π is computed as follows;

4πV = Vt+Vxx
[
r(t)+πL(t)(λL−σL(t)θL(t))+πS(t)(λS−σSθS(t)

]
+

1

2
Vxxx

2
[
(πL(t)σL)2+(πS(t)σS)2

]
(3.22)

Specifically, since any Q ∈ Q is defined with respect to the pair (θL(t), θS(t)) we define a

map Q∗ taking any strategy π to (θL(t), θS(t)). Then the penalty function will be determined

by a map taking any of the strategy satisfying (3.15). That is

ϕ(θ(t)) =
1

2φ

(
θ2
L(t) + θ2

S(t)
)

(3.23)

Where φ is the preference parameter which governs the ambiguity aversion.

By Maenhout (2004), we impose that the preference parameter φ > 0 depends on the state

variable (the current wealth process V (t, x)) in order to ensure that the penalty function is

reasonable. We then choose the preference parameter φ to be given by φ = α
(1−γ)V (t,x) > 0.

Where α > 0 indicates the portfolio manager’s ambiguity aversion level.

3.3.1 Proposition. The solution of (3.21) is given by V (t, x) = f(t)x
1−γ

1−γ . Where the bound-

ary conditions f(T ) = 1, f(t) = eβ(T−t) with β = (1 − γ)

[
r +

(
λ2L
σ2
L

+
λ2S
σ2
S

)
2

(
α+γ

) ] and the optimal

investment strategy given by

π∗L(t) =
λL

σ2
L

(
α+ γ

) (3.24)

π∗S(t) =
λS

σ2
S

(
α+ γ

) (3.25)

Proof. See Apendix A
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3.4 Optimal portfolio choice with Choquet expectation

3.4.1 Model ambiguity by Choquet Brownian motion.

In this case, instead of modelling ambiguity indirectly by the penalty function in (3.14), we

have the robust optimal strategy in the form

sup
π(t)∈A

inf
Q∈Q

EQ(π)
t

[
U(XT )

]
(3.26)

from this, we can see that

inf
Q∈Q

EQ(π)
t

[
U(XT )

]
= inf

Q∈Q

∫
Ω
U(XT )dQ

=

∫
Ω
U(XT ) inf

Q∈Q
dQ

=

∫
Ω
U(XT )d{ inf

Q∈Q
Q}

If the portfolio manager assumes that there exist a capacity c such that c(·) = infQ∈QQ(·),

then we have

inf
Q∈Q

EQ(π)
t

[
U(XT )

]
=

∫
Ω
U(XT )dc

= Ect
[
U(XT )

]
which implies that the value function is now given by

V (t, x) = sup
π(t)∈A

Ect
[
U(XT )

]
(3.27)

where Ect is the Choquet expectation.

In order to find the Choquet expectation, we describe the ambiguity aversion by a binomial

tree as in figure 3.1 where we have the joint capacity on each asset.
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Figure 3.1: Binomial tree for a Choquet random walk.

As proven in Kast et al. (2014), with the choquet random walk in continuous time t ∈ [0, T ],

dWL(t) = µdt+ sdBL(t)

dWS(t) = µdt+ sdBS(t)

where µ = 2c− 1, s2 = 4c(1− c). The attitude towards ambiguity with the Choquet Brownian

motion modifies the drift and the volatility terms of the total asset as follows;

dX(t)

X(t)
= (r(t) + πLλL + πSλS)dt+ πLσL(µdt+ sdBL(t)) + πSσS

(
µdt+ sdBS(t)

)
=

(
r(t) + πLλL + πSλS + πLσLµ+ πSσSµ

)
dt+ πLσLsdBL(t) + πSσSsdBS(t)

25



In order to solve (3.27), we solve the corresponding Jacobi-Bellman equation

sup
π∈A
{4πV } = 0 (3.28)

where the differential operator 4πV is computed as;

4πV = Vt + Vxx
[
r(t) + πLλL + πSλS + πLσLµ+ πSσSµ

]
+

1

2
Vxxx

2
[
(πL(t)σLs)

2 + (πS(t)σSs)
2
]

We therefore have the following proposition as the solution

3.4.2 Proposition. The solution of (3.28) is given by V (t, x) = ϕ(t)x
1−γ

1−γ . Where the bound-

ary conditions ϕ(T ) = 1, ϕ(t) = eη(T−t) with

η = (1− γ)

