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ABSTRACT

The problem of counterfactual has been at the core of impact evaluation frame-

work. Almost all existing methods aim to find the best way to estimate efficiently

the counterfactual. A solution for estimation of counterfactual was proposed and

investigated in this study. The objective of this research was to use classical

imputation methods to estimate counterfactual, then derive treatment effect es-

timators from the data sets completed using the basic definition of treatment

effect described in Rubin framework. The estimators obtained, called Imputa-

tion Based Treatment Effects estimators, were theoretically unbiased, convergent

and consistent. Using simulation, the results revealed that they were asymptoti-

cally unbiased and convergent as well. Results from the data application showed

that they performed as well as the classic estimators and sometimes better in

cases of shortage in data. To conclude the research, a hypothesis testing proce-

dure was proposed to test the significance of the treatment effect. The results

showed that the three approaches proposed were efficient, and could detect any

change between two distributions, even slight changes.

xv



CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Causal inference is one of the most interesting branch of statistics. Quite a num-

ber of research questions are causal in nature, therefore, to answer them one

needs to learn more about causal inference. It studies the relationship between

more than two statistical variables and draws conclusions about causal connec-

tion between the variables. It has been used in different fields such as health,

economics, psychology, education and so on. Some of the questions which can be

addressed are: what is the efficacy of a drug on a given population? And what

is the effect of a training on a population individual revenue? To answer these

questions, the statistician uses many different methods and one of them is Impact

Evaluation (IE). In recent literature, especially in economics and social statistics,

policy makers are more interested and strict on evaluation aspect since it is the

only scientific and relevant quantitative method to determine whether a program

has really had an effect or not.

Early works on IE were done by Rubin in the 1970’s. He developed what we

call today “Rubin Framework” in which he explained how to get the effect of a

specific action on a unit (Individual, County, Household etc.). The vocabulary of

his approach comes from medical experiments. Here, what he calls ”treatment”

1



can be seen as administration of a drug, a training, a given policy or something

else dividing the sample into two groups. We are interested in evaluation of a

treatment denoted by T on another variable called potential outcome denoted by

Y in a given population. For a treated unit i in the population, our variables take

values Ti = 1 and Yi = Yi1 ; for a non-treated unit in the population, Ti = 0 and

Yi = Yi0. Therefore, for a given unit i, Rubin (1974) defined the causal effect by:

∆i = Y1i − Y0i . The main problem with causal inference is that, in most cases,

we cannot observe both Yi0 and Yi1 for a given unit at the same time hence, this

problem can be seen as a problem of “missing data” well known and addressed

in a classical way in statistic literature. For example, if a unit is treated, we will

observe Yi1 but not Yi0 hence, the second quantity can be considered as missing

data, although if unit is not treated, we will observe Yi0 but not Yi1. Like previ-

ously, the second quantity can be considered as missing data.

To determine the effect of the treatment is simply to estimate and impute those

missing data then compute the difference. In the literature, the most used pa-

rameter of interest to evaluate the treatment on a population is the Average

Treatment Effect on the Treated (ATT ). That quantity is given by: ATT =

E(Yi1 − Yi0 |Ti = 1) . At the same time, one may be interested in the Average

Treatment Effect (ATE) on the population given by : ATE = E(Yi1 − Yi0) or

on the Average Treatment effect on Non-Treated (ATNT ) given by: ATNT =

E(Yi1 − Yi0 |Ti = 0) . Since this framework was designed in the 1970’s by Rubin,

many methods have been developed to estimate those parameters and applied to

2



answer some of the questions previously asked.

Among different existing methods, we have Randomized Experiments (RE), Dif-

ference in Difference Estimators (DDE), Matching Estimators (ME), Instrumen-

tal Variables (IV) and Regression Discontinuity Design (RDD) for the most popu-

lar. As examples of their application, Angrist et al. (2002) used RE to measure the

impacts of vouchers for private schooling in Colombia on school results. Chaud-

hury and Parajuli (2006) assessed the impact of female school stipend on public

school enrollment in Punjab in India using DDE. Jalan and Ravallion (2003) used

ME to estimate the benefits of an antipoverty program on a given population.

To evaluate the effect of delayed primary school enrolment and the role of early

childhood nutrition on children, Glewwe and Jacoby (1995) used IV method. Fi-

nally, Ravallion (2007) used RDD to evaluate a set of Antipoverty programs in

some developing countries. Most of these methods focused on a basic assumption

link on how treated and control group are chosen and on homogeneity of effects

across all individuals.

The effect of a treatment is an individual thing, but taking the parameters ATT

and ATE as the treatment effect on a random unit in the treated group or in

the population, is a limited and biased way of estimating the treatment effect.

That assumption implies that the effect of the treatment is homogenous in the

population. Unfortunately, it is not usually the case, impact varies across units.

One of the drawbacks of average treatment estimators is the fact that if there

3



is heterogeneity in the effects across units, taking an average effect as effect on

a random individual is biased since the mean is always sensitive to extreme val-

ues. In fact, effect of a treatment on units is always different given observed

and unobserved characteristics of units. In the recent literature, researchers have

started studying the distributional effect of a given treatment on a population to

fill the weaknesses of average treatment estimators. Doksum (1974) introduced

what he called a shift function between two distributions to take into account

differences that can appear across the distribution of the potential outcome when

applying a treatment. Later on, Heckman et al. (1997b) introduced the Quantile

Treatment Effect (QTE) which is supposed to be for a given quantile, the differ-

ence in outcome across control and treated groups. That parameter is given by:

QTE(τ) = Y1(τ) − Y0(τ), τ ∈ (0, 1). Estimation of this quantity is one of the

recent development in the field of IE. Researchers like Firpo (2007), Yu (2014),

Venturini et al. (2015) and many others have proposed different types of esti-

mators both non-parametric and semiparametric. Trying to estimate QTE is a

solution to the homogeneity bias previously explained.

Another solution that can be investigated is imputation methods as presented

by Hahn (1998). Few researchers have tried to approach the problem of IE as

a problem of missing data as highlighted earlier in this section. They proposed

some imputation methods suitable for IE framework given some assumptions on

data but still, the problem is not really addressed as a missing data problem since

the main imputation methods are not associated to those methods. In addition
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to the problem of homogeneity that can be addressed in the literature, there are

fewer studies done on hypothesis testing procedures around IE framework.

1.2 Statement of the Problem

Basically, the problem of Impact Evaluation (IE) is how to estimate efficiently

the counterfactual then derive the estimators of treatment effect. The counter-

factual is what would have happened in presence of treatment if the unit is not

treated or what would have happened in the absence of treatment if the unit is

treated. The classical IE methods estimate the counterfactual based on many

assumptions like homogeneity and rank preservation assumption. Homogeneity

means that the effect is the same for all units. Consequently, they can not iden-

tify the effect of a single unit. Assuming homogeneity also expose the average

effect computed to high effect values, the sensitivity to atypical effects is higher.

Another assumption usually taken is rank preservation assumption stating that

if a unit is in a given quantile, after the treatment it will remain in the same

quantile. It is a strong assumption given that units are different and can react

differently to a treatment. Other drawback of classical methods is that they do

not provide a tool to test if the effect computed is significant or not.

There is a need to develop a new approach of IE problems that can take less

assumption and produce better results. The new approach proposed must be

based on less assumptions, produce estimators with a smaller bias and give more
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possibility in terms of assessing the effects for single units and verification of

the significance of the study. A solution to address these needs seems to be an

estimation of counterfactual using imputation methods. The only assumption

that will be taken is to consider counterfactual as a missing value.

1.3 Significance of the Study

This study is important at two levels. First, many researchers (Hahn, 1998;

Gabriel, 2011; Dominici et al., 2005) highlighted the fact that causal inference,

in particular IE, can be seen as a problem of missing data. However, few have

taken it and addressed it as a full missing data problem. Therefore, this research

considered that idea and developed it as a full statistical problem of missing val-

ues. It will be interesting to use imputation to estimate counterfactual before

applying or developing new estimators based on imputation. If we look at works

of Hahn (1998), Gabriel (2011) and Dominici et al. (2005), they used imputation

methods as a means to reach their goals without focusing on imputation as the

main solution of the problem. In this study, the main focus is to complete the

database with robust estimators of the missing potential outcome and then derive

estimators of average and quantile treatment effects and their properties.

Secondly, theoretically speaking, undertaking this study can contribute to im-

prove literature on hypothesis testing in the field of IE which is actually growing.

In fact, few tests have been proposed specifically in this domain, see for exam-

6



ple Fisher (1935) and Crump et al. (2008). Also the test proposed here can be

extended to the comparison of distributions where the difference is not easily

identified. We would therefore, like to enrich the literature in this field.

1.4 Objective of the Study

1.4.1 General Objective

The main objective of this study is to construct a new class of treatment effects

estimators called Imputation Based Treatment Effect Estimators (IB − TE),

investigate their properties and to test the significance of effects computed with

those estimators.

1.4.2 Specific Objectives

More specifically, the aim is:

1. To develop an Average Treatment Effect estimator based on Imputation

methods and investigate its properties;

2. To derive the Quantile Treatment Effect estimator based on imputation

method and investigate its properties;

3. To test the hypothesis ”No effect” for presence and significance of Treatment

Effects on a population using distribution reconstructed with imputation;
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4. To apply the estimators to data: Lalonde data to assess the impact of a

training program on the revenue.

1.5 Scope of the Study

In this research, the terms effects and impacts mean the same thing. As high-

lighted in the first section of this chapter, a treatment is understood as a program,

a subsidy, a training or anything else supposed to induce a change on a section of

a population. This study focused on single treatment at a time and considered

the effect on a continuous potential outcome. As a consequence, distributions of

potential outcome are continuous and imputation methods applied here are for

continuous distributions.

The major assumption in this study is that counterfactual is a missing data, not

a quantity which is not observable as it is in reality. We assume that it is always

possible to have a set of covariates X characterising the unit in the population

which is helpful in estimation of counterfactual using imputation methods. An-

other assumption is that from the assignment to treatment we can deduce the

missingness mechanism. Under those assumptions and considerations, the study

was done properly.
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1.6 Thesis Outline

The thesis consists of six chapters including this one as chapter 1. Chapter 2 is

the literature review and a review of basic statistics concepts and methods related

to this research. Chapter 3 introduces the notion of Imputation Based Treatment

Effect Estimators, develops Imputation Based Average Treatment Effect Estima-

tors and studies their properties. Chapter 4 presents Distributional Treatment

Effects estimators based on imputation methods. Chapter 5 develops a hypothe-

sis testing procedure based on distribution of a reconstructed potential outcome

and Multiple Testing Procedure to test the hypothesis of “No Effects” in the

framework of impact evaluation. The concluding remarks and recommendations

are presented in chapter 6.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter presents what is done in the literature on treatment effects based

on imputation methods. It starts with a brief recall of some basic concepts from

statistical framework used in this research such as estimators, quantiles and test

of hypothesis. Then impact evaluation methods and imputation methods are

presented in their simplest form.

2.2 Basic Concepts and Methods

2.2.1 Estimators

Definition 2.1. Let Y be a random variable (r.v) whose distribution depend on a

parameter θ ∈ Θ with Θ ⊆ R or Θ ⊆ Rp. Let Y• = (Y1, Y2, ..., Yn) be a n−sample

of Y meaning n random variables independent and identically distributed (i.i.d)

with the same density as Y .

A statistic is any function T defined as follows:

T : Rn → R (or Rp)

y• = (y1, ..., yn) 7→ T (y•) = T (y1, ..., yn) = t

10



such that θ̂n = T (Y1, Y2, ..., Yn) is well defined for every sample size n.

If θ̂n is used to estimate one or many parameters of the unknown law of Y , then

θ̂n is called an estimator and its realisations are estimates.

Once an estimator is constructed, its properties has to be studied. Among the

most important properties there are Unbiasedness, Convergence and Con-

sistency. The definitions and theorems on those properties can be obtain from

any statistic book.

2.2.2 Quantiles

A quantile can be defined in different ways, let’s give some of the definitions used

in literature: theoretical and empirical definitions.

Definition 2.2. Let Y be a random variable, and Y• = (Y1, Y2, ..., Yn) and n −

sample i.i.d of the r.v Y . Let Also Y(•) = (Y(1), Y(2), ..., Y(n)) be the ranked sample

associated to the n− sample Y•. Let F be the Cumulative Distributive Function

(CDF) of the random variable Y . For p ∈]0, 1[, the theoretical quantile of order

p is defined by:

1. The inverse of the CDF taken for the value p: Q(p) = F−1(p);

2. The number y ∈ R such that F (p) = y.

Definition 2.3. Let Y be a real valued random variable, let y• = (y1, y2, ..., yn)

be a realisation of a n − sample of that random variable and let p ∈ (0, 1) be

a probability. Then the pth empirical quantile is the smallest number yi ∈ R

such that P (Y > yi) 6 1− p.
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More practically, the pth empirical quantile is:

1. the number y ∈ R such that P (Y > y) = 1− p;

2. the number y ∈ R such that P (Y 6 y) = p;

3. the number y ∈ R satisfying the following equality

p ' #{yi : yi 6 y}
n

# being the symbol of the number of elements of the set.

More materials on quantiles such as properties and convergence theorems can be

obtain in most of statistics books in case of more information is needed on it.

2.2.3 Hypothesis Testing

Let Y be a random variable and L a set of probability law. We assume that there

exist two subset of L, L0 and L1 such that L = L0

⋃
L1 and L0

⋂
L1 = ∅.

Definition 2.4. A statistical hypothesis is just the assumption of L(Y ) ∈ L and

denoted by H = {L(Y ) ∈ L}.

The alternative is a definition of two statistical hypothesis likeH0 = {L(Y ) ∈ L0}

against H1 = {L(Y ) ∈ L1}. The first hypothesis is called the null hypothesis and

the second one the alternative hypothesis.

As example, if L = {P(λ), λ ∈ R+} is the set of all Poisson law, then saying that

the law of Y is a Poisson law is a statistical hypothesis formulated as follows:

H = {L(Y ) ∈ L}.
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Definition 2.5. A test statistic or an hypothesis test of two alternatives H0

against H1 is an application defined as follows: ψ : Rn −→ {0, 1} such that

ψ(Y•) is a random variable such that for all realisation Y• = y•, there is a decision

process given by:


If ψ(y•) = 0 then H0 is True,

If ψ(y•) = 1 then H1 is True.

To simplify notations, in case there is a parameter θ to test and they are two

disjoint alternatives θ0 and θ1, the formulation of the simplest test of H0 against

H1 is the following: 
H0 : θ = θ0

H1 : θ = θ1

(2.1)

From this general form, many different hypotheses can be tested: H0 = {θ = θ0}

against H1 = {θ 6= θ0}; H0 = {θ ≤ θ0} against H1 = {θ < θ0} and many others.

In case the problem is to test jointly more than one hypothesis (m ∈ N parame-

ters) against more than one alternatives on the same parameters, the appropriate

test is the Multiple Testing Procedure. Under definitions and assumptions made

in the previous subsection, the formulation of a multiple test using the structure

(2.1) is as follows: 
H0 : {H0i(θi), i = 1, ...,m}

H1 : {H1i(θi), i = 1, ...,m}
(2.2)
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The hypotheses {H0i(θi)}mi=1 are tested simultaneously to be true against at least

one of the alternative {H1i(θi)}mi=1 being false. In case of acceptance of H0, it is

clear that all the parameters verify their respective null hypothesis, nothing more

is required. In case of rejection of H0, meaning that at least one of null hypothesis

is rejected, one may want to know which of the parameters does not satisfy its

corresponding null hypothesis. Assuming that each individual hypothesis testing

procedure is available, the problem is how to combine all of them in a single test

procedure with the corresponding critical values. Specific quantities are used to

analyse the results of such tests.

2.2.4 Impact Evaluation Methods

Impact evaluation methods are classified in 5 main groups depending on the

assignment process and the structure of the data need to perform them. The five

groups are:

1. Randomized Experiment or Randomization (RE): In this method,

the selection process is a random experiment. Given a population, the se-

lection of treated units is a sampling experiment with same probability to

be selected so that the expected outcome with and without the treatment

will be the same. By doing that we ensure that the groups formed are repre-

sentative of the population. The estimators are obtained by just comparing

the relevant quantities in the two group of treated and non treated.

2. Difference in Difference Estimators (DID): Difference in Difference
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estimator’s method assumes that the potential outcome is available before

and after the treatment. In addition to that, there is an unobserved het-

erogeneity among units in the sample but those factors are time invariant

meaning that before and after the treatment, these factors are the same

and can be removed. This method estimates the average impact of the

treatment as follow:

DDE = E(Y1 − Y0 |T = 1)− E(Y1 − Y0 |T = 0). (2.3)

It is the average difference of outcome between the two groups after the

treatment minus the same difference between the two groups before the

treatment so that the bias which is time invariant and additive will disap-

pear.

3. Matching Estimators: The last two methods presented in their basic

form did not need additional information on units. This method requires

more information about units. Matching methods construct a control group

which is comparable to treatment group according to some observable char-

acteristics that are present in the data base (covariates X ). The basic

matching methods uses Mahalanobis distance (Introduced in 1936) to check

whether two units are close to each other or not and match them. The main

assumption here is what is called in literature - unconfoundedness, meaning

that the given covariates taking the treatment or not is independent of the
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potential outcome. It can be written as follow

Yi,1, Yi,0 ⊥ Ti |Xi (2.4)

For example, if age is the unique covariate, the outcome which can be the

grades in school is independent to the treatment given the age. The average

treatment estimator will be the average potential outcome in the treatment

group for a specific age minus the average outcome in the control group for

the same age then we take the average across different ages.

ATE =

∫
ATE(x)dx, (2.5)

where ATE(x) = E(Y1 |X = x, T = 1)− E(Y0 |X = x, T = 0). More devel-

opments on this method were done later on, more materials in connection

with that can be obtain from Imbens and Wooldridge (2009).

4. Instrumental Variables (IV) Estimators: IV method allows for en-

dogeneity (correlation between treatment and errors) in treatment assign-

ment. This method involves finding a variable called Instrument which

is highly correlated with treatment assignment but not correlated to un-

observed characteristics that affect outcome. With good instrument, IV

estimator is unbiased but weak instruments can worsen the bias. The esti-

mators are constructed using a two stage linear regression.

5. Regression Discontinuity Design (RDD): RDD methods are used when
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assignment to treatment depends on another variable denoted S (which can

be age, income, grades etc.). One may decide a threshold under which a

person is treated and not treated above. The method exploits the fact that

around the threshold S∗ units are comparable therefore the estimator is

computed using a difference in the two groups around the threshold.

More developments and material on these methods can be obtained from any

impact evaluation book.

2.2.5 Imputation Methods

Imputation is one of the oldest methods in statistics. In this study many imputa-

tion methods are used to reconstruct data. Most of them are describe in statistics

books and papers. They are classified in two groups:

1. Imputation Methods without Random Variation: characterized by

the fact that running the same method on the same sample many times will

always produce the same imputed values for units missing with the same

characteristics (no matter the user). Some of them are as follows:

• Mean Imputation and Conditional Mean Imputation;

• Nearest Neighbours Imputation;

• Last value carried forward;

• Regression to perform deterministic Imputation;

• Simple random Imputation (Hot deck imputation).
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2. Imputation Methods with Random Variation: This group of methods

is characterized by the fact that it allows for randomness in the prediction

of missing values. Running this method n times in a given sample may

produce n different values for a single imputation. Some of them are:

• Regression to perform random Imputation;

• Multiple Imputation (MI);

• Maximum likelihood Imputation (ML).

2.3 ATE Based on Imputation in Literature

Early works on IE using imputation method were done by Hahn (1998), Dominici

et al. (2005) and Gabriel (2011). In addition to that, the classic PSM method

can be seen as method using imputation. Most of these methods developed use

imputation to obtain an average effect.