[
r(t)−

(
1 +

γ

2

)((λL + σLµ)2

σ2
Ls

2
+

(λS + σSµ)2

σ2
Ss

2

)]

and the optimal investment strategy given by

π∗L(t) =
λL + σLµ

γσ2
Ls

2
(3.29)

π∗S(t) =
λS + σSµ

γσ2
Ss

2
(3.30)

Proof. Assuming that V (t, x) = ϕ(t)x
1−γ

1−γ , then we have

Vt =ϕ′(t)
x1−γ

1− γ
(3.31)

Vx =ϕ(t)x−γ (3.32)

Vxx =− γϕ(t)x−1−γ (3.33)

Differentiating (3.28) with respect to πL and πS gives

xVx(λL + σLµ) + Vxxx
2πLσ

2
Ls

2 = 0

xVx(λS + σSµ) + Vxxx
2πSσ

2
Ss

2 = 0
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Which implies that

πL = −xVx(λL + σLµ)

Vxxx2σ2
Ls

2

=
λL + σLµ

γσ2
Ls

2

πS = −xVx(λS + σSµ)

Vxxx2σ2
Ss

2

=
λS + σSµ

γσ2
Ss

2

Replacing πL and πS in (3.28) yields

ϕ′(t)
x1−γ

1− γ
+ xϕ(t)x−γ

[
r(t)− λL

λL + σLµ

σ2
Ls

2
− λS

λS + σSµ

σ2
Ss

2
− σLµ

λL + σLµ

σ2
Ls

2
− σSµ

λS + σSµ

σ2
Ss

2

]

−1

2
γϕ(t)x1−γ

[
σ2
Ls

2

(
λL + σLµ

σ2
Ls

2

)2

+ σ2
Ss

2

(
λS + σSµ

σ2
Ss

2

)2]
= 0

=⇒ ϕ′(t)
1

1− γ
+ ϕ(t)

[
r(t)− λL

λL + σLµ

σ2
Ls

2
− λS

λS + σSµ

σ2
Ss

2
− σLµ

λL + σLµ

σ2
Ls

2
− σSµ

λS + σSµ

σ2
Ss

2

]

−1

2
γϕ(t)

[
σ2
Ls

2

(
λL + σLµ

σ2
Ls

2

)2

+ σ2
Ss

2

(
λS + σSµ

σ2
Ss

2

)2]
= 0

=⇒ ϕ′(t)
1

1− γ
+ ϕ(t)

[
r(t)− (λL + σLµ)2

σ2
Ls

2
− (λS + σSµ)2

σ2
Ss

2

]

−1

2
γϕ(t)

[
(λL + σLµ)2

σ2
Ls

2
+

(λS + σSµ)2

σ2
Ss

2

]
= 0

=⇒ ϕ′(t) + ϕ(t)(1− γ)

[
r(t)−

(
1 +

γ

2

)((λL + σLµ)2

σ2
Ls

2
+

(λS + σSµ)2

σ2
Ss

2

)]
= 0

=⇒ ϕ′(t) + ηϕ(t) = 0

With

η = (1− γ)

[
r(t)−

(
1 +

γ

2

)((λL + σLµ)2

σ2
Ls

2
+

(λS + σSµ)2

σ2
Ss

2

)]

This complete the proof.
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3.4.3 Kalman Filter of conditional Choquet expectation.

Let Ft denotes the filtration generated by observing X defined by the σ − field

Ft = σ{Xs : s ≤ t}

which is all the information available to the observer at time t ≤ T . For any square integrable

function g : R −→ R, the posterior moment is ĉt = E{g(ct)|Ft}, we want to know under which

measure given by new parameter c, our observation would have been the most probable.

We assume that the asset capacity is normally distributed and its initial distribution has mean

c0 and variance v0. During each time interval, the portfolio manager observes the loans and

securities which are correlated with the capacity ct. For the filtering problem in the context of

square integrable processes, we allow the unobservable process to be given by the dynamic

dct = θ(µ− ct)dt+ σdWt (3.34)

The positive parameters σ, θ and the long run mean drift level µ are considered to be known.

We denote by ĉ(t) = E(c(t)|Ft) and v(t) = E[c(t) − ĉ(t))2|Ft] respectively the expectation

and the variance of the capacity at time t conditional on the available information up to time

t. By observing the asset prices, the portfolio manager can collect its beliefs on the value of

the capacity.

With normality assumptions, from theorem 12.1 of Liptser and Shiryaev (2010) it follows that

the instantaneous changes in the expected estimated capacity ĉ(t) and the instantaneous

changes in the variance of estimated capacity dv(t) are given by the following equations

dĉt = θ(µ−ĉt)dt+
2v(t)

s
[dX(t)−(r+πL(λL−σL)+πS(λS−σS)+2(πLσL+πSσS)ĉ(t)dt)] (3.35)
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v̇(t) = −2θv(t) + σ2 − 4v(t)2

s2
(3.36)

In (3.35), the change in capacity, dĉ(t) is equal to the estimated expected capacity at time

t plus the correction term. This term brings the weighting value and instantaneous change

due to the observation of X over the period [t, t+dt]. This implies that the portfolio manager

updates c(t) by the component dνt = dX(t) − (r + πL(λL − σL) + πS(λS − σS) + 2(πLσL +

πSσS)ĉ(t)dt) weighted by its corresponding uncertainty

w(t) =
2v(t)

s

The weight w(t) in (3.35), determines how much of the new information contained in the

updating of c(t).

When there is low quality data (high value of w(t)), little information can be known and then

there is not much change in c(t). If the portfolio manager is less confident of the current

estimate of the higher value of the variance, more information can be obtained and in this

case, the portfolio manager add more weights on the obtained information to conclude its

beliefs.

The first two terms of (3.36) imply that the unobservable variation of c(t) over the period

[t, t+ dt] and the last term shows the reduction in variance when more information rises up.

This means that, the higher the quality of data, the more the portfolio manager learns about

the current value of the capacity. Given a power utility function, we define the value function

of the portfolio problem with partial information as

V (t, x) = sup
π(t)∈A

E{U(XT )|Xt = x} (3.37)
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(3.37) is a non-Markovian formulation of the problem. However, the Kalman-filter fully pa-

rameterizes the conditional distribution ct|Ft , and (3.37) turns out to be a Markov control

problem, meaning the value function is a deterministic function of (Xt, ĉt).

For the partial information case, the control problem can be written in its Markovian formu-

lation as follows:

V (t, x) = V (t, x, c) = sup
π(t)∈A

E
{
U(XT )|X0 = x, ĉ0 = c0, v0 = e

}
. (3.38)

3.4.4 Proposition. Suppose the filtering distribution Πt belongs to a Hilbert space H, then,

the value function, V (t,Π, x) is the unique viscosity solution of

Vt + LV = 0 (3.39)

and is bounded and locally Lipschitz with respect to the Hilbert norm. Also, the test function

V (t,Πt, x) generally satisfies;

LV =
1

2
tr

(σLπLsx σSπSsx

2v(t)
s 0


σLπLsx σSπSsx

2v(t)
s 0


T

D2V

)
+ 〈θ(µ− ĉ), DV 〉

+

[
r + πL(λL − σL) + πS(λS − σS) + 2(πLσL + πSσS)ĉ(t)

]
x∂xV

(3.40)

where D is the Fréchet derivative and 〈., .〉 represents the inner product in the Hilbert space

H.
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Then we have

σLπLsx σSπSsx

2v(t)
s 0


σLπLsx σSπSsx

2v(t)
s 0


T

D2V =


[

(σLπL)2 + (σSπS)2

]
s2x2 2σLπLsv(t)

s x

2σLπLsv(t)
s x 4v(t)2

s2


Vxx Vxĉ

Vxĉ Vĉĉ



=


[

(σLπL)2 + (σSπS)2

]
s2x2Vxx + 2σLπLv(t)xVxĉ [(σLπL)2 + (σSπS)2]s2x2Vxĉ + 2σLπLv(t)xVĉĉ

2σLπLv(t)xVxx + 4v(t)2

s2
Vxĉ 2σLπLv(t)xVxĉ + 4v(t)2

s2
Vĉĉ


(3.41)

〈θ(µ− ĉ), DV 〉 =

[
θ(µ− ĉ) 0

]Vĉ
Vx


= θ(µ− ĉ)Vĉ

[
r + πL(λL − σL) + πS(λS − σS) + 2(πLσL + πSσS)ĉ(t)

]
x∂xV

=

[
r + πL(λL − σL) + πS(λS − σS) + 2(πLσL + πSσS)ĉ(t)

]
xVx

Therefore the corresponding HJB is

sup
πA

{
Vt + θ(µ− ĉ)Vc +

1

2
(π2
Lσ

2
L + π2

Sσ
2
S)s2x2Vxx +

[
r + πL(λL − σL) + πS(λS − σS)