2.3.1 Regression Imputation seen by Hahn (1998)

Given a data set (Y, T,X), following the work done by Hahn (1998), under the

assumption of unconfoundedness, Hahn defines the quantity:

E(TiYi/Xi) = E(TiYi1/Xi) = E(Ti/Xi)E(Yi1/Xi) = E(Ti/Xi)β1(Xi) (2.6)
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and at the same time the quantity:

E((1− Ti)Yi/Xi) = E((1− Ti)Yi0/Xi) = E((1− Ti)/Xi)E(Yi0/Xi)

= E((1− Ti)/Xi)β0(Xi)

(2.7)

From equations (2.6) and (2.7), it follows that for the same unit we can get :

Ŷi1 = β̂1(Xi) =
Ê(TiYi/Xi)

Ê(Ti/Xi)
and Ŷi0 = β̂0(Xi) =

Ê((1− Ti)Yi/Xi)

1− Ê(Ti/Xi)
(2.8)

The quantity β̂1(Xi) is an estimator of the value of potential outcome that unit

i would have taken if it was treated (in this case unit i is not treated). Likewise,

β̂0(Xi) is an estimator of the value of potential outcome that unit i would have

taken if it was not treated, in absence of treatment on it (in this case unit i is

treated). Therefore, under treatment in the population: Ŷi1 = TiYi+(1−Ti)β̂1(Xi)

and under control Ŷi0 = (1− Ti)Yi + Tiβ̂0(Xi).

Now, estimation of the mean equation β̂1(Xi) and β̂0(Xi) is the choice of the

statistician. Among methods than can be used, there are OLS regression, Non-

parametric regression, or even simple sample mean or any other method linked to

regression methods. At the end of imputation, a completed data set is obtained

from which estimations can be done. Hahn (1998) proposed a nonparametric

method for imputation. In this research, a parametric imputation (OLS regres-

sion) and a quantile regression imputation to take into account of the distribution

of the potential output and try to keep rank or quantile are proposed.
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2.3.2 PSM Estimators seen as IB-ATE

The matching imputation is based on the calculation of two propensity score

functions. The first one is computed in the control group p̂i0 and the second one

p̂i1 in the treatment group (Rosenbaum and Rubin, 1983). Now the matching

exercise shall be done in each group. In the control group as well as in the

treated group, the values considered as missing values shall be imputed by the

matching algorithm. A unit treated will look for a unit or a group of unit in the

control group which have almost the same score to be matched with. Its value

of potential outcome if it was not treated will be taken from that matching unit.

The same exercise is done for non treated units. Among the different types of

matching, there is one-to-one matching (seminal idea of this research), nearest-

neighbor (NN) matching, caliper and radius matching, stratification and interval

matching, kernel matching and finally local linear matching (LLM).

For example, the Kernel Matching imputation is given by:

Ŷi0 =

N∗
0∑

k=1

K
(
|pi−pk|

k

)
Y ∗k0

N∗
0∑

k=1

K
(
|pi−pk|

k

) and Ŷi1 =

N∗
1∑

k=1

K
(
|pi−pk|

k

)
Y ∗k1

N∗
1∑

k=1

K
(
|pi−pk|

k

) (2.9)

The quantities N∗0 and N∗1 are the respective numbers of control units and treated

units after a given number of imputations. The two numbers vary and express

the fact that imputed units are used in the process of imputation. The quantity

Y ∗kj is the potential outcome of individual k in the group j, thus Y ∗kj can be a

non-imputed value or an imputed value depending on the number of imputations
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done. It is a kind of iterative imputation method.

2.3.3 Smooth Quantile Ratio (SQUARE) Imputation

The intuitive idea behind the SQUARE imputation is to replace empirical quan-

tiles by theoretical quantiles using some assumption on the structure of data

and/or the distribution of one of the groups. The SQUARE estimator was first

developed by Dominici et al. (2005). The method was used to propose an estima-

tor of the mean difference between two highly skewed distributions. It will be used

in this study as a quantile imputation method for estimating the distributional

impact of a treatment.

Considering the general form developed by Venturini et al. (2015), they defined:

h

(
Q1(τ)

Q0(τ)

)
= S(τ, λ) = X(τ, λ)β, (2.10)

with h a chosen function according to the structure of data, S andX are smoothed

regression function and λ is the smoothing parameter. If we replace the quantile

Q1 and Q0 by the empirical quantiles represented by the ordered data Y(i)1 in the

treatment group and Y(i)0 in the control group we get:

Y ∗(i)1 = Y(i)0h
−1
(
X(τ(i), λ)β̂

)
and Y ∗(i)0 =

(
Y(i)1

)−1
h−1

(
X(τ(i), λ)β̂

)
(2.11)

By doing that, the method replaces or completes the sample by smoothed quantile

estimation of missing values. Therefore, from that sample, one can compute what-
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ever estimator we want including QTE estimators. Unfortunately, this method

does not suit the objective of imputation here which is point imputation not a

quantile imputation.

2.4 Distributional Treatment Effects in Litera-

ture

2.4.1 Drawbacks of ATE

The aim of studying the ways a treatment is distributed in the population comes

from the drawbacks of ATE. Compute ATE assumes that it is the treatment effect

and as such, means that the effect of the program is homogenous, therefore the

impact is made constant across all units. It is a very strong assumption that can-

not be possible in real life because units are always different. Consequently, there

is heterogeneity in the effects of the program meaning that the average effect of

the program can be low or higher because of some extreme values of effects. In

fact, as units are different or even if they are almost the same according to the

covariates collected, they could not react to the treatment the same way. Some

may have a greater impact and others a lower impact. Consequently, the average

impact can be affected by some units considered atypical.

To fill the drawback of ATE, to respond to the needs of policy makers and to give

more precision about the effect of a given treatment, researchers have started
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to work on methods that can inform on how treatment has affected a whole

population or a specific sub-group of the targeted population. These methods are

called according to Imbens and Wooldridge (2009) ”quantile and distributional

effects methods”. These methods aim to come up with the effect of the treatment

in sub-group of the targeted population. For a specific section of the distribution

of the potential outcome, or more to give the effect on the whole distribution of

potential outcome.

2.4.2 Treatment effect and distribution of potential out-

come

First works done in this area of research in statistics were in the seventies. Dok-

sum (1974) and Lehmann (1974) were the first to define the quantile treatment

effect. Later on, other researchers like Bitler et al. (2006) estimated the quantile

treatment effects in a randomized evaluation of a job training program. Firpo

(2007) developed methods for estimating QTE in observational studies given un-

confoundedness. Abadie et al. (2002) and Chernozhukov and Hansen (2006)

studied quantile treatment effects in instrumental variables settings and many

others. All these works were done in the classical context of impact evaluation

that is known in the literature.

In the literature, the methods are classified into two groups:

1. Methods using joint distribution of potential outcome to estimate dis-

23



tributional effects. The pioneers of this approach are Hoeffding (1940) and

Frechet (1951) with their work on probability distributions. Then, using

their results in the aim of assessing distributional impact of a program,

Heckman et al. (1997a), Heckman et al. (1993) and Heckman and Smith

(1998) found the joint distribution of (Y0, Y1) using the marginal distribu-

tion of Y0 and Y1 in a randomized control experiment, a practical case.

Later on, researchers such as Aakvik et al. (1999) used joint distribution to

identify treatment effects of discrete outcome assuming heterogeneity in the

effects. An improvement of that work can be read in Aakvik et al. (2005).

Carneiro et al. (2001) and Carneiro et al. (2003) in their research proposed

an approach to bound the distribution using the method common in factor

analysis but applied to model counterfactual distributions.

2. Methods using marginal distribution of potential outcome to esti-

mate distributional effects. Lehmann (1974) and Doksum (1974) were the

first to define the quantile treatment effect as the difference between the

same quantile in the distribution after and before the treatment under rank

preservation assumption. Abadie (2002) used a new instrumental variable

approach that measure program impact on quantiles of the distribution of

potential outcome. At the same time, assuming heterogeneity in the effects

of the program, the monotonicity assumption developed by Imbens and An-

grist (1994) or the uniformity assumption presented in Heckman and Vyt-

lacil (2005), they estimated the Local Quantile Treatment Effect (LQTE)

which is a kind of proxy of LATE in the classical IV literature. They
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used the identification results in Abadie (2003), see also Imbens and Rubin

(1997) for identification of the marginal potential distributions of compliers

when no covariates are present, and Abadie (2002) for bootstrap tests of

distributional treatment effects in a same framework. Cherrnozhukov and

Hansen (2005) also proposed an IV model for quantile treatment effects in

the presence of endogeneity and under rank invariance assumption. Later

on, more development in this area were done by Chernozhukov and Hansen

(2013). In line with IV quantile regression, see also Chetverikov (2013)

for their work on estimating the distributional effects of an endogenous

treatment that varies at the group level when there are group-level un-

observable. Heckman and Vytlacil (2005) also proposed a non-parametric

estimators of treatment effects using Marginal Treatment Effect assuming

at the same time heterogeneity in choice and response. Later on, Carneiro

and Lee (2009) extended that method to the estimation of not only means,

but also distributions of potential outcomes. Athey and Imbens (2006)

proposed an estimation of quantile treatment effect under the assumption

of difference in difference methods meaning data are available before and

after the treatment for all units (kind of panel data analysis) and under

rank preservation assumption. Firpo (2007) proposed a semi parametric

estimator of QTE assuming that selection to treatment is based on observ-

able characteristics. Yu (2014) proposed an estimator of marginal quantile

treatment effects meaning conditional quantile on the covariates and rank

in the distribution.
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The common problem of these two branches of the literature is the counterfactual.

In fact, most of these methods suffer from the fact that to estimate marginal

distribution or joint distribution of potential outcome, the full set of observations

is needed. Given that it is not possible to observe Y0 and Y1 at the same time,

the previous methods suffer from its incomplete nature, even if the method of

estimation of the distribution is good. Despite the precision given by these new

methods, it is still difficult, in literature, to obtain individual effect consequently,

the true effect on the distribution. So many assumptions are often made before

coming up with an acceptable impact. This chapter uses the main result from

Chapter 3 to solve the problem of distributional effects from the source as Rubin

highlighted, assuming only that counterfactual is a missing value that can be

estimated by specific methods according to the assignment process.

2.5 The Hypothesis “No Effects”

In the statistical process, after an estimation, a testing procedure must follow to

see whether the estimates are significant or not. The tests of significance of the

effects should be performed after estimation of the effect of a treatment. In the

literature of IE, few studies have been done in this area.

2.5.1 Testing the treatment effects in the literature

In the framework of impact evaluation, a large part of the recent literature fo-

cuses on estimation of the average effect of the treatment under assumptions
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of unconfoundedness and/or ignorability, following the seminal work by Rubin

(1974) and Rosenbaum and Rubin (1983): homogeneity of effects. Meanwhile,

there is a strong evidence of heterogeneity of the effects of a treatment from a

subpopulation point of view or across the distribution of the potential outcome

(Bitler et al., 2006; Djebbari and Smith, 2008; Jackson and Page, 2013; Bitler

et al., 2008). Despite the recent works done to address distributional effect of

treatment1, few studies (Crump et al., 2008; Abadie, 2011) have been done to

test rigorously the significance of the treatment effect in a population. Standard

tests of the “no-treatment-effect” hypothesis include permutation tests (Pitman,

1937, 1938b,a), the Wilcoxon rank sum test (Wilcoxon, 1945), two-sample t test

(Welch, 1938), and Fisher type randomization tests (Fisher, 1935). Most practi-

tioners are aware that these procedure tests differ from “no-effect” hypotheses and

are based on different modeling assumptions. Most of these tests are concerned

with the distribution and more recently, many tests constructed are related to

distributions.

2.5.2 Comparison of distribution

In recent literature, researchers facing comparison of distributions are not only in-

terested in the difference in means and variances but also in the entire distribution

(Goldman and Kaplan, 2017). They may want to know first if the distributions

are the same, but when they are different, what makes them different and where

1See Chapter 3 for literature on it.
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are they different. The classical statistical tests used to compare distribution

answer two questions: (1) Are the distributions the same or different? (2) Do

the distributions differ from the mean or the median, or another specific quan-

tile? Having the answers to those two questions does not tell us how significant

the difference in quantiles can be or how different the CDF of the datasets are.

The problem highlighted in this paragraph is very common in different areas of

research including geography, demography and mostly in the area of economics

with program evaluation and other economics experiments. This literature can

be used to test the hypothesis “No effect” in the framework of IE.

2.6 Summary

This chapter presented the literature review on the treatment effect estimators

starting with elementary statistical concepts such as estimators, quantiles and

test of hypothesis. Then, methods of impact evaluation and imputation were

presented in their basic form, extended form can be obtain easily from literature.

Some seminal works on treatment effect estimators done in the literature very

useful for the idea developed in this research were presented as well. The next

chapter will introduce the concept of imputation based estimator.
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CHAPTER 3

IMPUTATION BASED AVERAGE

TREATMENT EFFECTS

ESTIMATORS

3.1 Introduction

This chapter introduces the notion of treatment effect estimators based on im-

putation methods. Imputation Based Average Treatment Effects (IB-ATE) are

developed following the basic definition of impact given by Rubin (1974) and

their properties are studied here. The intuition is to assume that counterfactual

is a missing value that can be imputed using classical imputation methods, then

using Rubin’s definition of impact, we can derive our estimators.

3.2 Definition and Structural form of IB-ATE

This section presents the framework and assumptions around IB-ATE and con-

clude with the definition and structural form of IB-ATE.

3.2.1 Framework and Assumptions

There are a number of assumptions made in this research linked to the assignment

process and the missingness mechanism. There is also a need to describe the
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framework in which this research is done in terms of distributions and hypotheses.

3.2.1.1 Assignment and Missingness Process

For this chapter and throughout the research, there is a parallel between the as-

signment to treatment process and the missingness mechanism. Since the coun-

terfactual is assumed to be a missing observation, each assignment process leads

to missing data. In IE settings, two main assignment to treatment processes can

distinguish:

1. Randomization: this means that the treated unit or the treated group is

randomly selected from a population. All units have the same chance to

be selected or not in the treatment group. From this selection process, the

missingness mechanism is MCAR;

2. Selection on observable: in this case, the probability to be selected

in the treatment group differ from one unit to another. All units don’t

have the same probability to be treated. Here the missingness mechanism

can be MAR or NMAR depending on if there are other unobservable

characteristics influencing the status of treated or not.

3.2.1.2 Statistical Framework

Let Y0 and Y1 be two independent continuous random variables with means µ0

and µ1, and standard deviation σ0 and σ1. Let also T be a Bernoulli random

variable with a given probability p independent to Y0 and Y1 taking two possible

values 0 and 1. Let’s assume that a sample of n observations is drawn from the
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random vector (Y0, Y1, T ) in a population, defined by: (Y0i, Y1i, Ti)
n
i=1. Practi-

cally in the framework of impact evaluation, Y0 and Y1 cannot be observed in the

reality at the same time for a single unit, therefore Y0 is observed if the unit is

not treated (T = 0) and Y1 is observed if the unit is treated (T = 1), effect of a

program assignment decided by T .

From the rubin’s framework and definition, we assume that we can observe at

the same time for a single unit Yi0 and Yi1. It is the hypothetical situation where

everyone is not treated in a state and everyone is treated in another state.

For the IB-ATE framework, let Ỹ0 and Ỹ1 be two estimators of Y0 and Y1 using a

given imputation method or any other methods that can be performed. Let also

T be a Bernoulli random variable, the same defined early with all its properties.

We assume that a sample of n observations is drawn from the random vector

(Y ∗0 , Y
∗
1 , T ) in a population, such that; for a given unit i, the different quantities

are defined as follows:


Y ∗0i = Ỹ0i and Y

∗
1i = Y1i if Ti = 1

Y ∗0i = Y0i and Y
∗
1i = Ỹ1i if Ti = 0

(3.1)

For treated units, the potential outcome if they were not treated is estimated.

For non treated units, the potential outcome if they were treated is estimated.

In summary, counterfactual is estimated using a given imputation method.
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3.2.2 Structural Form of Estimators

Definition 3.1. From Rubin’s definition of true effect, under Rubin’s frame-

work, assuming that a sample of n observations is drawn from the random vector

(Yi0, Yi1)
n
i=1 in a subpopulation, the true effect of a program assignment on a

specific unit i is given by ∆i and the true average effect of the program on the

whole sample is given by ∆ as follows:

∆i = Y1i − Y0i (3.2)

∆ =
1

n

n∑
i=1

∆i =
1

n

n∑
i=1

(Y1i − Y0i) (3.3)

In case the treatment is defined by T but for some reasons the counterfactual can

be obtain, the average effect on the real beneficiary of the program (n1 units)

and on the non-beneficiary (n−n1 units) of the program (defined by the random

variable T ) can as well be defined as follows:

∆T =
1

n1

n∑
i=1

∆iTi (3.4)

∆NT =
1

n− n1

n∑
i=1

∆i(1− Ti) (3.5)

Remark 3.1. 1. The main effect or the true effect in the population to es-

timate is actually the difference of the mean µ1 − µ0 of the two random
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variables.

2. The quantity ∆ in equation (3.3) is an unbiased estimator of the difference

of the mean µ1 − µ0 of the two random variables.

Definition 3.2. In the IB-ATE framework, the Imputation Based Average Treat-

ment Effects are defined as follows:

1. The imputation based effect of the program on the unit i is δ̂i and equal to

δ̂i = Y ∗1i − Y ∗0i = (Y1i − Ỹ0i)Ti + (Ỹ1i − Y0i)(1− Ti) (3.6)

2. The Imputation Based Average Treatment Effect on population, treated

and non-treated units respectively δ̂, δ̂T and δ̂NT are defined as follows:

δ̂ =
1

n

n∑
i=1

δ̂i (3.7)

δ̂T =
1

n1

n∑
i=1

δ̂iTi (3.8)

δ̂NT =
1

n− n1

n∑
i=1

δ̂i(1− Ti) (3.9)

Proposition 3.1. Under statistical framework and assumptions of Definitions

3.1 and 3.2,

1. δ̂i is an estimator of the true effect ∆i on the unit i.
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2. δ̂ is an estimator of the true effect average treatment effect ∆.

Proof. A quantity or a function being an estimator of a parameter means that

using a random variables sample, a realization of the sample used as an argument

of estimator will produce a value close to the parameter to be estimated.

1. Since δ̂i is a function of Ỹ0 and Ỹ1 which are actually estimators of Y0 and Y1

by definition and themselves can be written as a function of ∆i, therefore

δ̂i is an estimator of ∆i.

2. Since δ̂ is a function of Ỹ0 and Ỹ1 which are actually estimators of Y0 and

Y1 by definition and themselves can be written as a function of ∆, therefore

δ̂ is an estimator of ∆.

3.3 Properties of IB-ATE Estimators

After having the structural form of estimators, the properties can be investigated.

3.3.1 Unbiasedness

Proposition 3.2. Let b0 and b1 be the bias due to estimation of Y0 and Y1

respectively by Ỹ0 and Ỹ1. The estimators Ỹ0 and Ỹ1 are unbiased if b0 = 0 and

b1 = 0. Under statistical framework and assumptions of Definitions 3.1 and 3.2

we have the following properties:
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1. If Ỹ0 and Ỹ1 are biased estimators of Y0 and Y1 then δ̂i will be a biased

estimator of ∆i with the bias equal to bi = b1i − Ti(b0i + b1i).

2. If Ỹ0 and Ỹ1 are biased estimators of Y0 and Y1 then δ̂ will be a biased

estimator of ∆ with the bias equal to Bi = 1
n

n∑
i=1

(b1i − Ti(b0i + b1i)).

3. δ̂i is an unbiased estimator of ∆i if and only if Ỹ0 and Ỹ1 are unbiased

estimators of Y0 and Y1.