+2(πLσL + πSσS)ĉ(t)
]
xVx + 2σLπLv(t)xVxĉ +

2v(t)2

s2
Vĉĉ

}
= 0 (3.42)
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4. Results and discussion

4.1 Classical optimal portfolio choice problem

From proposition 3.3.1, the optimal investment strategy is the classical optimal solution for

Merton (1971) with the risk-aversion adjustment replaced by α + γ. This shows that the

optimal investment strategy depends on risk aversion measure γ and the ambiguity aversion

level α. If the portfolio manager does not consider ambiguity (that is α = 0), the optimization

problem (3.19) becomes an optimization problem for ambiguity neutral.

4.1.1 Calibration and interpretation of the ambiguity averse level α.

In order to predict the quantitative effect of robustness on the portfolio choice given by (3.24)

and (3.25), we suggest the calibration of the parameter α. From (3.24) and (3.25) we have

θ∗L(t) = σLφxVxπL(t)

=
αλL

σL(α+ γ)
(4.1)

θ∗S(t) = σSφxVxπL(t)

=
αλS

σS(α+ γ)
(4.2)

Table 4.1 reports the optimal investments strategies allocated to the total assets and the

worst-case drifts from various values of the ambiguity level α.
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Table 4.1: Optimal portfolio shares and worst-case drifts

γ = 0.1 γ = 0.5

α πL πS 1− πL − πS θL θS πL πS 1− πL − πS θL θS

0 23.4375 15.4321 −37.8696 0 0 4.6875 3.0864 −6.7739 0 0

0.1 11.7188 7.7160 −18.4348 0.1875 0.1389 3.9063 2.5720 −5.4783 0.0625 0.0463

0.4 4.6875 3.0864 −6.7739 0.3000 0.2222 2.6042 1.7147 −3.3188 0.1667 0.1235

0.5 3.9063 2.5720 −5.4783 0.3125 0.2315 2.3438 1.5432 −2.887 0.1875 0.1389

0.7 2.9297 1.9290 −3.8587 0.3281 0.2430 1.9531 1.2860 −2.2391 0.2187 0.1620

0.8 2.6042 1.7147 −3.3188 0.3333 0.2469 1.8029 1.1871 −1.9901 0.2308 0.1709

1 2.1307 1.4029 −2.5336 0.3409 0.2525 1.5625 1.0289 −1.5914 0.2500 0.1852

Figure 4.1: Optimal Investment Portfolio Weights and worst-case drifts

Setting the parameters estimated in Chakroun and Abid (2016), the observation of table
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4.1 and figure 4.1 shows that the preference for robustness decreases the optimal portfolio

weight because by looking at the values of πL and πS we see that the more the ambiguity

aversion level α increases, the more the the optimal portfolio weight decreases. Unlikely

for the worst-case drifts we see that the parameters θL and θS increases with the ambiguity

aversion level. If the parameter α = 0, then the worst-case drifts vanishes and the Ambiguity

Averse Portfolio reduces to the Ambiguity Neutral.

By figure 4.1 for the risk-aversion γ = 0.5 and we are able to see the behaviour of the

optimal investment weights and the worst case drifts in response to the different values of

the ambiguity averse level α and we see that the curves of the drifts remain constants as

α tends to infinity, but since the penalty term will vanish at that time, the Ambiguity Averse

Portfolio manager has to look for another alternative model.

Now that we have been able to find out the optimal values of the parameters for the wealth

process, in the following section we use them to find the capital adequacy.

4.1.2 Bank Capital Adequacy ratio.

By the Basel III accord, the risk weighted asset is given as

dXr(t)

Xr(t)
=

[
0.5πL(t)

(
r(t) + λL − σLθL(t)

)
+ 0.2πS(t)

(
r(t) + λS − σSθS(t)

)]
dt

+0.5σLπL(t)dWQ
L + 0.2σSπS(t)dWQ

S

By (3.13) and Itô formula, the derivation of the capital adequacy ratio will be given as

d
C(t)

Xr(t)
=

dC(t)

Xr(t)
− C(t)dXr(t)

X2
r (t)

+
C(t)(dXr(t))

2

X3
r (t)

− dXr(t)dC(t)

X2
r (t)

=
C(t)

Xr(t)

[
(r(t) + πtp(t)λE)dt+ πtp(t)σEdWE(t)

]
− ρ X(t)

Xr(t)
dt

− C(t)

Xr(t)

[
0.5πL(t)(r(t) + λL − σLθL(t)) + 0.2πS(t)(r(t) + λS − σSθS(t))

]
dt

+
C(t)

Xr(t)

[
(0.5πLσL)2 + (0.2πLσL)2

]
dt− C(t)

Xr(t)

[
0.5πL(t)σLdW

Q
L + 0.2πS(t)σSdW

Q
S

]
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=
[
Cr(t)(a1 − b1)− c1

]
dt− Cr(t)

[
a2dW

Q
L + b2dWS(t)− c2dWE(t)

]
Where

a1 = r(t) + πtp(t)λE

b1 = 0.5πL(t)
(
r(t) + λL − σLθL(t)

)
+ 0.2πS(t)

(
r(t) + λS − σSθS(t)

)
−
(
0.5σLπL(t)

)2 − (0.2σSπS(t)
)2

c1 = ρ
X(t)

Xr(t)

a2 = 0.5σLπL(t)

b2 = 0.2σSπS(t)

c2 = πtp(t)σE

and Cr(t) denotes the bank capital adequacy ratio. Compared with the dynamic of the capital

adequacy ration in Chakroun and Abid (2016), the ambiguity parameter has only impact on

the drift term.

Therefore, this shows the behaviour of the dynamic of the Capital Adequacy Ration in figure

4.2.
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Figure 4.2: Dynamic of the Capital Adequacy Ratio(CAR)

With the initial value fixed at 21.08%, the capital adequacy ratio moves up and down over

time and has a value of just over 67.75%.

4.2 Optimal portfolio choice with Choquet expectation

If the portfolio manager is ambiguity averse, the capacity c is given as 0 < c < 1
2 (see

Roubaud et al. (2010)). Figure 4.3 is the illustration of the behaviour of the optimal propor-

tions for a AAPM with conditional capacities.
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Figure 4.3: Optimal Investment Portfolio Weights modelled by Choquet Brownian motion

Figure 4.3 shows that the optimal proportions of loans and securities increase with the ca-

pacity while optimal proportions for treasuries decrease when the capacity increases.

4.2.1 Capital adequacy ratio under choquet random walk.

By the Basel III accord the risk weighted asset is given as

dXr(t)

Xr(t)
=

[
0.5πL(t)

(
r(t) + λL + σL(t)µ

)
+ 0.2πS(t)

(
r(t) + λS + σS(t)µ

)]
dt

+0.5σLπL(t)sdBL + 0.2σSπS(t)sdBS (4.3)

By (3.13) and Itô formula, the derivation of the capital adequacy ratio will be given as

dC(t)

Xr(t)
=

C(t)

Xr(t)

[
(r(t) + πtp(t)λE)dt+ πtp(t)σEdWE(t)

]
− ρ Y (t)

Xr(t)
dt

− C(t)

Xr(t)

[
0.5πL(t)

(
r(t) + λL + σL(t)µ

)
+ 0.2πS(t)

(
r(t) + λS + σS(t)µ

)]
dt
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+
C(t)

Xr(t)

[
(0.5πLσLs)

2 + (0.2πSσSs)
2
]
dt− C(t)

Xr(t)

[
0.5πL(t)σLsdBL + 0.2πS(t)σSsdBS

]
=

[
C ′r(t)(a

′
1 − b′1)− c′1

]
dt− C ′r(t)

[
a′2dBL + b′2dBS(t)− c′2dWE(t)

]
Where

a′1 = r(t) + πtp(t)λE

b′1 = 0.5πL(t)
(
r(t) + λL + σL(t)µ

)
+ 0.2πS(t)

(
r(t) + λS + σS(t)µ

)
−
(
0.5σLπL(t)s

)2 − (0.2σSπS(t)s
)2

c′1 = ρ
Y (t)

Yr(t)

a′2 = 0.5σLπL(t)µ

b′2 = 0.2σSπS(t)µ

c′2 = πtp(t)σE

and C ′r(t) denotes the bank capital adequacy ratio.

Figure 4.4: Dynamic of the Capital Adequacy Ratio(CAR) for Choquet expectation

Figure 4.4 is the simulation of the capital adequacy ratio under Choquet expectation. It
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shows that with the initial value fixed at 10.71%, the capital adequacy ratio moves up and

down over time and has a value of just over 59.11%.