4. δ̂ is an unbiased estimator of ∆ if and only if Ỹ0 and Ỹ1 are unbiased

estimators of Y0 and Y1.

Proof. The proof of this proposition is based on the expectation calculation of

the estimators to evaluate the bias as described in Section 1 of Chapter 2.

1. The expected value of δ̂i is given by:

E(δ̂i) = E
(

(Y1i − Ỹ0i)Ti + (Ỹ1i − Y0i)(1− Ti)
)

= E
(

(Y1i − Ỹ0i)Ti
)

+ E
(

(Ỹ1i − Y0i)(1− Ti)
)

= TiE
(

(Y1i − Ỹ0i)
)

+ (1− Ti)E
(

(Ỹ1i − Y0i)
)

= Ti(E(Y1i)− E(Ỹ0i)) + (1− Ti)(E(Ỹ1i)− E(Y0i))

= Ti(Y1i − E(Ỹ0i)) + (1− Ti)(E(Ỹ1i)− Y0i)

= Ti(Y1i − Y0i − b0i) + (1− Ti)(Y1i + b1i − Y0i) (as Ỹ0i and Ỹ1i are biased)

= (1− Ti + Ti)(Y1i − Y0i) + (1− Ti)b1i − Tib0i

= Y1i − Y0i + [b1i − Ti(b0i + b1i)]

E(δ̂i) = ∆i + bi
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2. For the sample case we have:

E(δ̂) = E

(
1

n

n∑
i=1

δ̂i

)
=

1

n
E

(
n∑
i=1

δ̂i

)

=
1

n

n∑
i=1

E(δ̂i) (applying result 1. of this proof)

=
1

n

n∑
i=1

(∆i + bi) =
1

n

n∑
i=1

∆i +
1

n

n∑
i=1

bi

E(δ̂) = ∆ +B

3. Computing the expected value of δ̂i will give this:

E(δ̂i) = E
(

(Y1i − Ỹ0i)Ti + (Ỹ1i − Y0i)(1− Ti)
)

= E
(

(Y1i − Ỹ0i)Ti
)

+ E
(

(Ỹ1i − Y0i)(1− Ti)
)

= TiE
(

(Y1i − Ỹ0i)
)

+ (1− Ti)E
(

(Ỹ1i − Y0i)
)

= Ti(E(Y1i)− E(Ỹ0i)) + (1− Ti)(E(Ỹ1i)− E(Y0i))

= Ti(Y1i − E(Ỹ0i)) + (1− Ti)(E(Ỹ1i)− Y0i)

= Ti(Y1i − Y0i) + (1− Ti)(Y1i − Y0i) (as Ỹ0i and Ỹ1i are unbiased)

= (1− Ti + Ti)(Y1i − Y0i)

= Y1i − Y0i

E(δ̂i) = ∆i

Therefore δ̂i is an unbiased estimator of ∆i.
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4. Computing as previously the expected value of δ will give this:

E(δ̂) = E

(
1

n

n∑
i=1

δ̂i

)

=
1

n
E

(
n∑
i=1

δ̂i

)

=
1

n

n∑
i=1

E(δ̂i) (applying proof 3.)

=
1

n

n∑
i=1

∆i = ∆

E(δ̂) = ∆

Therefore δ̂ is an unbiased estimator of ∆.

3.3.2 Convergence

Proposition 3.3. Under statistical framework and assumptions of Definitions

3.1 and 3.2, the estimator δ̂ is a convergent estimator of ∆ if and only if Ỹ0 and

Ỹ1 are convergent estimators of Y0 and Y1. Mathematically:

lim
n→∞

δ̂ = ∆⇔ lim
n→∞

Ỹ0 = Y0 and lim
n→∞

Ỹ1 = Y1

Proof. From the linearity of the limit of a quantity we have:
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lim
n→∞

δ̂ = lim
n→∞

1

n

n∑
i=1

δ̂i

=
1

n

n∑
i=1

lim
n→∞

δ̂i

=
1

n

n∑
i=1

lim
n→∞

[
(Y1i − Ỹ0i)Ti + (Ỹ1i − Y0i)(1− Ti)

]
=

1

n

n∑
i=1

[
(Y1i − lim

n→∞
Ỹ0i)Ti + ( lim

n→∞
Ỹ1i − Y0i)(1− Ti)

]
=

1

n

n∑
i=1

[(Y1i − Y0i)Ti + (Y1i − Y0i)(1− Ti)] (as Ỹ0i and Ỹ1i are convergent)

=
1

n

n∑
i=1

∆i

lim
n→∞

δ̂ = ∆

3.3.3 Consistency

Proposition 3.4. Under statistical framework and assumptions of Definitions

3.1 and 3.2, the estimator δ̂ is a consistent estimator of ∆ if and only if Ỹ0 and

Ỹ1 are consistent estimators of Y0 and Y1. Mathematically, the two following

conditions have to be verified:

1. lim
n→∞

E(δ̂) = ∆ if and only if lim
n→+∞

b0 = lim
n→+∞

b1 = 0.

2. lim
n→∞

V ar(δ̂) = 0 if and only if lim
n→+∞

V ar(Ỹ0) = lim
n→+∞

V ar(Ỹ1) = 0.

Proof. To prove the proposition, two thing have to be shown:

1. For the first point, see proof of Proposition 3.3;
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2. For the variance, it is given by the equation:

V ar(δ̂) = V ar

(
1

n

n∑
i=1

δ̂i

)

=
1

n2
V ar

(
n∑
i=1

δ̂i

)
=

1

n2
V ar

(
n∑
i=1

(Y1i − Ỹ0i)Ti + (Ỹ1i − Y0i)(1− Ti)

)

=
1

n2

(
n∑
i=1

V ar
(

(Y1i − Ỹ0i)Ti + (Ỹ1i − Y0i)(1− Ti)
))

(the cov = 0)

=
1

n2

(
n∑
i=1

T 2
i V ar(Y1i − Ỹ0i) + (1− Ti)2V ar(Ỹ1i − Y0i)

)

=
1

n2

(
n∑
i=1

T 2
i V ar(Ỹ0i) + (1− Ti)2V ar(Ỹ1i)

)

As Ỹ0 and Ỹ1 are consistent estimators of Y0 and Y1 their variance goes to

zero as the sample size increases. For n going to infinity, the variance of δ̂

will go to 0.

3.4 Asymptotic Properties: Simulations

The main objective of this section is to use simulations to test our hypothesis

asymptotically that imputation methods can lead to better estimators of average

effects than IE estimators or at least as good as existing ones. In the meantime,

the theoretical properties such as convergence and consistency are tested. In this

section, description of simulation procedure and parameters is done, then simula-

tions are performed under Random Assignment (MCAR missingness) hypothesis

and under Deterministic Assignment (MAR missingness) hypothesis.
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3.4.1 Algorithm and Assumption

The simulation process recreates an hypothetical situation where a treatment

has to be assigned in a population with all the parameters being known. For

example, assignment process is well known (T ), the potential outcome is known

(Y ), decision to treat everyone or not to treat everyone can be taken so that

computation of the true impact of the project (∆i and ∆) can be done easily. In

brief, all parameters are mastered and they can be modified to obtain different

results according to the objectives fixed. Therefore, for a given assignment pro-

cess, simulation results will tell which imputation method gives better IB-ATE

estimators. Imputation methods will be judged at two levels: first the capac-

ity to estimate counterfactual (using imputation) that lead to better estimators

than existing ones and second, the capacity to reconstruct the exact value of the

missing observation (RMSE indicators are used). After imputation, IB-ATE are

produced and compared to existing ones in IE framework.

The Table 3.1 gives the final structure of the data simulated on which estimations

are performed in this simulation.

• Y denotes the potential outcome;

• X a set of covariates collected for identification of each case;

• T is the treatment indicator, 1 for treated units and 0 for non treated units;

• a index meaning after the treatment;
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Table 3.1: Database after simulation of variables.

Case N
Bef Treat Hypot Af Treat Out With Miss

Yb Xb Y2T Y2NT T Ya Xa YT YNT

1

2

.

.

.

i Yb,i Xb,i Y2T,i Y2NT,i 1 Ya,i Xa,i YT,i .

j Yb,j Xb,j Y2T,j Y2NT,j 0 Ya,j Xa,j . YNT,j

.

.

.

N

• b index meaning before the treatment;

• Y2T is the hypothetical outcome if everyone is treated;

• Y2NT is the hypothetical outcome if everyone is not treated;

• YT is the potential outcome in which non-treated cases are considered as

missing values;

• YNT is the potential outcome in which treated cases are considered as miss-

ing values;

• Ya is the potential outcome which is really observed in the IE framework

and it is defined as follows: Ya,i = YT,i and Ya,j = YNT,j, for i treated and j

non treated.
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The variable of treatment T is simulated using a binomial distribution1 with

a fixed probability if a RA process is assumed or under specific conditions on

X in case the assignment is done on observable characteristics. After simu-

lation of the database, the Rubin’s true average treatment effect is given by

∆ = mean(Y2T − Y2NT ) and the true average treatment on treated unit is given

as follows ∆T = mean(Y2T − Y2NT |T = 1)

Under the large class of existing imputation methods, the chosen ones are: Mean

imputation, Random imputation, Linear regression imputation (deterministic and

random), Nearest Neighbour imputation, Multiple Imputation, Maximum Like-

lihood imputation, Propensity score matching imputation and finally Quantile

regression imputation which is not commonly used. All IE methods presented in

Chapter 2 are used as well here for the purpose of comparisons.

To test the performance of imputation methods, the Root Mean Squared Error

is computed and comparisons are made among different methods. To test the

performance of our computed IB-ATE, the average bias is computed (AvrgBias =

E(θ̂− θ)) and compared to the one for existing IE methods. All this done under

a bootstrap procedure of 1000 replications.

3.4.2 Results and comments

The results are presented in two groups depending on assumptions made on the

assignment process.

1See appendix A1 for more details about distributions and codes of simulation
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3.4.2.1 Random Assignment Hypothesis Results (MCAR)

Assuming that the treatment is randomly assigned as in medical experiments for

a new drug, the first consequence is the missingness process which is MCAR. A

proportion of treated units is fixed to be 40% of the total population (assumption

on T as a binomial distribution of parameter 1 and 0.4) and for the simulation

we made sure that each sample drawn from the population had the same propor-

tions. The IE methods implemented here were Randomization (RA), PSM and

DID. The performance of the IE estimators is evaluated using the average bias

and the performance of imputation methods among them is evaluated using the

RMSE. Table 3.2 gives a summary of simulation results.

For all purely IE methods, the estimators (ATE and ATT) were asymptotically

convergent. The average bias was decreasing as the sample size was increasing.

The best method among them no matter the size of the sample was DID. The

average bias was the smallest among all the methods for all sample sizes (See

Table 3.2, line six ). At the same time, the standard deviation was always small

for the estimators of DID. Consequently, the DID was the best one among the IE

methods 2.

2See Appendix A1 for more details on simulations
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For the convergence of estimators, the bias was decreasing and tend to 0 as

the sample size was increasing. Depending on the sample size, the best IB-TE

were changing. For N=50, the best were QR for ATE and Deterministic Linear

regression for ATT. For N=100, the best ones were random linear regression im-

putation for ATE and k-NN for ATT. For large samples, N=1500, the best ones

were ML imputation for ATE (-0.0205 average bias) and mean imputation for

ATT (-0.0163 average bias). On average, the best IB-TE estimators no matter

the sample size were the Maximum Likelihood (ML) and Deterministic Linear

Regression model (Det ML), methods which was always among the three best

IB-ATE when changing the sample size. For the case of mean imputation, IB-TE

and IE estimators are the same theoretically and empirically.

This led to the comparison of the IE estimators with IB ATE estimators. Here,

the speed of convergence and the standard deviation in certain cases were used

to compare. As the sample size increased, the average bias of IB-ATE were close

to the average bias of DID which is the best method used in IE framework. For

example, N=100 the average bias of DID was -0.1 for ATT and it was the same

average bias for k-NN method. For N=800, k-NN performed far better than DID

for ATE (0.04 against 0.23 for average bias) and also MI performed better than

DID for ATT (-0.05 against 0.09 in terms of average bias). For larger sample,

there was an IB-ATE estimator performing better than DID estimators or as well

as.
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In summary, it is true that the DID methods gave better results on average for

all sample given the average bias and compared to a single method of IB-ATE

but at the same time for some IB-ATE estimators, the average bias was smaller

than the average bias of DID even if the standard deviation was bigger. In addi-

tion, to implement the DID method, the user needs to collect information before

the program which is not always possible. In that case, DID is not applicable.

Therefore, the second-best IE methods to use is the PSM which is not as good

as the IE method, especially ML imputation or k-NN no matter the sample size.

3.4.2.2 Selection on Observable Results (MAR or NMAR)

Assuming here that the treatment is not randomly assigned but depends on a

given variable called instrument (A single variable in this simulation to simplify),

the missingness process is MAR. From a population of 25000 units, a proportion

of 40% of unit was drawn around a given threshold fixed on the instrument. This

was done to be able to apply the IV regression and the sharp RDD at the same

time. From that subpopulation around the threshold, we have drawn our data

with an increasing sample size making sure that the share of treated in each sam-

ple is 40% as in the previous experiment. Finally, repeating what is done in the

first case, IE methods and imputation methods were applied in each sample to

obtain best IE estimators and imputation method.

When looking at the results of the simulations recorded in Table 3.3, all the

average bias of IE methods were decreasing, meaning that the estimators are
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asymptotically unbiased and convergent. DID method is always the best method

in general no matter the sample size. Out of the six sample size presented here,

DID was the best 5 times and the second best for N=100 where the smallest aver-

age bias for RA were -0.17 and -0.43 for ATE and ATT respectively and for DID

the average bias was -0.48 and 0.74. For the other sample size, the average bias of

the DID method was the smallest and decreasing. Indubitably, DID estimators

were the best again despite IV estimators and RDD estimators.

If the imputation methods were assessed on their ability to estimate the treat-

ment effect, given the different sample sizes, all the average bias were found to

decrease to 0 except for PSM imputation and QR imputation. So, except those

two methods, here again IB-TE are asymptotically unbiased. Mean imputation

and Random imputation were the best methods among all of them. As it is

recorded in Table 3.3, the smallest average bias is either from mean imputation

or from random imputation except for N=50 where QR Imp and k-NN were the

best IB-TE estimators. The other methods, like MI also performed well but

not as well as Mean and Random imputation. Imputation Methods were able to

produce acceptable average treatment effect estimators no matter the sample size.

Comparing classical IE estimators with IB-ATE estimators, it was found that with

all data available (especially data before the program and a large set of covariates),

the only IE method that was as good as the IB-ATE was DID especially for

large sample. For small samples (N=50 and 100), DID was not the best, QR
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Imp and Conditional mean imputation were the best, smallest average bias. For

N=500 and considering ATE, the smallest average bias was recorded for general

random imputation -0.005, the second smallest was -0.366 from DID; for ATT, the

smallest average bias was -0.026 for general random imputation and the second

was 0.028 from hot deck imputation. For large sample strictly greater than 500,

DID got the smallest average bias even if the other IB-ATE estimators were close

in terms of average bias. The other IE methods did not perform well compared

to DID and IB-ATE estimators, especially IV and RDD which were supposed

to produce better estimators given the assignment process. For IV, the average

bias was decreasing then became constant around 5 as the sample size increased.

For RDD, the estimator was asymptotically convergent and performed as well as

some IB-TE estimators but still less than the best three.
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In summary, except DID which gave asymptotically unbiased estimators with

the smallest variance, one can always find an imputation method that gives small

average bias and small variance than the other IE methods. This is to say IB-ATE

estimators can perform as well as DID estimators but with a bigger variance. In

addition, in case of shortage of data (if it is not possible to get data before the

program), IB-ATE is the best solution if the assignment process is not random.

PSM, IV and RDD produce convergent estimators but not as good as IB-ATE

estimators.

3.4.3 Advantages of IB-ATE and Discussions

The first advantage of having IB-ATE estimators is related to availability of data.

By using bootstrap, estimators (IB-ATE) were found to be as good as the one

obtained with IE methods. Some of those estimators used only the potential

outcome after the treatment to produce good estimators (Random imputation

estimators). While DID for example needs data before the assignment of the

treatment, MI method does not need that to produce a good estimator as DID

estimators. When covariates are not available or not enough, IE methods like

PSM, IV and RDD cannot be performed but still Random imputation and Mean

imputation can be performed. In case of shortage of data in impact evaluation

framework, IB-ATE estimators are the best ones to use.

Another advantage of using IB-TE estimators is the fact that from them, all types

of treatment effects can be obtained. Imputation gives the possibility to produce
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ATE, ATT and ATNT. In addition to that, with IB-ATE it is easily possible to

obtain unit effect. For each unit of the program treated, an estimation of the

impact of the program can be given. Therefore, the distributional effect across

the different subgroups of the population. The last one is very important in

medical experiment where the treatment is randomly assigned, one may want to

know after the experiment what the impact of the drug would have been if used

the other way round. Instead of starting experiment again, IB-TE can give that

result without effort. The last advantage is the simplicity of the methods. All of

those imputation methods are implemented in R and the only effort to make is

the bootstrap program. It is a small price to pay for good estimators in a context

of data shortage.

Simulations performed are of course subjected to some simulation choices like the

distribution of the potential outcome, the share of treated unit in the sample and

the distribution of covariates. This does not mean that changing the parameters

of the simulation will lead to totally different results absolutely but the results

can lean on the simulation parameters. By changing the parameters, the results

can be in favour of IB-ATE or IE methods. The share of the treated units is not

an issue because in practice, the treated units are always less than non-treated

units. Therefore, it is always possible to complete the sample of treated by non-

treated to obtain a share of 40%. For all these reasons, IB-ATE estimators are

tested on a real program in the next section to see how they perform for a real

data and problem.
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3.5 Applications

After simulations, where the results showed that IB-ATE estimators can perform

as well as classic treatment effect estimators otherwise better in some cases, the

next step is to apply these results to real set of data since simulations are always

questionable.

3.5.1 Description of the program and Data

The famous Lalonde (1986) dataset in IE literature is considered for application.

Lalonde data set contain the treated and control units of the male sub-sample

from the National Supported Work Demonstration. The NSW Demonstration,

Manpower Demonstration Research Corporation (MDRC) 1983, was a federally

and privately funded program implemented in the mid-1970s to provide work ex-

perience for a period of 6-18 months to individuals who had faced economic and

social problems prior to enrolment in the program. Those randomly selected to

join the program participated in various types of work, such as restaurant and

construction work. Preintervention variables where collected by the program to

allow Lalonde to use control groups, selected using preintervention variables to

compare and obtain the treatment effect on treated.

Based on pre-intervention variables, Dehejia and Wahba (1999) extracted a fur-

ther subset of Lalonde’s NSW experimental data, a subset containing information

on RE74 (earnings in 1974). Applying the same method of Lalonde they came up
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with an average treatment effect on treated (difference in earning due to training

program) of $ 1794. Later, they used the propensity score method and they came

up with a treatment effect on treated range of $ 1473 to $ 1774, quite close to

the result of Lalonde which had the same dataset.

3.5.2 Results and Comments

As a reminder, IB-TE estimators combines imputation methods and bootstrap

to obtain treatment effects estimators. In this case, the methods developed in

this chapter were applied on the subset of Lalonde (1986) drawn by Dehejia and

Wahba (1999).

Table 3.4: IB-ATE Estimators using Lalonde’s Subsample.