39



5. Conclusion

The aim of this work was to find the optimal investment strategy for an ambiguity averse

portfolio manager where the term structure of interest rate is constant by means of the

classical dynamic programming and the non linear expectation. Our contribution was to

obtain an optimal investment allocation strategy that optimizes the bank’s asset portfolio

consisting of balance sheet items of the bank.

This was achieved by constructing the total portfolio asset stochastic differential equation

requiring model specification uncertainties on three categories of a bank’s balance sheet

items and developing the investment strategy that maximizes the bank portfolio by means of

dynamic programming with a power utility function and the non linear expectation methods.

Furthermore, we derived the dynamic of the capital adequacy ratio by determining the dy-

namic of the risk weighted assets under Basel III agreement. We have found that for an

ambiguity averse portfolio manager, the value of the capital adequacy ratio maintains the

minimum required. This model is helpful in determining the optimal investment allocation

strategy and the corresponding adequate capital in a financial market where the uncertainty

arises.

Moreover, we model the ambiguity by means of a non linear Choquet expectation. We have

been able to show that robust portfolio via worst case scenario and via Choquet expectation

have completely distinct impacts on robust portfolio selection and the capital adequacy.

We conclude that while the classical approach assumes the observability of full market in-

formations, the conditional Choquet expectation gives the more realistic assumptions in the

derivation of robust portfolio selection and capital adequacy.

40



Since the Choquet capacity can be an unobservable process, we converted the partial in-

formation to the full information problem to get the HJB equation by the Kalman filtering

technique.

Recommendations

For more research in the future, this portfolio selection problem can be further modified to

take into consideration different approaches where one can use another non linear expecta-

tion and compare it with what we have done to see the best model and calibrating this model

to real data would be an interesting future research endeavour.
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Appendix A. Appendix

Proof of proposition 3.3.1

Proof. Assuming that V (t, x) = f(t)x
1−γ

1−γ , then we have

Vt =f ′(t)
x1−γ

1− γ
(A.1)

Vx =f(t)x−γ (A.2)

Vxx =− γf(t)x−1−γ (A.3)

For the derivation of the worst-case drifts, we differentiate (3.21) with respect to θL, and θS ,

that is maximizing over Q. Then we have

−σLxVxπL(t) +
1

φ
θL(t) = 0

−σSxVxπS(t) +
1

φ
θS(t) = 0.

This implies that

θ∗L(t) =σLφxVxπL(t) (A.4)

θ∗S(t) =σSφxVxπS(t) (A.5)

Replacing (A.4) and (A.5) into (3.21) gives

sup
π∈A

{
Vt + Vxx

[
r + πL(t)

(
λL − σ2

LxVxφπL(t)
)

+ πS(t)
(
λS − σ2

SxVxφπS(t)
)]

+
1

2
Vxxx

2
[
(πL(t)σL)2

+(πS(t)σS)2
]

+
φ

2

[(
σ2
LxVxπL(t)

)2
+
(
σ2
SxVxπS(t)

)2]}
= 0 (A.6)

For the derivation of the optimal robust investment strategy, differentiating (A.6) with respect

to πL(t) and πS(t) implies that

xVxλL + σ2
Lx

2
(
Vxx − V 2

x φ
)
πL(t) = 0
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xVxλS + σ2
Sx

2
(
Vxx − V 2

x φ
)
πS(t) = 0

Then we have the optimal investment strategy given by

π∗L(t) =
VxλL

xσ2
L

(
V 2
x φ− Vxx

) (A.7)

π∗S(t) =
VxλS

xσ2
S

(
V 2
x φ− Vxx

) (A.8)

Now, substituting (A.7) and (A.8) into (A.6) yields

Vt + xVx

[
r +

Vxλ
2
L

σ2
Lx(V 2

x φ− Vxx)

(
1− φV 2

x

(V 2
x φ− Vxx)

)
+

Vxλ
2
S

σ2
Sx(V 2

x φ− Vxx)

(
1− φV 2

x

(V 2
x φ− Vxx)

)]
+

1

2
Vxx

[( VxλL
σL(V 2

x φ− Vxx)

)2
+
( VxλS
σS(V 2

x φ− Vxx)

)2]
+
φ

2

[( V 2
x λL

σL(V 2
x φ− Vxx)

)2
+
( V 2

x λS
σS(V 2

x φ− Vxx)

)2]
= 0

Which implies that

Vt + xVx

[
r +

Vx
x(V 2

x φ− Vxx)

(
1− φV 2

x

(V 2
x φ− Vxx)

)(λ2
L

σ2
L

+
λ2
S

σ2
S

)]
+

1

2
Vxx

( Vx
(V 2
x φ− Vxx)

)2(λ2
L

σ2
L

+
λ2
S

σ2
S

)
+
φ

2

( V 2
x

(V 2
x φ− Vxx)

)2(λ2
L

σ2
L

+
λ2
S

σ2
S

)
= 0

⇒ Vt + xVx

[
r +A(1−B)

(
λ2
L

σ2
L

+
λ2
S

σ2
S

)]
+

1

2
VxxC

2

(
λ2
L

σ2
L

+
λ2
S

σ2
S

)
+
φ

2
D2

(
λ2
L

σ2
L

+
λ2
S

σ2
S

)
= 0

⇒ Vt + rxVx +

(
A(1−B)xVx +

1

2
C2Vxx +

φ

2
D2

)(
λ2
L

σ2
L

+
λ2
S

σ2
S

)
= 0

Where

A =
Vx

x(V 2
x φ− Vxx)

=
f(t)x−γ

x
(
f2(t)x−2γφ+ γf(t)x−1−γ

)
=

f(t)x−γ

x
(
f2(t)x−2γ α

f (t)x1−γ + γf(t)x−1−γ
)

=
1

α+ γ
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B =
φV 2

x

(V 2
x φ− Vxx)

=
αf2(t)x−2γ

f2(t)x−2γα+ γf2(t)x−2γ

=
α

α+ γ

Where

C =
Vx

(V 2
x φ− Vxx)

=
f(t)x−γ

f2(t)x−2γα
(1−γ)f(t)x1−γ

1−γ

+ γf(t)x−1−γ

=
x

α+ γ

D =
V 2
x

(V 2
x φ− Vxx)

=
f2(t)x−2γ

αf2(t)x−2γ

(1−γ)f(t)x1−γ
1−γ

+ γf(t)x−1−γ

=
f(t)x1−γ

α+ γ

Replacing A, B, C and D by their values, we then have

Vt + rxVx +

(
λ2
L

σ2
L

+
λ2
S

σ2
S

)[
1

α+ γ

(
1− α

α+ γ

)
xVx +

1

2

(
x

α+ γ

)2

Vxx +
φ

2

(
f(t)x1−γ

α+ γ

)2]
= 0

=⇒ Vt + rxVx +

(
λ2
L

σ2
L

+
λ2
S

σ2
S

)[
γ(

α+ γ
)2xVx +

1

2

(
x

α+ γ

)2

Vxx +
φ

2

(
f(t)x1−γ

α+ γ

)2]
= 0

=⇒ Vt + rxVx +

(
λ2
L

σ2
L

+
λ2
S

σ2
S

)
1(

α+ γ
)2

[
γxVx +

1

2
x2Vxx +

φ

2

(
f(t)x1−γ

)2]
= 0

Substituting (A.1), (A.2) and (A.3) we have the following equation
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f ′(t)
x1−γ

1− γ
+ rf(t)x1−γ +

(
λ2
L

σ2
L

+
λ2
S

σ2
S

)
1(

α+ γ
)2

[
γf(t)x1−γ − γ

2
f(t)x1−γ +

α

2
f(t)x1−γ

]
= 0

=⇒ f ′(t)

1− γ
+ rf(t) +

(
λ2
L

σ2
L

+
λ2
S

σ2
S

)
1(

α+ γ
)2

(
γ − γ

2
+
α

2

)
f(t) = 0

=⇒ f ′(t)

1− γ
+

[
r +

(
λ2
L

σ2
L

+
λ2
S

σ2
S

)
1

2
(
α+ γ

)]f(t) = 0

=⇒ f ′(t) + (1− γ)

[
r +

(
λ2L
σ2
L

+
λ2S
σ2
S

)
2
(
α+ γ

) ]f(t) = 0

Therefore we have

f ′(t) + βf(t) = 0. (A.9)

Where

β = (1− γ)

[
r +

(
λ2L
σ2
L

+
λ2S
σ2
S

)
2
(
α+ γ

) ].
By equation (A.9) we have f(t) = eβ(T−t) and f(T ) = 1.

Therefore V (t, x) = eβ(T−t) x1−γ
1−γ and V (T, x) = x1−γ

1−γ with the optimal investment strategy

given by (3.24) and (3.25).
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