General
summary of results

Bootstrap with subsample of Lalonde’s data.

n=200 n=400

ATE Sd ATT Sd ATE Sd ATT Sd

IE
Meth

RA 1794 767 1794 767 1785.3 252 1785.3 252

PSM 1632.4 995 1925.8 996 1772.8 458 2039.4 454

IB
Results

Gen Mean Imp 1794 767 1794 167 1785.3 252 1785.3 252

Rand
Imp

Gen 1792.4 903 1806.7 967 1773.1 418 1792.3 494

Hot deck 1784 1073 1769.1 1067 1812.1 586 1789.5 616

Det LM 1576.6 759 1836.8 785 1606.9 246 1816 251

k-NN
V1 1538.3 923 2003.4 1015 1920.2 343 2377.6 393

V2 1611.7 913 2174.8 993 1853.2 336 2178.2 369

Rand LM 1591.2 891 1834.1 1010 1586.2 420 1804.6 499

MI with MICE 1670.5 898 1668.2 892 1631.9 371 1620.8 378

ML
Imp

Normal 1572.2 927 1797.4 961 1613.4 407 1782.1 459

Dist free 1585.1 918 1802.3 940 1629.1 406 1782.8 444

For a fixed sample size of n=200 drawn from a population of 445 (respecting the

share of 41% of treated) and after 1000 replications, results recorded in Table

3.4 are interesting. The bootstrap of mean imputation method led to exactly
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the same treatment effect on treated as the results of Lalonde (1986) which is

$ 1794. IB-TE estimators produce by ML imputation ($ 1797.4), and Random

Imputation ($ 1769.1) are closer to the benchmark of Lalonde and better than the

results obtain by Dehejia and Wahba (1999) in their work (a range from $ 1473

to $ 1774). Also looking at the standard errors, they are smaller than the ones

obtain by Lalonde (1986) and Dehejia and Wahba (1999), implying a smaller

confidence interval. For n=200 and R=1000 replication in the bootstrap, the

best 3 IB-TE estimators are close to the benchmark and better than those obtain

by the propensity score using additional costly data from comparison groups.

Increasing the sample size of the bootstrap, results were still the same but with a

much smaller confidence interval. As conclusion, instead of spending money and

time to find additional control groups and perform propensity score, combining

ML imputation or Random imputation with the bootstrap led to better results

of average treatment effect on treated than propensity score matching used by

Dehejia and Wahba (1999) and results as good as the one obtains by Lalonde

(benchmark). On top of these results, IB-TE gives effect on the population and

effect on those who were not treated if they have been treated.

3.6 Summary

In this chapter, the notion of imputation based treatment effect estimators in

the framework of IE was introduced. Imputation methods were used to estimate

counterfactual then derive Imputation Based Average Treatment Effect (IB-ATE)
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estimators. The estimators derived are unbiased and convergent if the estimates

of counterfactual are unbiased and convergent. Simulations showed that those

estimators are asymptotically unbiased and consistent. In addition, they are as

good as the existing ones (classical RA, PSM etc. estimators). An application

was done to show that even for real data they are effective. The next chapter uses

the seminal idea of imputation to propose another class of estimators, thereby

assessing the distributional effect of a treatment on a population.
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CHAPTER 4

IMPUTATION BASED

DISTRIBUTIONAL TREATMENT

EFFECTS

4.1 Introduction

This chapter develops Distributional Treatment Effect Estimators based on impu-

tation methods and study their properties. Following the main result of Chapter

3 consisting of estimating counterfactual using imputation methods and based on

seminal works done by Doksum (1974) and Lehmann (1974), Imputation Based

Distributional Treatment Effects Estimators (IB-DTE) were constructed. They

focused on the distributions of the potential outcome before and after the treat-

ment reconstructed using imputation methods to estimate how the treatment is

distributed in the population.

4.2 Definition and Structural form of IB-DTE

4.2.1 Framework and Assumptions

Since the results of Chapter 3 are used here as input, the framework and assump-

tions here are the ones presented in Chapter 3, Subsection 2.2. In summary, the
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results obtained here are in a framework where assignment process and missing-

ness process are linked, assignment generates the missingness process. Given the

assignment process, the counterfactual is estimated using imputation methods,

the same methods used in Chapter 3. The statistical framework concerning the

distributions and the variable is the same.

In addition to the assumptions and statistical framework of Chapter 3, the re-

constructed distribution using imputation is defined here. In order to define the

reconstructed distribution, let us recollect the definition of the potential outcome

given by equation (3.7). Under statistical framework of section 3.2.2, under as-

sumption of the same section we define the distribution reconstructed as follows

:

CoCom =
(
Ỹ1,0, Ỹ2,0, ..., Ỹn1,0, Yn1+1,0, ..., Yn,0

)
(4.1)

and

TrCom =
(
Y1,1, Y2,1, ..., Yn1,1, Ỹn1+1,1, ..., Ỹn,1

)
(4.2)

as the distribution of the potential outcome of the control group reconstructed

in equation (4.1) and the distribution of potential outcome of the treated group

reconstructed in equation (4.2) using the same imputation method, with n1 the

number of treated unit in the population.

4.2.2 Structural form of Estimators

Let’s define first the true quantile treatment effect seen in Rubin’s framework.
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Definition 4.1. Under rank preservation assumption, the true quantile treat-

ment effect defined with the idea of Rubin is given by

TrQTEp = Q1(p)−Q0(p) = F−11 (p)− F−10 (p) (4.3)

With F0 distribution of (Yi0)
n
i=1 and F1 distribution of (Yi1)

n
i=1 , p a given prob-

ability. It is basically the difference between the same theoretical quantile of the

random variables Y0 and Y1, the parameter to estimate in this section.

Going back in the literature, the following definition is widely used to estimate

the distributional effects.

Definition 4.2. Let Fr0 be the restricted CDF of Yi0 for units with Ti = 0

(distribution of {Yi0, i ∈ (i/Ti = 0)}, n0 non-treated cases) and Fr1 be the

restricted CDF of Yi1 for units with Ti = 1 (distribution of {Yi1, i ∈ (i/Ti = 1)},

n1 treated cases) with n0 +n1 = n. According to Imbens and Wooldridge (2009),

Doksum (1974) and (Lehmann, 1974), under rank preservation assumption, the

quantile treatment effect is given by

QTEp = Qn1(p)−Qn0(p) = F−1r1 (p)− F−1r0 (p), (4.4)

with p a given probability, the index r stands for restricted.

Remark 4.1. 1. Restricted term is used in this definition because the sample

of treated and non-treated are automatically reduced by the assignment

process while the true estimator is computed on a full sample assuming
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everyone is non-treated first then everyone is treated.

2. This definition assumes rank preservation. Meaning that a unit in a given

quantile before the treatment will remain in the same quantile after the

treatment has been undertaken.

3. The distributions considered here are somehow incomplete because the

counterfactual is not estimated, therefore, distributions are truncated.

4. Would this QTE be the same if considering the initial distribution without

taking the one generated by only those who are treated (T = 1) and those

who are not treated (T = 0), meaning only what is observed?

As highlighted in the literature, the measure of distributional effect of a treatment

is basically given by the Quantile Treatment Effect (QTE). It is the difference

between two quantiles of same order from the restricted distributions before and

after the treatment under rank preservation assumption (Doksum, 1974; Imbens

and Wooldridge, 2009; Firpo, 2007). At first, this study used the same idea to

propose a new form of quantile effect based on imputation overcoming the issue

of restriction.

Definition 4.3. Under the statistical framework, the definition of the distribu-

tions CoCom and TrCom and under rank preservation assumption, the Imputa-

tion Based Modified Quantile Treatment Effect (IB −mQTE) is defined by:

IB −mQTEp = Q1n,I(p)−Q0n,I(p) = F−11I (p)− F−10I ; (4.5)
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with F0I the empirical CDF of CoCom and F1I the empirical CDF of TrCom, n

the sample size, p a given probability used to calculate the corresponding quantile.

The index I stands for imputed, 0 for before the treatment and 1 for after the

treatment.

In addition to this specific definition to this research (based on imputation), 04

others quantiles treatment effect are defined without taking any assumption. In

fact, the rank preservation assumption helped to make sure that the quantiles

compared are from the same order before and after the treatment, the units com-

pared are the same theoretically. It avoid shifting of units from one quantile to

another one. Since imputation helps in tracking each unit before and after the

treatment (individual effects), the following definitions do not need rank preser-

vation assumption.

In order to ease the comprehension, the following framework is given. A quantile

preceded by the letter G is the quantile in term of group of units such that

their value for the random variable is less than the corresponding quantile. As

example: GQj(p) = {Yij/Yij 6 Qj(p)} , j ∈ {0, 1}. Basically, dropping out

the rank preservation assumption and since imputation can allow us to have

individual effect, the following definitions are based on the comparison of group

quantiles using different statistics. Given a structure of quantile (quartiles, deciles

or centiles), the process is the following:

(i) Identify the quantile group of belonging for each unit in the distribution of

the control group given by the following sample
(
Ỹ1,0, Ỹ2,0, ..., Ỹn1,0, Yn1+1,0, ..., Yn,0

)
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and identify the value of the quantile as well which probably correspond to

the value of potential outcome of a given unit;

(ii) For each quantile group identified previously, construct the image group in

the treatment sample given as follows
(
Y1,1, Y2,1, ..., Yn1,1, Ỹn1+1,1, ..., Ỹn,1

)
by obtaining their potential outcome after the treatment;

(iii) The average or median change observed in the quantile control group com-

pared to the image group in the treatment sample is the IB-QTE.

Let’s p be a probability such that 0 < p < 1, let GQ0(p) the pth quantile group

and Q0(p) = F−10 (p) the value of the pth quantile in the completed distribution

of control group (CoCom); let’s also GQ1(p) the pth quantile group and Q1(p) =

F−11 (p) the value of the pth quantile in the completed distribution of treated

group (TrCom). Let assume that Q0(p) is attained for the unit i0 in the CoCom

distribution.

Definition 4.4. Under initial statistical framework and the later framework de-

scribed, we define the following Imputation Based Distributional Treatment Ef-

fects:

1. The Imputation Based Treatment Effect on Distribution (IB-TED)

is given by

IB − TEDp = Q1n,I(p)−Q0n,I(p) = F−11I (p)− F−10I (4.6)

2. The Imputation Based Quantile Treatment Effect (IB-QTE) is de-
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fined by

IB −QTE (GQ0n,I(p)) = Y ∗
i01
−Q0,nI(p) = Y ∗i01 − Y

∗
i00

(4.7)

with Y ∗i1 =


Yi1 if the unit i is treated

Ỹi1 if the unit i not treated

and Y ∗i0 =


Yi0 if the unit i is not treated

Ỹi0 if the unit i is treated

3. The Imputation Based Average Quantile Treatment Effect (IB-

AQTE) is defined by:

IB − AQTE (Q0n,I(p)) = E (Y ∗i1 |i ∈ GQ0n,I(p))− E (Y ∗i0 |i ∈ GQ0n,I(p))

(4.8)

4. The Imputation Based Median Quantile Treatment Effect (IB-

MedQTE) is defined by

IB−MedQTE (Q0n,I(p)) = Med (Y ∗i1 |i ∈ GQ0n,I(p))−Med (Y ∗i0 |i ∈ GQ0n,I(p))

(4.9)

With Med as the median of the group in bracket in other term the 0.5th quantile.

Remark 4.2. 1. In Definition 4.4, the equation (4.6) gives the global differ-

ence between the imputed distribution of potential outcome before and after

the treatment. It is the same definition as IB −mQTEp but without the

rank preservation assumption. Equation (4.6) is understood in this work

as the effect on global distribution not the quantile effect. This estimator

is the answer to the question how much the distribution of the potential
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outcome changed after the treatment.

2. In Definition 4.4, the equation (4.7) basically compares two quantile groups

by using the quantile value in the CoCom distribution and its corresponding

image (potential outcome obtain after treatment) in the TrCom distribu-

tion.

3. In Definition 4.4, equations (4.8) and (4.9) are just different ways of compar-

ing two groups: the initial quantile group {Y ∗i0 |i ∈ GQ0n,I(p)} and its cor-

responding image {Y ∗i1 |i ∈ GQ0n,I(p)} after the treatment using the mean

and the median respectively as central tendency of comparison.

4. Given that those estimators are basically group estimators and converge to

the true theoretical groups, they don’t have a closed form. Therefore, it is

difficult to study their theoretical properties so their empirical properties

are studied using simulations in the second last section of this chapter.

5. For all the estimators defined, a restriction to a subset defined by covariates

can be done to compute estimators only for a subpopulation. As example,

the estimator defined in equation (4.6) can be computed like this IB −

mQTEp|X=x to restrain the population to those units whose set of covariates

is X = x.
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4.3 Properties of IB-DTE Estimators

A recall of the convergence of sample quantiles and asymptotic normality is given

first in this section before getting into the properties of IB − DTE estimators

defines with equation (4.4) and (4.5) which have closed forms.

4.3.1 Properties of Theoretical Quantiles

Lemma 4.1. Let Y be a random variable, suppose that a ≤ Y ≤ b, with a, b ∈ R,

then:

E
(
etY
)
≤ etµe

t2(b−a)2
8

for every t > 0, with µ = E(Y ).

Proof. Let us recall first what is a convex function. A function g is convex if for

any x, y ∈ R and α ∈ [0, 1] we have:

g (αx+ (1− α)y) ≤ αg(x) + (1− α)g(y)

Without loss of generality, let us assume that µ = E(Y ) = 0. Since a ≤ Y ≤ b, Y

can be written as a convex combination of a and b as follow: Y = αb+ (1− α)a

with α = Y−a
b−a .

Using convexity of x 7→ etx, t > 0, we get:

etY = et(αb+(1−α)a) ≤ αetb + (1− α)eta =
Y − a
b− a

etb +
b− Y
b− a

eta
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Taking expectation (µ = 0),

E
(
etY
)
≤ −a
b− a

etb +
b

b− a
eta = eg(u)

where u = t(b−a) and g(u) = −γu+ log(1−γ−γeu) and γ = −a
b−a . The function

g defined verify g(0) = g′(0) = 0 and g′′(u) ≤ 1
4
, ∀u > 0.

Using Taylor theorem, ∃ξ ∈ [0, u] such that

g(u) = g(0) + ug′(0) +
u2

2
g′′(ξ) =

u2

2
g′′(ξ) ≤ u2

8
=
t2(b− a)2

8

Hence the result:

E
(
etY
)
≤ eg(u) ≤ e

u2

8 = e
t2(b−a)2

8 •

Lemma 4.2. Chernoff’s method: Let Y be a random variable then ∀ε > 0,

P (Y > ε) ≤ Inft≥0 e−tεE
(
etY
)

Proof. For every t > 0,

P (Y > ε) = P (tY > tε) = P
(
etY > etε

)
≤ e−tεE

(
etY
)

The last inequality obtained using Markov’s inequality 1. Since the sequence is

true for every t > 0, then it is true for the Inf, the result follows.

1See Appendix A2 for the details theorem of Markov’s Inequality.
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Lemma 4.3. Hoeffding’s Inequality: Let Y1, · · · , Yn be i.i.d random variables

such that E (Yi) = µ and a ≤ Yi ≤ b this ∀i ∈ {1, 2, ..., n}. Then for every ε > 0,

we have:

P

(∣∣∣∣∣
n∑
i=1

Yi −
n∑
i=1

E(Yi)

∣∣∣∣∣ ≥ nε

)
= P

(∣∣Ȳn − µ∣∣ ≥ ε
)
≤ 2e

− 2nε2

(b−a)2

Proof. Without loss of generality, let’s assume that µ = 0. In the first step we

have:

P
(∣∣Ȳn∣∣ ≥ ε

)
= P

(
Ȳn ≥ ε

)
+ P

(
Ȳn ≤ −ε

)
= P

(
Ȳn ≥ ε

)
+ P

(
−Ȳn ≥ ε

) (4.10)

Considering the first bloc and applying Chernoff’s method (Lemma 4.2) and

Markov’s inequality we have: ∀t > 0,

P
(
Ȳn ≥ ε

)
= P

(
n∑
i=1

Yi ≥ nε

)
= P

(
e

n∑
i=1

Yi
≥ enε

)

= P

(
e
t
n∑
i=1

Yi
≥ etnε

)
≤ e−tnεE

(
e
t
n∑
i=1

Yi

)
= e−tnε

n∏
i=1

E
(
etYi
)

=e−tnε
(
E
(
etYi
))n

The Lemma 4.1 implies that E
(
etYi
)
≤ e

t2(b−a)2
8 , then

P
(
Ȳn ≥ ε

)
≤ e−tnε

(
E
(
etYi
))n

≤ e−tnεe
t2n(b−a)2

8 = g(t)

The inf of the function g is obtain for t0 = 4ε
(b−a)2 and g(t0) = e

− 2nε2

(b−a)2 . So
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P
(
Ȳn ≥ ε

)
≤ Inft g(t) = e

− 2nε2

(b−a)2

Then

P
(
Ȳn ≥ ε

)
≤ e

− 2nε2

(b−a)2

Following the same steps, it is easy to show that

P
(
−Ȳn ≥ ε

)
≤ e

− 2nε2

(b−a)2 ,

then replacing in equation 4.10, we have the final result:

P
(∣∣Ȳn∣∣ ≥ ε

)
≤ e

− 2nε2

(b−a)2 + e
− 2nε2

(b−a)2 = 2e
− 2nε2

(b−a)2

Theorem 4.1. Convergence of Sample Quantile: Let p ∈ (0, 1) a probability,

F the CDF of the random variable Y and Q(p) the theoretical quantile of order

p. If for every ε ∈ R∗+ we have F (Q(p)− ε) < p < F (Q(p) + ε); then the sample

quantile QY•(p) = Fn
−1(p) is a convergent estimators of Q(p). It is a convergence

in probability given by :

QY•(p)
P−−−−→

n→+∞
Q(p) (4.11)

Proof. To prove theorem 4.1, since it is convergence in probability, it is enough

to show that

P (|QY•(p)−Q(p)| > ε) −−−−→
n→+∞

0.
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We have :

P (|QY•(p)−Q(p)| > ε) = P (QY•(p)−Q(p) > ε) + P (QY•(p)−Q(p) 6 −ε)

= P (QY•(p) > ε+Q(p)) + P (QY•(p) 6 Q(p)− ε)

= (1) + (2)

Taking the first block, expand and applying lemma 4.3 gives:

(1) = P (QY•(p) > ε+Q(p)) = P (p > Fn (ε+Q(p)))

= P

(
p >

1

n

n∑
i=1

1{Yi6ε+Q(p)}

)
= P

(
1

n

n∑
i=1

1{Yi>ε+Q(p)} > (1− p)

)

= P

(
1

n

n∑
i=1

1{Yi>ε+Q(p)} −
1

n

n∑
i=1

E
(
1{Yi>ε+Q(p)}

)
> (1− p)− 1

n

n∑
i=1

E
(
1{Yi>ε+Q(p)}

))

= P

(
n∑
i=1

1{Yi>ε+Q(p)} −
n∑
i=1

E
(
1{Yi>ε+Q(p)}

)
> n(1− p)−

n∑
i=1

E
(
1{Yi>ε+Q(p)}

))

6 2e−2n(n(1−p)−nF (ε+Q(p))2 −−−→
n→∞

0 (Hoeffing′s inequality)

Performing the same development in the second block gives:
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(2) = P (QY•(p) 6 Q(p)− ε)

= P (p 6 Fn(Q(p)− ε))

= P

(
1

n

n∑
i=1

1{Yi6Q(p)−ε} > p

)

= P

(
1

n

n∑
i=1

1{Yi6Q(p)−ε} −
1

n

n∑
i=1

E(1{Yi6Q(p)−ε}) > p− 1

n

n∑
i=1

E(1{Yi6Q(p)−ε})

)

= P

(
n∑
i=1

1{Yi6Q(p)−ε} −
n∑
i=1

E(1{Yi6Q(p)−ε}) > np−
n∑
i=1

E(1{Yi6Q(p)−ε})

)

6 2e−2n(np−nF (Q(p)−ε))2 −−−→
n→∞

0 (Hoeffing′s inequality)

In conclusion, (1) goes to 0 as n increases, (2) goes to 0 as n increases then adding

both of then we obtain the result which is

P (|QY•(p)−Q(p)| > ε) −−−−→
n→+∞

0.

Theorem 4.2. Asymptotic Normality: If the density function f of Y exists

and is continuous and strictly positive then for every p ∈ (0, 1), the estimator

QY•(p) of the theoretical quantile Q(p) = QY (p) is asymptotically unbiased and

normal (convergence in distribution) and the parameters of normal distribution

are given by

lim
n→∞

L
(√

n (QY•(p)−QY (p))
)

= N
(

0,
p(1− p)
f 2(QY (p))

)
(4.12)
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or

√
n (QY•(p)−QY (p))

d−−−−→
n→+∞

N
(

0,
p(1− p)
f 2(QY (p))

)
(4.13)

Proof. To show asymptotic normality expressed in 4.13, it is enough to show that

f (QY (p))√
p(1− p)

√
n (QY•(p)−QY (p))

d−−−−→
n→+∞

N (0, 1) (4.14)

Let

Zn =
√
n (QY•(p)−QY (p)) =

√
n (Yn:k −QY (p))

where k = np+O(n1/2) as in the definition of a quantile of a specific order.

Assuming without loss of generality that k is the rank of the value of Y giving

the quantile QY•(p), for every x ∈ R,

P (Zn 6 x) = P
(√

n (Yn:k −QY (p)) 6 x
)

= P
(
Yn:k 6 QY (p) + n−1/2x

)
= P

(
n∑
i=1

1{Yi6QY (p)+n−1/2x} > k

)

= P

(
n∑
i=1

1{Yi6QY (p)+n−1/2x} − nF
(
QY (p) + n−1/2x

)
> k − nF

(
QY (p) + n−1/2x

))

P (Zn 6 x) = P

(
1√
n

n∑
i=1

Vni > tn

)
(∗)

Where

Vni = 1{Yi6QY (p)+n−1/2x} − F
(
QY (p) + n−1/2x

)
, i = 1, 2, ..., n
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and

tn =
1√
n

(
k − nF

(
QY (p) + n−1/2x

))
Now since Vni = 1−F

(
QY (p) + n−1/2x

)
with probability F

(
QY (p) + n−1/2x

)
and

Vni = −F
(
QY (p) + n−1/2x

)
with the probability 1 − F

(
QY (p) + n−1/2x

)
; And

F
(
QY (p) + n−1/2x

)
= F (QY (p))+n−1/2xf(QY (p))+O(n−1/2) (Taylor expansion

assuming that F is differentiable), it follows that:

E (Vni) = 0 and E
(
V 2
ni

)
= p(1− p) +O(n−1/2)

and

tn =
1√
n

(
k − nF (QY (p))− n1n−1/2xf(QY (p))− nO(n−1/2)

)
=

k√
n
− nF (QY (p))√

n
− xf(QY (p)) +

1√
n
O(n1/2)

=
np− np√

n
− xf(QY (p)) +O(1) = −xf(QY (p)) +O(1)

Therefore, using the central limit theorem and Slutsky theorem2 in (*) we may

conclude that as n→ +∞,

P (Zn 6 x) = P

(
1√

np(1− p)

n∑
i=1

Vni >
1√

p(1− p)
tn

)
n→+∞−−−−→ 1−Φ

(
−xf(QY (p))√

p(1− p)

)

and 1−Φ

(
−xf(QY (p))√

p(1−p)

)
= Φ

(
xf(QY (p))√

p(1−p)

)
as Φ is the CDF of a normal distribution

of mean 0 and variance 1. Which implies finally that equation 4.14 is true hence

the result.

2See Appendix A2 for the formulation and proof of these two theorems.
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4.3.2 Convergence of IB-DTE

Proposition 4.1. Convergence of QTE and IB −mQTE: Let p ∈ (0, 1) a

probability, if for every ε ∈ R∗+ we have F0(Q0(p) − ε) < p < F0(Q0(p) + ε) and

F1(Q1(p) − ε) < p < F1(Q1(p) + ε) then the sample quantiles treatment effects

QTEp and IB −mQTEp are convergent estimator of TrQTEp, meaning that:

1. For QTEp :

QTEp
P−−−−→

n→+∞
TrQTEp (4.15)

2. For IB −mQTEp :

IB −mQTEp
P−−−−→

n→+∞
TrQTEp (4.16)

Proof. Basically, Definitions 4.1, 4.2 and 4.3 as well as Theorem 4.1 are used to

obtain the result.

1. Using definition 4.1, TrQTEp = Q1(p)−Q0(p) difference of two theoretical

quantile and from definition 4.2, QTEp = Qn1(p) − Qn0(p) = F−1r1
(p) −

F−1r0
(p) difference of two sample quantile, combined with the results obtain

from theorem 4.1, we get the following convergence:

Qn1(p)
P−−−−→

n→+∞
Q1(p) (4.17)

and

Qn0(p)
P−−−−→

n→+∞
Q0(p) (4.18)
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Using additivity of convergence in probability, computing (4.17)−(4.18) we

get

Qn1(p)−Qn0(p)
P−−−−→

n→+∞
Q1(p)−Q0(p)

hence the result

QTEp
P−−−−→

n→+∞
TrQTEp

2. By definition 4.1, TrQTEp = Q1(p) − Q0(p) difference of two theoretical

quantile and by definition 4.3, IB−mQTEp = Q1n,I(p)−Q0n,I(p), difference

of two sample quantile with the distribution Y0 and Y1 modified by impu-

tation, combined with the results of theorem 4.1, follows this convergence

result:

Q1n,I(p)
P−−−−→

n→+∞
Q1(p) (4.19)

and

Q0n,I(p)
P−−−−→

n→+∞
Q0(p) (4.20)

Using additivity of convergence in probability, computing (4.19) − (4.20)

leads to

Q1n,I(p)−Q0n,I(p)
P−−−−→

n→+∞
Q1(p)−Q0(p)

hence the result follow

IB −mQTEp
P−−−−→

n→+∞
TrQTEp.
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4.3.3 Asymptotic Normality of IB-DTE

Proposition 4.2. Asymptotic Unbiasedness and Normality: If the density

function f0 and f1 of Y0 and Y1 exist and are continuous and strictly positives

then for every p ∈ (0, 1), the estimators QTEp and IB −mQTEp of the theoret-

ical quantile treatment effect TrQTEp are asymptotically unbiased and normal.

Mathematically we have:

1. For QTEp :

QTEp
d−−−−→

n→+∞
N
(
TrQTEp,

p(1− p)
n1f1

2(Q1(p))
+

p(1− p)
n0f0

2(Q0(p))

)
(4.21)

2. For IB −mQTEp :

IB −mQTEp
d−−−−→

n→+∞
N
(
TrQTEp,

p(1− p)
nf1

2(Q1(p))
+

p(1− p)
nf0

2(Q0(p))

)
(4.22)

Proof. This proof uses the Definitions 4.1, 4.2, 4.3 and the result of theorem 4.2.

1. From definition 4.1 we have, TrQTEp = Q1(p) − Q0(p) difference of two

theoretical quantile and from definition 4.2 we have, QTEp = Qn1(p) −

Qn0(p) = F−1r1
(p)− F−1r0

(p) difference of two sample quantile.

Using previous definitions and the results obtain from theorem 4.2, we get

the following convergence in distribution:

Qn1(p)
d−−−−→

n→+∞
N
(
Q1(p),

p(1− p)
n1f 2(Q1(p))

)
(4.23)
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and

Qn0(p)
d−−−−→

n→+∞
N
(
Q0(p),

p(1− p)
n0f 2(Q0(p))

)
(4.24)

Then, using additivity of convergence in distribution and properties of nor-

mal distribution, computing (4.23)− (4.24) the result is the following:

Qn1(p)−Qn0(p)
d−−−−→

n→+∞
N
(
Q1(p)−Q0(p),

p(1− p)
n1f 2(Q1(p))

+
p(1− p)

n0f 2(Q0(p))

)

hence the result (4.22).

2. From definition 4.1, TrQTEp = Q1(p)−Q0(p) is the difference of two the-

oretical quantile and by definition 4.3, IB−mQTEp = Q1n,I(p)−Q0n,I(p),

which is the difference of two sample quantile with the distribution Y0 and

Y1 modified by imputation. Using previous definitions and the results ob-

tain from theorem 4.2, we get the following convergence in distribution:

Q1n,I(p)
d−−−−→

n→+∞
N
(
Q1(p),

p(1− p)
nf 2(Q1(p))

)
(4.25)

and

Q0n,I(p)
d−−−−→

n→+∞
N
(
Q0(p),

p(1− p)
nf 2(Q0(p))

)
(4.26)

Then, using additivity of convergence in distribution and properties of nor-

mal distribution, computing (4.25)− (4.26) the result is the following:

Q1n,I(p)−Q0n,I(p)
d−−−−→

n→+∞
N
(
Q1(p)−Q0(p),

p(1− p)
nf 2(Q1(p))

+
p(1− p)

nf 2(Q0(p))

)
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hence the result (4.23).

Remark 4.3. The convergence and asymptotic normality are proved only for

estimators given with equation 4.4 and 4.5 because they have a closed form. For

estimators defined in equations 4.6, 4.7, 4.8 and 4.9 not defined with a closed

form, the properties are studied empirically in the next section using simulations

and bootstrap procedure.

4.4 Asymptotic Properties: Simulations

Empirical properties of estimators defined previously are tested here. This section

is much more important for estimators defined in Definition 4.4 since they don’t

have a closed form to be used to show their properties theoretically. Simulations

are performed under random assignment (MCAR missingness) hypothesis and

under deterministic assignment (MAR or NMAR missingness) hypothesis.

4.4.1 Algorithm and Assumptions

The framework, hypotheses and assumption defined in Chapter 3, Section 4.1

are still the same used here. An hypothetical situation where all the parameters

are mastered is created. As example, from the simulated data, the true quantile

TrQTEp can be easily computed so that the average bias will be computed di-

rectly. Here again a bootstrap procedure of 1000 replications is done to obtain

the standard deviations and a confidence interval if needed. Simulation is done
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using two hypothesis, under MCAR assumption (RA) then under MAR assump-

tion (Selection on observable or unobservable). For each missingness assumption,

a second hypothesis is done regarding the rank preservation. The percentage of

treated is assumed here again to be 40% and the corresponding quantiles are

decile.

As in the first chapter, each imputation method generates an IB estimator. Im-

putation methods used to complete the sample are mean imputation (general

and conditional), random imputation (general and hot deck), deterministic linear

regression (Det LM), k-Nearest Neighbor (using two different distances V 1 and

V 2), random linear regression, multiple imputation using multiple chained equa-

tions (MI-MICE), maximum likelihood imputation assuming normal distribution

and no distribution and finally the quantile regression imputation. The classical

QTE in the literature is computed as well with the sample reduced. All those

estimators are compared to the true QTE by computing the average bias.

4.4.2 Results and Comments

Given the density of results, six sample sizes (N=50, 100, 200, 500, 1000, 2000),

decile as corresponding quantiles, 12 different imputation methods generating 12

different IB−DTE, only one table is presented for each assumption chosen. The

summary given in the comments is from all the results and the table presented

is just to visualize how the results looks like. Only the sample size N = 2000 is

presented here.
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4.4.2.1 Random Assignment Hypothesis Results (MCAR)

RA under rank preservation assumption: Effect on the whole distri-

bution (IB − mQTEp): Under rank preservation assumption, the simulations

show that the bias of all estimators (Classic QTE and IB−mQTEp) is decreas-

ing too slowly and will probably never get to zero. Therefore, it is clear that

all estimators are biased and the best one will be the one with the smallest bias

and smallest variance (small and convergent variance). From simulation results,

it is clear that IB −mQTEp estimators are far better than Classic QTE in al-

most all the cases except few cases related to sample size and small quantiles. In

fact, for small quantiles (1st and 2nd decile) classic QTE performs as well as the

IB−mQTEp, it is even better for the 1st decile than all IB−mQTEp estimators

especially for small sample (N < 200). Out of those specific cases highlighted,

IB − mQTEp estimators are better than classic QTE. For example, the k-NN

imputation which is among the best IB−mQTEp gives the best results for large

sample (N > 200) and no matter the quantile selected.

The k-NN IB −mQTEp is always among the three best estimators in our sim-

ulations. For small samples, PSM IB − mQTEp and k-NN IB − mQTEp are

sharing the first and the second position in term of estimators with the smallest

bias. For example, for the sample size of 50 and the 8th decile, the bias for classic

QTE is 4.6 while for PSM IB −mQTEp it is 2.5 and for k-NN it is 6.5. For the

same sample size and for the 5th decile (the median), the bias is 3.5 for PSM

IB −mQTEp and 7 for k-NN.
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RA without rank preservation assumption: IB−QTE: Without assuming

rank preservation, each unit in a quantile before the treatment will be followed,

after the treatment and the two groups will be compared to get the true quan-

tile treatment effect based on the distribution of the potential outcome before

the treatment. In other words, units in the quantile will be grouped to form

the comparison group after treatment: this is how we define the true Quantile

Treatment Effect (IB − QTE). From the result of simulation, outcomes are a

bit mitigated at first sight, they show globally that IB − QTE are as good as

the classic QTE. For small quantiles no matter the sample size, classic QTE are

slightly better than most of IB−QTE estimators but for quantile above median,

IB − QTE are far better. For large samples, in general classic QTE are better

than IB −QTE for extreme quantile (1st decile and 9th decile quantile) but for

the other ones in between they are not better. The IB −QTE that are good on

average are ML IB − QTE, k-NN IB − QTE and MI IB − QTE compared to

classic QTE.
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4.4.2.2 Selection on Observable Results (MAR or NMAR)

Considering that the assignment process depends on a given variable or combi-

nations of some given variables. When a threshold is established, the population

is divided into two parts and the group below the threshold is treated while the

group above is not (in he neighborhood of the threshold) then they are compared

with each other.

MAR or NMAR under rank preservation assumption: Effect on the

whole distribution (IB −mQTEp) Assuming NMAR or MAR in simulation

and under rank preservation assumption, the simulations results show that for

small samples (N < 200), IB-TED produced using deterministic and random

imputations are as good as classical imputations for big quantiles but better for

small quantiles. Taking for example the N = 50, the bias of the IB-TED for

deterministic linear regression is smaller than the bias due to classic QTE for the

first eight deciles and only bigger for the 9th decile. For the bigger sample size

(N > 200), the k-NN IB-TED is the best method for almost all the quantiles.

In the case of random assignment, on average the best imputation methods are

deterministic linear regression IB-TED for small sample and k-NN IB-TED for

large samples.
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MAR or NMAR without rank preservation assumption: IB − QTE

Assuming that the assignment process is NMAR or MAR, the true QTE called

here IB-QTE is estimated using imputation method. The idea here is to follow

each quantile after the treatment and obtain the treatment effect on that quan-

tile. Comparison between IB-QTE and classic QTE shows that results are quite

clear. In some cases, classic QTE is better while in others it is IB-QTE which is

better. The constance is that IB-QTE is far better than classic QTE no matter

the sample size for middle deciles (3rd, 4th, 5th, 6th and 7th deciles). Therefore,

under NMAR or MAR and without rank preservation assumption, IB-QTE esti-

mators are better in estimating the middle decile of the distributional effect of a

treatment. The chosen estimators are k-NN IB-QTE and ML IB-QTE for small

samples and k-NN IB-QTE, ML IB-QTE and MI IB-QTE for large samples.
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4.5 Applications

After simulations, where the results showed that IB-TED and IB-QTE estimators

can perform as well as classic quantile treatment effect estimators otherwise better

in some cases, the next step is to apply these results to real set of data since

simulation are always questionable.

4.5.1 Description of the program and Data

Here, the Lalonde (1986) data set is considered for application. This database is

used to have a benchmark of comparison of our results with the results obtain by

the classic estimators and Firpo (2007). The structure and detail on the database

are the same as explain in Chapter 3 Section 5.1. The only difference now is the

problem: we would like to assess how the training had affected the distribution

of the revenue of people using quantiles of distributions.

4.5.2 Results and Comments

Applying our estimators to Lalonde data, the three best IB distributional effects

are considered and compared to classic QTE without completing data and to

Firpo (2007)’s results on the same data set. Combining bootstrap to imputation

methods and applying the empirical quantile shows that estimation of the median

impact using IB-TED estimators is closer to the ATE estimator than the Firpo’s

result and classical QTE.
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In fact, looking at classic QTE estimators under rank preservation assumption,

the effect of the program is increasing with the deciles. For the first and second

deciles, the effect is 0 then for the 3rd decile effect is $ 943. The median effect is

$ 1093.5 which is far from the Lalonde ATE benchmark ($ 1794). Adding boot-

strap on it did not change the result much, the largest effect being for the 8th and

9th deciles respectively $ 2273 and $ 3197 which is basically explosive and too

much. Analysis of Firpo (2007)’s results show also that the effect is increasing

with deciles after the 4th decile. The effect is 0 for the 1st and 2nd deciles which

is not likely to happen practically, then $ 711 for the 3rd decile, $ 21 for the 4th

decile meaning that some effect were probably negative. Then comes the median

effect which is $ 1927 quite close to $ 1794 the ATE which is good, but after that

the effect becomes explosive. The effect is $ 3879 for the 6th decile, $ 4517 for

the 7th decile to end at $ 5530 for the 9th which is again not likely to happen.

Firpo (2007)’s method may perform well only for median.

Now if we take one of our best IB-TED estimator (k-NN) under rank preservation

assumption, the effect is quite uniform across deciles with an average difference

of $ 30. The tendency is the following: effect of the program is larger for the

tail of the distribution of potential outcome ($ 1793.8 for the 2nd decile and $

1811.8 for the 9th decile) and quite stable and close to the ATE for the middle

deciles ($ 1702.4 for median effect and $ 1693.2 for 6th decile). This pattern of

results is almost the same for all IB-TED estimators computed using imputation

methods. In conclusion, explosiveness of Firpo’s results and classic QTE show
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that estimators constructed using non parametric approach and using incomplete

data set are not convergent practically. They basically express the fact that the

effect of training program on earning increases with the deciles meaning that the

more you earned before the program, the more the program will have an effect

on you. This is counter intuitive given that theoretically effect of the training is

most likely to be greater for those who were earning less. From the result using

IB-TED, the effect is more stable across the distribution of earnings and bigger

for people earning less and people earning more (tail of the distribution) which

is more likely to happen than the explosive effect of the training.

4.6 Summary

In this Chapter, seminal results of Chapter 3 were used to derive the Imputation

Based Distributional Treatment Effect (IB−DTE). As recall, it is an estimation

of the distribution of the effects of a treatment by estimators derived using impu-

tation methods as a means of estimation of counterfactual. Six new estimators of

the distributional treatment effects convergent theoretically and empirically were

derived. The comparison made between those estimators and the existing ones

in the literature showed that IB−DTE perform better in terms of unbiasedness

and convergence. Also, using real data, they are more stable than existing ones,

small variance therefore small confidence interval.

After deriving estimators IB −ATE in Chapter 3 and IB −DTE in Chapter 4,

the next chapter proposes a testing procedure to determine if the effects computed
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are significant or not.
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CHAPTER 5

TESTING THE HYPOTHESIS “NO

EFFECTS” WITH POTENTIAL

OUTCOME RECONSTRUCTED

USING IMPUTATION

5.1 Introduction

In this chapter, three approaches for testing the hypothesis “No Effects” using

Multiple Testing Procedure (MTP) are presented. Inspired from works done by

Crump et al. (2008) and Kaplan and Goldman (2013), the idea here is to compare

the distributions (reconstructed by imputation or not) of the potential outcome

before and after the treatment in a pointwise manner to identify in which section

they are different, otherwise the effect is significant. Since MTP needs pointwise

test to be performed upstream, three new pointwise tests are presented in this

chapter to achieve our goals.
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5.2 Proposed solution: Multiple Testing Proce-

dure

In our research, the marginal distributions of potential outcome before and after

the treatment are used to test the significance of the treatment effect. Hypothe-

sis of randomization is assumed if not, we consider that imputation can be used

to reconstruct the full distribution of the two potential outcomes1 or if not the

restricted distribution can be used for the same purpose. The test can be applied

in any of those configuration. Following the work done by Goldman and Kaplan

(2017), the focus is on a Multiple Testing Procedure (MTP) across quantile or

CDF to identify which subgroup of the population in term of their value for the

potential outcome is not responding very well to the treatment assigned. Anal-

ysis starts when Average Treatment Effect (ATE) is computed using different

methods (even IB approach). Comparing the distributions before and after the

treatment says globally if the distribution has changed or not, meaning if the

effect of the treatment was significant or not but does not quantify the effect. It

does not tell us if the effect was the ATE computed prior to the test. But in

case the interest is in the value of effect, the approach which is proposed in this

research section is to shift the distribution of the potential outcome before the

treatment by ATE, Y0 +ATE then compare the distribution of Y0 +ATE and Y1.

If the distributions are the same at a given level of significance, then the treat-

ment was significant at this level. If the distributions are not the same, then a

1Basic idea of chapter 3
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multiple testing procedure is required to identify which section of the distribution

does not respond favorably to the test. Another way of doing it is to compare the

distribution of Y0 to the distribution Y1 assuming that the later is the first one

plus the ATE computed (taking into account heterogeneity of effects). If they are

the same, there is no effect but if they are not the same there is an unknown effect

that has to be computed using different approaches especially imputation-based

approach2.

Following pioneer work of Kolmogorov-Smirnov (Kolmogorov, 1933; Smirnov,

1939, 1948) and MTP works done by Goldman and Kaplan (2017)including their

extension of K-S test to MTP, this research proposes three MTP approach to

test the significance of treatment effect in Randomized Control Trial (RCT) and

in other assignment process (with data reconstructed using imputation if neces-

sary). In the first case, unconfoundedness and ignorability is assumed to perform

a test of comparison of the distribution. In the second case, after using imputa-

tion methods to reconstruct all the sample data to eliminate the issue of selection

bias, the same MTP is applied without any assumption made and for all assign-

ment process including the framework of Regression Discontinuity Design (RDD).

There is a need to test in a jointly manner the hypotheses because doing it inde-

pendently at a specific threshold then combining the critical area will lead to a

test in which the significance is higher than the initial threshold and this is not

the objective.

2The approaches include IB-ATE, RA, PSM etc.
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5.3 Three New Approaches of MTP for the Hy-

pothesis “No Effects”

This section formalizes the approach presented in this research testing generally

the hypothesis “No effects” in the framework of impact evaluation. Since the

MTP is used to achieve our goals, there is a need to define properly pointwise

procedure that can be performed individually then use it to perform the MTP

test. The added value here is not strictly a new MTP procedure but new pointwise

tests helping in the MTP process. Three pointwise tests used here are described

in the next sections:

• MTP using CDF function, basically an extension of K-S test to multiple

hypothesis;

• MTP using empirical quantile function;

• MTP using mean of potential outcome comparison across quantile groups.

5.3.1 Statistical Framework

Let’s assume that we have two independent potential outcomes, Y0 before the

treatment and Y1 after the treatment. Their corresponding CDFs are respectively

F0 and F1. The tests performed here are two sample two sided tests. Given that

the MTP approach relies on the fact that a set of probability should be provided

in the beginning, a pointwise test should be performed for each single hypothesis
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in the multiple test formulation. Therefore, for each approach presented below,

a pointwise test is presented for obtention of p-values necessary.

5.3.2 MTP using CDF (CDF)

The hypothesis defined here is as follows:


H0 : {H0r : F0(r) = F1(r), with r ∈ R}

H1 : {H1r : F0(r) 6= F1(r), with r ∈ R}
(5.1)

The corresponding pointwise test which is H0r, ∀r ∈ R should be performed and

the p-value saved for the MTP algorithm later. An estimator of Fj(r) is given

by:

F̂j(r) =
1

nj

nj∑
i=1

1{Yji6r}; j ∈ (0, 1) (5.2)

with 1{·} as indicatrice function taking 1 if the expression inside the brackets is

true and 0 otherwise, nj the sample size of the empirical distribution Yj. The

quantity F̂j(r) is a proportion and as a proportion, the pointwise test H0r :

F0(r) = F1(r), ∀r ∈ R can be seen as a test of comparison of two proportions

from two different samples. To obtain the p-values, the proportions

F̂0(r) =
1

n0

n0∑
i=1

1{Y0i6r} and F̂1(r) =
1

n1

n1∑
i=1

1{Y1i6r} (5.3)

will be compared using a classical test for comparison of proportions.

Given r ∈ R, the statistic computed for this test is as follows:
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Z =
F̂0(r)− F̂1(r)√

F̂ (r)
(

1− F̂ (r)
)(

1
n0

+ 1
n1

) ; with F̂ (r) =

n0∑
i=1

1{Y0i6r} +
n1∑
i=1

1{Y1i6r}

n0 + n1

(5.4)

It is a Z − statistic following a normal distribution, F̂ (r) is the proportion of

values less than r in the pooled sample of the two distributions. The p-value will

be obtained by reading the table of a normal distribution of mean 0 and standard

deviation 1.

5.3.3 MTP using Quantile Function (QF)

The definition of hypothesis in this MTP using quantile function is given below.


H0 : {H0τ : F−10 (τ) = F−11 (τ), with τ ∈ (0, 1)}

H1 : {H1τ : F−10 (τ) 6= F−11 (τ), with τ ∈ (0, 1)}
(5.5)

Since to test this joint hypothesis the p-values for the pointwise test are needed,

it is important to test first the hypothesis H0τ : F−10 (τ) = F−11 (τ) for every τ

considered. Basically, to obtain the p-value for the comparison of two sample

quantiles, a bootstrap procedure is needed.

The procedure here to obtain the p-values for a pointwise test for each quantile

follows works done by Wilcox et al. (2013). They basically used bootstrap pro-

cedure to test whether two quantiles are equal or not. For a given quantile, they

generated several samples from the two sample distributions (independently) at
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the same time. For each row of generation, they computed the quantile in each

distribution and made the difference. The difference of quantile in each row is

stored in a vector. At the end, they tested if the differences stored in the vector

is significantly different from 0 or not to obtain the p-value using classical test of

comparison of means.

To summarize, assuming that we have an empirical distribution of Y0 and Y1, here

are the steps to undertake to obtain the p-values for the test in the difference of

quantiles of order τ :

• Step 1: Generate two sub samples, one for Y0 and the second one for Y1 of

a size big enough to keep the global structure of the distribution and small

enough to allow randomness in case of multiple draw (a size of 3/4 of the

initial sample size should be big enough depending on the sample size);

• Step 2: In each row samples generated, compute the quantile of order τ

(even all the quantile of interest) which should be estimators of F−10 (τ) and

F−11 (τ) respectively for the distributions of Y0 and Y1. Then compute the

difference of the two quantiles generated as follows: F̂−11s (τ)− F̂−10s (τ);

• Step 3: Repeat steps 1 and 2 a thousand times as a bootstrap procedure

and save the results of the difference in a vector of size 1000. Compute the

mean and the standard deviation to get the average difference in quantiles

and the standard errors;

• Step 4: Using classical test of the equality of mean, test if the mean of the

vector is equal to zero. The p-value obtained from that test is the p value
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that we are looking for.

Practically during simulations, this will be done for a given number of quantile

τ ∈ (0, 1) and at the end the number of p-values generated will be equal to the

number of quantile tested. The bootstrap will actually generate a matrix qx1000,

q being the number of quantile tested.

5.3.4 MTP using Quantile Groups (QG)

Before presenting the hypothesis definition of the MTP here, some definitions

have to be given. The quantile group is understood here as all the units such

that their value for a random variable is between two consecutive quantiles of

same structure. To simplify the mathematical structure, let’s assume without

loss of generality that for a given sample size n, the different probabilities to

compute the quantile are given by:

τ =
t× i
n

(5.6)

with i ∈ {1, ..., n} and t a coefficient such that t× j < n.

For example, if n = 450 and we want to have deciles as quantiles, then t =

n
10

= 450
10

= 45, i = 1, ..., 9 and the corresponding quantile probability will be

τ = t×i
n

=
{

45×i
n

; i = 1, ..., 9
}

= {0.1, 0.2, ..., 0.9}.

Let us now define the quantile group. Given a random variable Y with a CDF
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function F , the quantile group τ is defined as follows:

Gτ = Gi =

{
Yj : F−1

(
t× (i− 1)

n

)
6 Yj < F−1

(
t× i
n

)}
(5.7)

with τ = t×i
n

. It is basically all the units which their values are between two

consecutive quantiles of same structure. By default, the first group will be all

values less than the first quantile.

The MTP procedure will come from the following hypothesis formalization:


H0 : {H0τ : mean(G0τ ) = mean(G1τ ); with τ ∈ (0, 1)}

H1 : {H1τ : mean(G0τ ) 6= mean(G1τ ); with τ ∈ (0, 1)}
(5.8)

It is basically MTP based on a comparison of means, test performed between the

same quantile group of two distributions. The pointwise test will be the student

t-test of comparison of mean. Therefore, before performing MTP test, the p-

values will come from a test of comparison of mean formalized as follows for a

given τ : 
H0τ : mean(G0τ ) = mean(G1τ )

H1τ : mean(G0τ ) 6= mean(G1τ )

(5.9)

The t-statistic using pooled variance (cause hypothetically from the same distri-
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bution) is given by:

tτ =
mean(G0τ )−mean(G1τ )√

1
nG0τ

+ 1
nG1τ
×
√

(nG0τ
−1)S2

G0τ
+(nG1τ

−1)S2
G1τ

nG0τ
+nG1τ

−2

(5.10)

with S2
G0τ

as the variance of the quantile group of order τ for the first random

variable Y0 and S2
G1τ

as the variance of the quantile group of order τ for the second

random variable Y1. The quantities nGjτ are numbers of elements of each group,

in other words the subsample sizes.

The t-statistic when the groups are not pooled is given as follows:

tτ =
mean(G0τ )−mean(G1τ )√

S2
G0τ

nG0τ
+

S2
G1τ

nG1τ

(5.11)

5.4 Power of MTP Approaches: Simulations

This section is dedicated to the implementation of the approaches developed in

the previous section. We would like to see if the pointwise method can detect any

change in a specific distribution. The distributions used in this simulation is a

normal distribution. Any other distribution might give same or different results.
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5.4.1 Algorithm and assumption

5.4.1.1 Intuition behind the Test of “No effects”

The main aim of this section is to apply the three MTP presented previously

to compare two distributions. As we said earlier, if the distributions are the

same, the conclusion is basically the same as any other simple testing procedure

(classical K-S, Wilcoxon Rank test). If the test says the distributions are not the

same, here comes the relevance of the MTP which is supposed to tell us which

sections of the distribution makes them different. The three approaches will be

compared to see which of them is the most powerful. As reminder, a pointwise

test breaking the distributions into sections before comparison is more accurate

than the classical test of comparison of the whole distribution.

Figure 5.1: Potential outcome CDF, 1% amplitude change at different
percentage of points change.

In order to stay in the framework of impact evaluation, the first assumption will

be that the initial distribution is Y0 then after a specific treatment randomly
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assigned, the new distribution is Y1. The test of the hypothesis “No effects” is

positive if the distributions are the same and negative if the distributions are

different. Secondly, if the assignment is not random, the test will be performed

as well but using the restricted distributions then the completed distributions

with imputation like in Chapter 3 and 4.

5.4.1.2 Algorithm of Simulations

To achieve our goals, a specific distribution is chosen and modified gradually. The

modification is done by adding a given value seen here as the treatment effect

(ATE) result of a specific treatment assignment. The first stage as a calibration

stage is to compare Y0 with itself, just to see how different tests respond to a

perfect match between the two distributions. Second step is to compare Y0 with

Y0 + ATE, with Sh% of the points in distribution randomly changed, Sh ∈

{10, 20, ..., 90}; then just Y0 + ATE with the whole distribution changed. The

graphs, p-values and hypotheses decisions will be saved for analysis.

The simulation steps are as follows:

• Step 1 : Simulate a specific distribution Y0 representing the distribution

of the potential outcome before the treatment. To calibrate, perform K-S

test, Wilcoxon test and different MTP approach presented up between Y0

and itself and keep the results.

• Step 2 : Simulate the distribution Y1 equal to Y0 with a percentage Sh of

point change in the distribution, Sh ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

The change is such that the new distribution is the old one plus an amplitude

102



Figure 5.2: Potential outcome CDF, 5% amplitude change at different
percentage of points change.

ATE (ATE = a% of mean of Y0) representing the effect of a treatment.

Different amplitudes are chosen to see how the test reacts to small, medium

and big changes in the distribution.

• Step 3 : Compare Y0 to Y1 = Y0 +ATE (Sh% of obs changed only) using

the K-S test, WC test and the MTP test each time and store the results

and graphs.

• Step 4 : Analyze the results and draw the conclusions for the simulation

process.

The ATE is considered as the amplitude change in the distribution of the initial

potential outcome. An amplitude change corresponding to a given percentage of

the mean of the initial distribution was considered: 1% (small changes, Figure

5.1), 5% (medium changes, Figure 5.2) and 25% (big changes, Figure 5.3) in the
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simulation.

Figure 5.3: Potential outcome CDF, 25% amplitude change at different
percentage of points change.

5.4.2 Results and comments

The results are presented in three steps. Having the simulated data3, the first

step is to test the difference between the initial potential outcome distribution Y0

and the potential outcome changed using a specific amplitude and a percentage

change in the points of the distribution (consider here as the potential outcome

of the treated units Y1) using K-S and WC tests. The second step is to perform

the pointwise test on a certain number of points of the distribution (10 deciles

lets say for all of the procedure) and save the p-values. The last step will be the

MTP using the vector of p-values generated during the pointwise.

3See Appendix A3 for details on simulations choices.

104



5.4.2.1 Test of comparison of distributions (K-S and WC tests)

After simulation of the potential outcome Y0 and the different distribution of

treated effect, a classical test comparing distributions is performed to see whether

the distributions are the same or not. In other words, whether an amplitude of

a specific amount and a percentage of points changed in the distribution can be

detected by a classical test comparing distributions. Table 5.1 summarizes the

results of the test performed with amplitudes 1%, 5% and 25%.

Table 5.1: Classical test of comparison of distributions
P-values (Test
Y0 with Y1)

ATE=1% ATE=5% ATE=25%
KS Test WC Test KS Test WC Test KS Test WC Test

Sh0 (Y0, Cali) 1 1 1 1 1 1
Sh10 (Y 10) 1 0.83 0.95 0.29 0.005 0.0005
Sh20 (Y 20) 1 0.65 0.20 0.03 0 0
Sh30 (Y 30) 0.99 0.52 0.043 0.0013 0 0
Sh40 (Y 40) 0.95 0.38 0.002 0 0 0
Sh50 (Y 50) 0.89 0.27 0 0 0 0
Sh60 (Y 60) 0.65 0.19 0 0 0 0
Sh70 (Y 70) 0.43 0.13 0 0 0 0
Sh80 (Y 80) 0.29 0.078 0 0 0 0
Sh90 (Y 90) 0.26 0.049 0 0 0 0
Sh100 (Y1) 0.18 0.028 0 0 0 0

As we can see in Table 5.1, for a small change of amplitude 1%, both tests do not

reject the null hypothesis of equality of the two distributions from a share of 5%

up to a share of 90% of the distribution. At 100% change, only the WC test was

able to detect that the distributions are different. K-S and WC are not suitable

to detect infinitesimal changes. In the second round of simulation, the amplitude

of change is 5%. After changing 30% of the point in the distribution, the tests

detected that the distributions are not the same. Meaning that for an amplitude
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of 5% if very few points (less than 30%) in the distribution are changed, K-S

test and WC test cannot detect the change. Finally, an amplitude of 25% change

was simulated and for all the share of change recorded in the Table 5.1, the test

detected that distributions are not equal (all p-values are less than 5%). But

changing 1% of the point in the distribution using that amplitude (out of the

box), change was not detected by the test.

From an impact evaluation point of view, for some treatments the K-S and WC

test are not able to detect the treatment effect (Small amplitude of change and/or

when a few sections of the population are affected) therefore the significance

cannot be tested. Even if they detect, they cannot tell you at which section of

the distribution the change is or where the difference appears. That is why it is

important to go for pointwise tests and MTP procedures.

5.4.2.2 Pointwise test results

As highlighted in the previous section, to run a MTP, a vector of p-values rep-

resenting the pointwise test done for each of hypothesis is needed. An example

of the pointwise test done before MTP procedure is given in the Table 5.2. The

table depicts the results of a pointwise test at three levels of amplitude and at

specific shares of change for each level. Generally, a p-value less than 5% implies

that the null hypothesis (equality of distribution at a specific point) is rejected.

Three pointwise tests were applied to the simulated data at each amplitude of

ATE, for each amplitude a percentage of point change in the distribution was
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Table 5.2: Pointwise test results
Summary

Deciles
P-values of the pointwise test for each decile

1st 2nd 3rd 4th 5th 6th 7th 8th 9th

1%
(Sh50%)

CDF 1 1 0.60 0.48 0.35 0.50 0.45 0.37 0.71
QF 0 0 0 0 0 0 0 0 0
QG 0.42 0.01 0 0 0 0 0 0 0.01

5%
(Sh20%)

CDF 1 0.56 0.75 0.36 0.03 0.13 0.13 0.07 0.31
QF 0 0 0 0 0 0 0 0 0
QG 0.38 0.01 0 0 0 0 0 0 0

25%
(Sh20%)

CDF 0.71 0.29 0.02 0.01 0 0 0 0 0
QF 0 0 0 0 0 0 0 0 0
QG 0.07 0 0 0 0 0 0 0 0

chosen. At 1% of amplitude and 50% of points changed in the distribution, only

quantile function (QF) method detected that the distributions are different at

all the points selected. From all the outputs of the tests, it is the most sensitive

pointwise test method. The method is able to detect any small change in the

distribution. The method based on CDF is less sensitive than the previous one.

The method is not able to detect the differences between two distributions across

the point (see Table 5.2 at 1% none, at 5% the 5th decile and at 25% most of

the points), rejecting the null hypothesis for some point of the distribution and

not rejecting for others. The last method, quantile group (QG) is closer to the

quantile function method than the CDF method, but less sensitive as the first

one. It is suitable for small changes as well.

5.4.2.3 MTP test results

Using the p-values generated in the pointwise test procedure, it is now possible

to run a MTP procedure and come up with the adjusted p-values, the False

Discovery Rate and the number of rejected pointwise test in the joint procedure.
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Table 5.3 presents the MTP procedure for different amplitudes changes and at

different percentage change in the point of distribution (mostly less than 50%

points changes), especially when the K-S and WC tests were not able to conclude

in terms of difference between the two distributions.

Table 5.3: MTP results with K-S and WC failing
Summary

Deciles
MTP Tests (Adjusted P-values and Rejections)

1st 2nd 3rd 4th 5th 6th 7th 8th 9th Rej FDR

1%
(Sh50)

CDF 0.89 0.89 0.89 0.89 0.89 0.89 0.91 1 1 0 0
QF 0 0 0 0 0 0 0 0 0 9 0
QG 0 0 0 0 0 0.001 0.01 0.01 0.42 8 0

5%
(Sh20)

CDF 0.3 0.3 0.31 0.31 0.54 0.54 0.72 0.85 1 0 0
QF 0 0 0 0 0 0 0 0 0 9 0
QG 0 0 0 0 0 0 0 0.01 0.38 8 0

25%
(Sh20)

CDF 0 0 0 0 0 0.01 0.03 0.33 0.71 7 0.01
QF 0 0 0 0 0 0 0 0 0 9 0
QG 0.07 0 0 0 0 0 0 0 0.07 8 1

Like in the pointwise test, the results are a bit mitigated. For an ATE of 1%,

the three tests give different results: the CDF MTP procedure says the distribu-

tions are the same but the quantile function (QF) procedure says strictly that

they are not the same while the quantile group (QG) says there is a section of

the distribution where they are the same (null hypothesis not rejected for the

9th decile section). This pattern in the results is almost the same for 5% and

25% of amplitude change of ATE except that for 25% which is a clear change.

The CDF MTP can at least show that there is a clear difference for some points

(first seven deciles). For small percentage of point changes in the distribution,

the MTP methods developed here reject drastically the hypothesis of equality of

distribution: they are strong methods (except CDF) even if very few points are

changed in the distribution.
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In the case where almost all the points in the distribution (90%) are changed

using the same amplitude, Table 5.4 summarized the results for the cases where

the K-S and WC were not able to detect the change (1%) and for the other cases

where they were able but without a clear position in the distribution. Here, the

pattern of results is almost the same. The MTPs were able to detect the difference

even for the smallest amplitude of change.

Table 5.4: MTP results with K-S and WC not failing
Summary

Deciles
MTP Tests (Adjusted P-values and Rejections)

1st 2nd 3rd 4th 5th 6th 7th 8th 9th Rej FDR

1%
(Sh90)

CDF 0.51 0.51 0.51 0.51 0.58 0.61 0.61 0.91 1 0 0
QF 0 0 0 0 0 0 0 0 0 9 0
QG 0 0 0 0 0 0 0 0 0.09 8 0

5%
(Sh50)

CDF 0 0 0 0 0.01 0.01 0.12 0.63 1 6 0.01
QF 0 0 0 0 0 0 0 0 0 9 0
QG 0 0 0 0 0 0 0 0 0.01 9 0

25%
(Sh50)

CDF 0 0 0 0 0 0 0 0 0.05 8 1
QF 0 0 0 0 0 0 0 0 0 9 0
QG 0.07 0 0 0 0 0 0 0 0. 9 0

Table 5 shows that for a 1% amplitude change in the distribution, when almost

all the points are changed, the CDF MTP is not able to detect the change be-

tween Y0 and Y1, no rejection and FDR null. The quantile function approach is

clear, there is a significant difference between the distributions while the quantile

group approach detects an equality at the 9th decile in the two distributions (8

rejections).

For the amplitude of 5%, the CDF says there are 6 rejections and for 3 points in

the distribution there is equality. The results for the two other methods are the

same: 9 rejections just like classical K-S and WC test.
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Lastly, there is no doubt that for the amplitude of 25%, changing only 50% of

the points in the distribution, the tests rejected jointly the hypothesis of equality

of the two distributions. Only the CDF approach presented one point where the

distributions can be almost the same at 5% threshold.

5.4.2.4 General comments and remarks

Generally, from the simulation activities and from our analysis of outputs, we

noticed that K-S and WC test reacted more quickly when the amplitude change

is bigger (25% change in the distribution vs 1%). In addition, when the number

of points changed in the distribution is increasing, the tests are more accurate. As

a result, those tests cannot detect accurately small amplitude changes especially

when they appear on a small section (few points, less than 20% of sample size)

of the distribution.

Significance of impact on distribution tested using pointwise test and MTP de-

pend on the amplitude of the effect (1% vs 25%). For small effects the result

is obvious and clear with CDF test (test approach is not able to detect small

changes) but the two others are accurate for very small amplitudes. Quantile

function and quantile group methods are highly sensitive to infinitesimal changes

in the distribution. They will be suitable for micro impact that can lead to impor-

tant spillover with time. Small changes (1% or less than 5%) are the most difficult

to detect but important in the framework of impact evaluation. Sometimes they

are the ones that are important to detect. For anticipated large impact, the CDF

approach is better.
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5.5 Summary

In this chapter, a new approach for comparing two distributions was developed

with the aim of testing the hypothesis “No effect” in the framework of impact eval-

uation. Using MTP approach, the aim was to show that testing the significance

of the effect of a treatment using the classical tests of comparison of distribution

K-S and WC, will not give accurate results especially when the distributions differ

at few points and for small amplitude change. The approach presented here is a

point wise test joined to a MTP procedure. The three approaches were effective

and gave satisfactory results during simulations and application. The CDF ap-

proach can detect big amplitude change while QF and QG approaches are able

to detect any infinitesimal or very small changes between two distributions.
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CHAPTER 6

CONCLUSIONS AND

RECOMMENDATIONS

6.1 Introduction

This chapter presents the conclusions of this work. Some limitations and recom-

mendations on this work are given as well for future studies in the same area of

research. Before that, a brief recall of the objectives and a summary of results

obtained in this research are given.

6.2 Conclusions

Trying to overcome the weaknesses linked to estimation of counterfactual, het-

erogeneity of treatment effects (not always taken into account during estimation)

and reduction of sample size in the literature of impact evaluation, the objective

of this research was to build a statistical theory on impact evaluation estimators

based on imputation methods, from estimators derivation and properties to hy-

potheses testing procedure. Imputation methods were checked to assess whether

they can be used to derive efficient impact evaluation estimators. At the end of

the study, the response is yes. The construction of estimators more efficient than

the existing ones in the literature was done, their properties were studied and a

test procedure was developed around them.
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In Chapter 3, the notion of imputation was introduced to estimate counterfac-

tual. Imputation Based Average Treatment Effect Estimators (IB-ATE) were

derived and their theoretical and asymptotic properties such as unbiasedness,

convergence and consistency were shown. The IB-ATE estimators were applied

under simulations and on real database. It was observed from the results that

they were as good as good as the classical estimators in some case and in others

better than classical IE estimators. For applications on real data, almost similar

results were found as Lalonde (1986) and comparing the results with Dehejia and

Wahba (1999), IB-ATE estimators were better. This new class of estimators came

with some advantages like the possibility to have case effects and possibility to

perform better than classics IE estimators in a context of shortage in data. Also,

there is always a way to improve the quality of these estimators by improving the

related imputation method.

In Chapter 4, following the seminal idea of Chapter 3 consisting of using im-

putation methods to estimate counterfactual, Imputation Based Distributional

Treatment Effect Estimators (IB-DTE) were derived and their theoretical and

asymptotical properties were studied. IB-DTE estimators are convergent and

asymptotically normal. Simulations showed that they perform better than ex-

isting estimators in the literature. These estimators came with less assumptions

made like rank preservation assumption and a better and stable performance

during simulation and on real dataset compared to existing ones in the literature
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such asFirpo (2007).

Lastly, in Chapter 5, a testing theory was developed around the hypothesis “No

effect” using estimators of the Chapters 3 and 4. Given that the literature on hy-

pothesis testing in the impact evaluation framework is actually growing, a MTP

was proposed in this study to respond to the question: was the treatment ef-

fect significant? Three pointwise approaches were proposed. The simulations

results showed that they were able to detect any difference between two distri-

butions when the classical tests like K-S and WC could not. As a result, in

case of a treatment assignment supposed to modify the initial potential outcome,

the MTP developed were used and changes were detected, even the smallest one

due to treatment. Considering especially the case of small amplitude changes

and/or for small number of points change where the classical test of comparison

of distributions are not able to detect, two of the three procedures presented in

this research were accurate for that (Quantile Function and Quantile Group ap-

proaches).

In summary, the research conducted was conclusive, and very helpful and practical

thus, enriching the literature on impact evaluation.
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6.3 Recommendations

In this study, the counterfactual is estimated using imputation methods implying

indirectly that the performance of the IB estimators are pegged on the quality

of the results produced by imputation methods. With good estimates of coun-

terfactual, the results of treatment effect estimators will be better. A direct con-

sequence of this limitation appears practically. The user of this method should

be absolutely familiar with imputation methods in statistics. A package can be

implemented on a software to perform this method but it is the user who, given

the structure of the data, has to specify which imputation method is suitable or

unsuitable for the data.

The tests performed in Chapter 5 were done mainly with simulated data, assum-

ing imputation is done upstream. Another interesting study to do is to compare

the results of the test with data reconstructed using imputation methods vs re-

duced sample in the classical theory of impact evaluation. It is expected that

imputation will lead to more precise results than reduced samples.

Widely in this area and linked to IB estimators, future works after this study are

many. One may want to explore how to design imputation based estimators in a

context of multiple treatments assigned jointly. Taking the case of a qualitative

response variable, it will be interesting to investigate how IB estimators will look

like. Lastly, applications were done using the famous data set of Lalonde (1986)
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in order to make comparison of the results of this research with the results of

the literature. Applying these results to real and actual data to solve a specific

problem is as well a good way forward.
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APPENDICES

Appendix A1

Population and Data Simulations Random Assignment

N=10000
#####Generate data base Potential outcome and covariates before and after
###Covariates (Sex, Education level, Age, CSP respectively)
Xb1=rbinom(N,1,0.55)
Xb2=rbinom(N,3,0.25)
Xb3=round(runif(N,15,60))
Xb4=rbinom(N,2,1/3)

###Potential outcome before (Normal distribution then chi fat tail)
Yb=11*Xb1+12*Xb2+13*Xb3+14*Xb4+rnorm(N,500,250)

###Potential outcome in two worlds (Normal distribution then chi fat tail)
Y2T=Yb+runif(N,250,500)
Y2NT=Yb+runif(N,100,250)

###Generation of treatment variable, Two cases (Random Assigment
or Missingness process)
##MCAR Process of missingness
T=rbinom(N,1,0.4)

##MAR Process of missingness
#Tresh=Xb1+Xb2+Xb3+Xb4
#TR=quantile(Tresh, prob = 0.35, type = 5)
#T=rep(0,n)
#for (i in 1:n){if (Tresh[i]<=TR) {T[i]=1}}
#T

###Generation of potential outcome after treatment
Ya=Y2NT
for (i in 1:N){if (T[i]==1) {Ya[i]=Y2T[i]}}
Ya

###Generation of potential outcome after treatment with missings
Yt=Ya
for (i in 1:N){if (T[i]==0) {Yt[i]="NA"} }
Yt=as.numeric(Yt)
Yt

Ynt=Ya
for (i in 1:N){if (T[i]==1) {Ynt[i]="NA"} }
Ynt=as.numeric(Ynt)
Ynt

###Generation of data base in a data frame format and in a matrix format
DataF=data.frame (Ind=1:N,Yb,Xb1,Xb2,Xb3,Xb4,Y2T,Y2NT,T,Ya,Yt,Ynt)
#DataF
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DataMatF=data.matrix(DataF)
#DataMatF

DataTreat=subset(DataF, T==1)
DataControl=subset(DataF, T==0)

SEval1=DataTreat[sample(nrow(Eval1), n*0.4), ]
SEval0=DataControl[sample(nrow(Eval0), n*0.6), ]
FullData=rbind(SEval1, SEval0)

SEval1=Eval1[sample(nrow(Eval1), n*0.4), ]
SEval0=Eval0[sample(nrow(Eval0), n*0.6), ]
FullData=rbind(SEval1, SEval0)

Xb1=FullData$Cvt1
Xb2=FullData$Cvt2
Xb3=FullData$Cvt3
Xb4=FullData$Cvt4
Yb=FullData$POb
Y2T=FullData$PO2T
Y2NT=FullData$PO2NT
T=FullData$Tr
Ya=FullData$POa
Yt=FullData$POt
Ynt=FullData$POnt
IV=FullData$Inst
Data=data.frame (Ind=1:length(IV),Yb,Xb1,Xb2,Xb3,Xb4,

Y2T,Y2NT,T,Ya,Yt,Ynt,IV)
DataMat=data.matrix(Data)

###Computation of true average impact of the treatment (ATE)
TrueImpact=mean(Data$Y2T-Data$Y2NT)
TrueImpact
sd(Data$Y2T-Data$Y2NT)

###Computation of true average impact of the treatment
of treated units (ATT)

sum((Data$Y2T-Data$Y2NT)*T)/sum(T)

MAR Assignment

N=25000
ID=1:N
Cvt1=rbinom(N,1,0.55)
Cvt2=rbinom(N,3,0.25)
Cvt3=round(runif(N,15,60))
Cvt4=rbinom(N,2,1/3)

POb=11*Cvt1+12*Cvt2+13*Cvt3+14*Cvt4+rnorm(N,500,250)
PO2T=POb+runif(N,250,500)
PO2NT=POb+runif(N,100,250)
#Inst=13*Cvt3+14*Cvt4
Inst=runif(N,10,6000)
TR=quantile(Inst, prob = 0.5, type = 5)
Tr=rep(0,N)
for (i in 1:N){if (Inst[i]<=TR) {Tr[i]=1}}
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POa=PO2NT
for (i in 1:N){if (Tr[i]==1) {POa[i]=PO2T[i]}}
POt=POa
for (i in 1:N){if (Tr[i]==0) {POt[i]="NA"} }
POt=as.numeric(POt)
POnt=POa
for (i in 1:N){if (Tr[i]==1) {POnt[i]="NA"} }
POnt=as.numeric(POnt)
PoPData=data.frame (ID,POb,Cvt1,Cvt2,Cvt3,Cvt4,PO2T,

PO2NT,Tr,POa,POt,POnt,Inst )
PoPDataMat=data.matrix(PoPData)

EvalData=subset(PoPData, Inst>=quantile(Inst, prob = 0.3, type = 5)
& Inst<=quantile(Inst, prob = 0.7, type = 5))
Eval1=subset(EvalData, Tr==1)
Eval0=subset(EvalData, Tr==0)

save(EvalData,file="EvalData.Rda")
save(Eval1,file="Eval1.Rda")
save(Eval0,file="Eval0.Rda")
load("EvalData.Rda")
load("Eval1.Rda")
load("Eval0.Rda")

TrueATE=mean(EvalData$PO2T-EvalData$PO2NT)
TrueATT=sum((EvalData$PO2T-EvalData$PO2NT)*EvalData$Tr)/sum(EvalData$Tr)
TrueATE
TrueATT

#ivreg(EvalData$POa ~ EvalData$Tr+EvalData$Cvt1+EvalData$Cvt2
+EvalData$Cvt3+EvalData$Cvt4 | EvalData$Inst+EvalData$Cvt1
+EvalData$Cvt2+EvalData$Cvt3+EvalData$Cvt4)

Some functions

####Function to test performance of Imputation methods
RMSE=function(a,b){

val=sqrt(mean((a-b)^2))
return(val) }

####Impute missing values by the mean
mean.imp=function(a){

m=mean(a, na.rm=TRUE)
for (i in 1:length(a)){if (is.na(a[i])==1) {a[i]=m} }
return(a)}

####Impute missing values by the conditional mean,
condition on the second parameter

cmean.imp=function(a,b){
U=unique(b)
V=U
for (i in 1:length(U)){

c=0
s=0
for (j in 1:length(b)){if (b[j]==U[i] && is.na(a[j])==0 ) {

s=s+a[j]
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c=c+1} }
V[i]=s/c }

for (k in 1:length(a)){
for(j in 1:length(U)){if((is.na(a[k])==1)
&&(b[k]==U[j])){a[k]=V[j]}}}

return(a)}

####Random imputation: replace NA by a value randomly chosen
random.imp<-function(a){

missing<-is.na(a)
n.missing<-sum(missing)
a.obs<-a[!missing]
imputed<-a
imputed[missing]<-sample(a.obs, n.missing, replace=TRUE)
return(imputed) }

####Impute NA value by results from a regression
reg.imp=function(a,a.impute){

ifelse(is.na(a), a.impute, a)}

Impact evaluation methods and Imputation methods codes

Impact evaluation methods

#### Randomization Method [1]
##ATE and ATT at the same time, Difference in mean in the two groups
mean(Yt, na.rm=TRUE)-mean(Ynt, na.rm=TRUE)

#### Propensity Score Matching Method [2]
mylogit2 <- glm(T~factor(Xb1) + factor(Xb2) + Xb3 + factor(Xb4),

family=binomial)
X <- mylogit2$fitted

##ATE
result21 <- Match(Y=Ya, Tr=T, X=X, estimand = "ATE", M=1)
summary(result21)

##ATT
result22 <- Match(Y=Ya, Tr=T, X=X, estimand = "ATT", M=1)
summary(result22)

#### Difference in Difference Method [3] (ATE is not computed
and not possible to compute, limit of method)
##ATT typically (only on treated),
mean(Yt-Yb, na.rm=TRUE)-mean(Ynt-Yb, na.rm=TRUE)

#### Instrumental Variable Method [4]

#### Regression Discontunuity Design Method [5]

Imputation methods
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####Imputation Method 1: Mean Imputation
###General mean imputation
##Function for imputation
Yt1=mean.imp(Yt)
Ynt1=mean.imp(Ynt)

mean(Yt1)-mean(Ynt1)
sum((Yt1-Ynt1)*T)/sum(T)

RMSE(Y2T,Yt1)
RMSE(Y2NT,Ynt1)

###Conditional mean imputation
Yt11=cmean.imp(Yt, Xb1)
Ynt11=cmean.imp(Ynt, Xb1)

mean(Yt11)-mean(Ynt11)
sum((Yt11-Ynt11)*T)/sum(T)

RMSE(Y2T,Yt11)
RMSE(Y2NT,Ynt11)

####Imputation Method 2: Random Imputation
(See VIM package Hot deck Imp)

####(Bootstrapping and conserve positive impact
for acceptable results)

##Use the function to impute Yt and Ynt (loop here)
Yt2=random.imp(Yt)
Ynt2=random.imp(Ynt)

mean(Yt2)-mean(Ynt2)
sum((Yt2-Ynt2)*T)/sum(T) #Effect on treated units

RMSE(Y2T,Yt2)
RMSE(Y2NT,Ynt2)

##Hot deck imputation with domain
Data2=data.frame(cbind(Yt, Ynt, Xb1, Xb2, Xb3, Xb4))
#hotdeck(Data2, ord_var= c("Xb1", "Xb2", "Xb3", "Xb4"),

domain_var = c("Yt", "Ynt"))
Imp.base=hotdeck(Data2)

Yt22=Imp.base$Yt
Ynt22=Imp.base$Ynt

mean(Yt22)-mean(Ynt22)
sum((Yt22-Ynt22)*T)/sum(T) #Effect on treated units

RMSE(Y2T,Yt22)
RMSE(Y2NT,Ynt22)

####Imputation Method 3: Regression to perform deterministic imputation

##Function for imputation
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lm.imp.1=lm(Yt~factor(Xb1) + factor(Xb2) + Xb3 + factor(Xb4))
#Regression model for treated units

summary(lm.imp.1)

lm.imp.2=lm(Ynt~factor(Xb1) + factor(Xb2) + Xb3 + factor(Xb4))
#Regression model for non treated units

summary(lm.imp.2)

pred.1=predict(lm.imp.1, Data)
#Predict using deterministic part of reg model (treated)

pred.2=predict(lm.imp.2, Data)
#Predict using deterministic part of reg model (non treated)

##Imputation using deterministic part of reg model
Yt3=reg.imp(Yt, pred.1)
Ynt3=reg.imp(Ynt, pred.2)

mean(Yt3)-mean(Ynt3)
sum((Yt3-Ynt3)*T)/sum(T) #Effect on treated units

RMSE(Y2T,Yt3)
RMSE(Y2NT,Ynt3)

####Imputation Method 4: k-Nearest Neighbour Imputation (Package VIM)
##V1
Data4=data.frame(cbind(Yt, Ynt, Xb1, Xb2, Xb3, Xb4))
Imp.data=kNN(Data4, k=1)
Imp.data
Yt4=Imp.data$Yt
Ynt4=Imp.data$Ynt

mean(Yt4)-mean(Ynt4)
sum((Yt4-Ynt4)*T)/sum(T) #Effect on treated units

RMSE(Y2T,Yt4)
RMSE(Y2NT,Ynt4)

##V2
sampImp <- kNN(Data4, dist_var = c("Xb1", "Xb2", "Xb3", "Xb4"),

k = 1, numFun = mean)

Yt44=sampImp$Yt
Ynt44=sampImp$Ynt

mean(Yt44)-mean(Ynt44)
sum((Yt44-Ynt44)*T)/sum(T) #Effect on treated units

RMSE(Y2T,Yt44)
RMSE(Y2NT,Ynt44)

####Imputation Method 5: Regression with random prediction
##Function for imputation
lm.imp.3=lm(Yt~factor(Xb1) + factor(Xb2) + Xb3 + factor(Xb4))

#Regression model for treated units
summary(lm.imp.3)
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lm.imp.4=lm(Ynt~factor(Xb1) + factor(Xb2) + Xb3 + factor(Xb4))
#Regression model for non treated units

summary(lm.imp.4)

pred.3=rnorm(n, predict(lm.imp.3, Data), summary(lm.imp.3)$sigma)
#Random prediction of reg model (treated)

pred.4=rnorm(n, predict(lm.imp.4, Data), summary(lm.imp.4)$sigma)
#Random prediction of reg model (non treated)

##Imputation using random generated predicted values
Yt5=reg.imp(Yt, pred.3)
Ynt5=reg.imp(Ynt, pred.4)

mean(Yt5)-mean(Ynt5)
sum((Yt5-Ynt5)*T)/sum(T) #Effect on treated units

RMSE(Y2T,Yt5)
RMSE(Y2NT,Ynt5)

####Imputation Method 6: Multiple Imputation (Package ...)
Data6=data.frame(cbind(Yt, Ynt, Xb1, Xb2, Xb3, Xb4))

##Multiple imputation with MICE Package
imp=mice(Data6, m=5)
Yt6=(complete(imp, 1)$Yt+complete(imp, 2)$Yt+complete(imp, 3)$Yt

+complete(imp, 4)$Yt+complete(imp, 5)$Yt)/5
Ynt6=(complete(imp, 1)$Ynt+complete(imp, 2)$Ynt+complete(imp, 3)$Ynt

+complete(imp, 4)$Ynt+complete(imp, 5)$Ynt)/5

mean(Yt6)-mean(Ynt6)
sum((Yt6-Ynt6)*T)/sum(T) #Effect on treated units

RMSE(Y2T,Yt6)
RMSE(Y2NT,Ynt6)

##Multiple imputation with mi Package
mdf <- missing_data.frame(Data6)
impu66 <- mi(mdf)
chain=complete(impu66,5)

Yt66=(chain[[1]]$Yt+chain[[2]]$Yt+chain[[3]]$Yt+chain[[4]]$Yt
+chain[[5]]$Yt)/5

Ynt66=(chain[[1]]$Ynt+chain[[2]]$Ynt+chain[[3]]$Yt+chain[[4]]$Yt
+chain[[5]]$Yt)/5

mean(Yt66)-mean(Ynt66)
sum((Yt66-Ynt66)*T)/sum(T) #Effect on treated units

RMSE(Y2T,Yt66)
RMSE(Y2NT,Ynt66)

####Imputation Method 7: Maximum Likelihood Imputation (Package ...)
Data7=data.frame(cbind(Yt, Ynt, Xb1, Xb2, Xb3, Xb4))
Dat7=data.matrix(Data7)

##Imputation using ML method and package missmech
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Res7=Impute(Dat7, mu = NA, sig = NA, imputation.method = "dist.free",
resid = NA) #method can also be normal

Yt7=Res7$yimp[,1]
Ynt7=Res7$yimp[,2]

mean(Yt7)-mean(Ynt7)
sum((Yt7-Ynt7)*T)/sum(T) #Effect on treated units

RMSE(Y2T,Yt7)
RMSE(Y2NT,Ynt7)

#method can also be normal
Res77=Impute(Dat7, mu = NA, sig = NA, imputation.method = "normal",

resid = NA)

Yt77=Res77$yimp[,1]
Ynt77=Res77$yimp[,2]

mean(Yt77)-mean(Ynt77)
sum((Yt77-Ynt77)*T)/sum(T) #Effect on treated units

RMSE(Y2T,Yt77)
RMSE(Y2NT,Ynt77)

##Imputation using ML and package norm
#s=prelim.norm(Dat7)
#th=em.norm(s)
#imp.norm(s, th, Dat7)

####Imputation Method 8: Propensity score matching Imputation
(Package matching)

mylogit <- glm(T~factor(Xb1) + factor(Xb2) + Xb3 + factor(Xb4),
family=binomial)

X <- mylogit$fitted
result <- Match(Y=Ya, Tr=T, X=X, estimand = "ATE", M=1)
summary(result)
Yt8=result$mdata$Y[1:n]
Ynt8=result$mdata$Y[(n+1):(2*(n))]

mean(Yt8)-mean(Ynt8)
sum((Yt8-Ynt8)*T)/sum(T) #Effect on treated units

RMSE(Y2T,Yt8)
RMSE(Y2NT,Ynt8)

####Imputation Method 9: Hahn’s Impact evaluation method Imputation
(Package np for non parametric regression)

#data.object <- data.frame(Yt, Xb1 = factor(Xb1), Xb2 = factor(Xb2),
Xb3, Xb4 = factor(Xb4))

#bw <- npudensbw(dat = data.object)
#bw
#bw <- npregbw(Yt ~ Xb1 + Xb2 +Xb3 + Xb4)
#bw
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####Imputation Method 10: Quantile regression Imputation
(Package quantreg, decile)

##Quantile model with decile coeficients
rq.imp1=rq(Yt~Xb1+Xb2+Xb3+Xb4, c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9), Data)
rq.imp2=rq(Ynt~Xb1+Xb2+Xb3+Xb4, c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9), Data)
summary(rq.imp1)
summary(rq.imp2)
p.rq1=predict(rq.imp1, Data)
p.rq2=predict(rq.imp2, Data)
p.rq1
p.rq2

##Imputation using quantile models coeficients
Yt10=Yt
for (i in 1:length(Yb)) {

if (Yb[i]<=quantile(Yb, 0.1) && is.na(Yt[i])==1) { Yt10[i]=p.rq1[,1][i] } }
for (i in 1:length(Yb)) {

if (Yb[i]>quantile(Yb, 0.1) && Yb[i]<=quantile(Yb, 0.2)
&& is.na(Yt[i])==1) { Yt10[i]=p.rq1[,2][i] } }

for (i in 1:length(Yb)) {
if (Yb[i]>quantile(Yb, 0.2) && Yb[i]<=quantile(Yb, 0.3)

&& is.na(Yt[i])==1) { Yt10[i]=p.rq1[,3][i] } }
for (i in 1:length(Yb)) {

if (Yb[i]>quantile(Yb, 0.3) && Yb[i]<=quantile(Yb, 0.4)
&& is.na(Yt[i])==1) { Yt10[i]=p.rq1[,4][i] } }

for (i in 1:length(Yb)) {
if (Yb[i]>quantile(Yb, 0.4) && Yb[i]<=quantile(Yb, 0.5)

&& is.na(Yt[i])==1) { Yt10[i]=p.rq1[,5][i] } }
for (i in 1:length(Yb)) {

if (Yb[i]>quantile(Yb, 0.5) && Yb[i]<=quantile(Yb, 0.6)
&& is.na(Yt[i])==1) { Yt10[i]=p.rq1[,6][i] } }

for (i in 1:length(Yb)) {
if (Yb[i]>quantile(Yb, 0.6) && Yb[i]<=quantile(Yb, 0.7)

&& is.na(Yt[i])==1) { Yt10[i]=p.rq1[,7][i] } }
for (i in 1:length(Yb)) {

if (Yb[i]>quantile(Yb, 0.7) && Yb[i]<=quantile(Yb, 0.8)
&& is.na(Yt[i])==1) { Yt10[i]=p.rq1[,8][i] } }

for (i in 1:length(Yb)) {
if (Yb[i]>quantile(Yb, 0.8) && is.na(Yt[i])==1)

{ Yt10[i]=p.rq1[,9][i] } }

Ynt10=Ynt
for (i in 1:length(Yb)) {

if (Yb[i]<=quantile(Yb, 0.1) && is.na(Ynt[i])==1)
{ Ynt10[i]=p.rq2[,1][i] } }

for (i in 1:length(Yb)) {
if (Yb[i]>quantile(Yb, 0.1) && Yb[i]<=quantile(Yb, 0.2)

&& is.na(Ynt[i])==1) { Ynt10[i]=p.rq2[,2][i] } }
for (i in 1:length(Yb)) {

if (Yb[i]>quantile(Yb, 0.2) && Yb[i]<=quantile(Yb, 0.3)
&& is.na(Ynt[i])==1) { Ynt10[i]=p.rq2[,3][i] } }

for (i in 1:length(Yb)) {
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if (Yb[i]>quantile(Yb, 0.3) && Yb[i]<=quantile(Yb, 0.4)
&& is.na(Ynt[i])==1) { Ynt10[i]=p.rq2[,4][i] } }

for (i in 1:length(Yb)) {
if (Yb[i]>quantile(Yb, 0.4) && Yb[i]<=quantile(Yb, 0.5)

&& is.na(Ynt[i])==1) { Ynt10[i]=p.rq2[,5][i] } }
for (i in 1:length(Yb)) {

if (Yb[i]>quantile(Yb, 0.5) && Yb[i]<=quantile(Yb, 0.6)
&& is.na(Ynt[i])==1) { Ynt10[i]=p.rq2[,6][i] } }

for (i in 1:length(Yb)) {
if (Yb[i]>quantile(Yb, 0.6) && Yb[i]<=quantile(Yb, 0.7)

&& is.na(Ynt[i])==1) { Ynt10[i]=p.rq2[,7][i] } }
for (i in 1:length(Yb)) {

if (Yb[i]>quantile(Yb, 0.7) && Yb[i]<=quantile(Yb, 0.8)
&& is.na(Ynt[i])==1) { Ynt10[i]=p.rq2[,8][i] } }

for (i in 1:length(Yb)) {
if (Yb[i]>quantile(Yb, 0.8) && is.na(Ynt[i])==1)

{ Ynt10[i]=p.rq2[,9][i] } }

mean(Yt10)-mean(Ynt10)
sum((Yt10-Ynt10)*T)/sum(T)

RMSE(Y2T, Yt10)
RMSE(Y2NT, Ynt10)

Appendix A2

Theorems and Proofs

Theorem (Chebyshev’s Inequality): Let U be a non-negative random variable

with a finite mean µ = E(U). Then, for every t > 0,

P(U > tµ) 6
1

t
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Proof. Note that :

µ = E(U) =

∫ +∞

0

udP(U 6 u)

=

∫ tµ

0

udP(U 6 u) +

∫ +∞

tµ

udP(U 6 u)

>
∫ +∞

tµ

udP(U 6 u)

> tµ

∫ +∞

tµ

dP(U 6 u) = tµP(U > tµ)

and hence dividing both sides by tµ, we obtain the result: 1
t
> P(U > tµ).

Assuming that f is the density of U , positive and integrable function, the same

result can be obtain using f .

Theorem (Markov’s Inequality): Let U be a non negative random variable

with finite rth moment µr =, let f be its density, a non negative integrable

function, for some r > 0. Then, for every ε > 0, we have:

P(U > ε) 6
1

εr
µr

Proof. Let V = U r, so that E(V ) = µr. Then note that [U > ε] ⇔ [V > εr].

Applying Chebyshev’s Inequality we get the following result:

P(U > ε) = P(U r > εr)

= P(V > εr)
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Using the density f , we get:

µr =

∫ +∞

0

urf(u)du =

∫ ε

0

urf(u)du+

∫ +∞

ε

urf(u)du

>
∫ +∞

ε

urf(u)du

> εr
∫ +∞

ε

f(u)du = εrP (U > ε)

hence dividing both sides by εr the result follows.

Theorem (Central Limit Theorem convergence form): Let Xk, k ≥ 1,

be independent random varibles such that P (a ≤ Xk ≤ b) = 1 for some finite

scalars a < b. Also let E(Xk) = µk, V ar(Xk) = σ2
k, Tn =

n∑
k=1

Xk, ξn =
n∑
k=1

µk and

S2
n =

n∑
k=1

σ2
k.

Then

Zn =
Tn − ξn
Sn

d−−−−→
n→+∞

N (0, 1)

if and only if

Sn −−−−→
n→+∞

+∞

.

Proof. It is a double implication proof.

• First suppose that Sn −−−−→
n→+∞

+∞. Then note that

|Xk − µk|3 = |Xk − µk| (Xk − µk)2 6 (b− a) (Xk − µk)2
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which implies that

E
(
|Xk − µk|3

)
6 (b− a)σ2

k

Therefore

ρn =
n∑
k=1

E
(
|Xk − µk|3

)
S3
n

6
b− a
Sn
−−−−→
n→+∞

0

and the result follows from Liapounov Theorem.

• Now let’s supposed that Sn −−−−→
n→+∞

S < +∞ and write

Zn =
Tn − ξn
Sn

=
X1 − µ1

Sn
+

n∑
k=2

Xk − µk
Sn

Then if Zn
d−−−−→

n→+∞
N (0, 1) each of the terms of the right hand side must

also converge to N (0, 1) random variable; this is absurd since X1−µ1
Sn

is a

bounded random variable. Therefore Sn −−−−→
n→+∞

+∞.

The fundamental theorem of integral calculus: Let f be a differentiable

function define on R, for b > a elements of R we have :

f(b)− f(a) =

∫ b

a

g(x)dx

where g(x) = f ′(x) and f ′ is the derivative or the first derivative of f .

The derivative of f ′ or the second derivative of f is f ′′ or noted f (2) and the

chain rule applies to define the nth derivative f (n)(x) for every n > 1 element of

N (whenever it exist). In some cases, the common notation is f ′′ and f ′′′ for f (2)
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and f (3) respectively are used.

Let f(x), a ≤ x ≤ b, be a continuous functions and having continuous derivatives

up to (k+)th order for some k ≥ 0. Then for every x ∈ [a, b] and x0 ∈ [a, b]

f(x) = f(x0) +
k∑
j=1

(x− x0)j

j!
f (j)(x0) +Rk(x, x0)

where

Rk(x, x0) =
(x− x0)k+1

(k + 1)!
f (k+1) (hx0 + (1− h)x)

for some 0 < h < 1. This is known as the Taylor Expansion (up to the k − th

order) with a remainder term. Puting k = +∞ leads to the Taylor Series Ex-

pansion.

Slutsky Theorem: Let Xn and Yn be sequences of random variables such that

Xn
d−−−−→

n→+∞
X and Yn

d−−−−→
n→+∞

c where c is a constant. Then, it follows that:

1. Xn + Yn
d−−−−→

n→+∞
X + c,

2. YnXn
d−−−−→

n→+∞
cX,

3. Xn
Yn

d−−−−→
n→+∞

X
c

if c 6= 0.

Proof. Let F denote the distribution function of X, then for every ε > 0 and
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every x ∈ R a point where F is continue, we may write:

P (Xn + Yn 6 x) = P (Xn + Yn 6 x; |Yn − c| 6 ε) + P (Xn + Yn 6 x; |Yn − c| > ε)

6 P (Xn + Yn 6 x; |Yn − c| 6 ε) + P (|Yn − c| > ε)

6 P (Xn 6 x− c+ ε) + P (|Yn − c| > ε)

Therefore,

lim sup
n→+∞

P (Xn + Yn 6 x) 6 lim
n→+∞

P (Xn 6 x− c+ ε) + lim
n→+∞

P (|Yn − c| > ε)

= P (Xn 6 x− c+ ε) = F (x− c+ ε) (1)

Also

P (Xn + Yn 6 x) > P (Xn + Yn 6 x; |Yn − c| 6 ε)

> P (Xn 6 x− c− ε; |Yn − c| 6 ε)

= P (Xn 6 x− c− ε)− P (Xn 6 x− c− ε; |Yn − c| > ε)

> P (Xn 6 x− c− ε)− P (|Yn − c| > ε)

Therefore

lim inf
n→+∞

P (Xn + Yn 6 x) > lim
n→+∞

P (Xn 6 x− c+ ε)− lim
n→+∞

P (|Yn − c| > ε)

> P (Xn 6 x− c− ε) = F (x− c− ε) (2)
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Putting (1) and (2) together we have :

F (x− c− ε) 6 lim inf
n→+∞

P (Xn + Yn 6 x)

6 lim sup
n→+∞

P (Xn + Yn 6 x) 6 F (x− c+ ε)

Letting ε → 0, it follows that lim
n→+∞

P (Xn + Yn 6 x) = F (x − c) and the proof

of 1) is completed.

To prove 2), note that for x ≥ 0 without loss of generality

P (XnYn 6 x) = P

(
XnYn 6 x;

∣∣∣∣Ync − 1

∣∣∣∣ 6 ε

)
+ P

(
XnYn 6 x;

∣∣∣∣Ync − 1

∣∣∣∣ > ε

)
6 P

(
Xn 6

x

c(1− ε)
;

∣∣∣∣Ync − 1

∣∣∣∣ 6 ε

)
+ P

(∣∣∣∣Ync − 1

∣∣∣∣ > ε

)
6 P

(
Xn 6

x

c(1− ε)

)
+ P

(∣∣∣∣Ync − 1

∣∣∣∣ > ε

)

Therefore, for x ≥ 0

lim sup
n→+∞

P (XnYn 6 x) 6 lim
n→+∞

P

(
Xn 6

x

c(1− ε)

)
+ lim

n→+∞
P

(∣∣∣∣Ync − 1

∣∣∣∣ > ε

)
6 F

(
x

c(1− ε)

)
(3)

Similarly, for x ≥ 0

P (XnYn 6 x) > P

(
Xn 6

x

c(1 + ε)
;

∣∣∣∣Ync − 1

∣∣∣∣ 6 ε

)
> P

(
Xn 6

x

c(1 + ε)

)
− P

(
Xn 6

x

c(1 + ε)
;

∣∣∣∣Ync − 1

∣∣∣∣ > ε

)
> P

(
Xn 6

x

c(1 + ε)

)
− P

(∣∣∣∣Ync − 1

∣∣∣∣ > ε

)
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Therefore, for x ≥ 0

lim inf
n→+∞

P (XnYn 6 x) > lim
n→+∞

P

(
Xn 6

x

c(1 + ε)

)
− lim

n→+∞
P

(∣∣∣∣Ync − 1

∣∣∣∣ > ε

)
> F

(
x

c(1 + ε)

)
(4)

From (3) and (4) put together, we get

F

(
x

c(1 + ε)

)
6 lim inf

n→+∞
P (XnYn 6 x) 6 lim sup

n→+∞
P (XnYn 6 x) 6 F

(
x

c(1− ε)

)

Letting ε→ 0, it follows that lim
n→+∞

P (XnYn 6 x) = F
(
x
c

)
hence 2) is proved.

Use same tricks and same development to prove 3).

Population Simulated Population RA

####CODE FOR POPULATION IN MCAR MODE (random assignment)
rm(list=ls())
N=10000
ID=1:N

##Generating covariates usefull for imputation
Cvt1=rbinom(N,1,0.55)
Cvt2=rbinom(N,3,0.25)
Cvt3=round(runif(N,15,60))
Cvt4=rbinom(N,2,1/3)

##Generating potential outcome before
POb=11*Cvt1+12*Cvt2+13*Cvt3+14*Cvt4+rnorm(N,500,250)

##Generating hypothetical potential outcome situation where
everyone is treated and everyone is not treated

PO2T=POb+runif(N,250,500)
PO2NT=POb+runif(N,100,250)

##Generating treatment variable (Random assignment)
Tr=rbinom(N,1,0.46)

##Generating potential outcome after given that some are
treated and others not

POa=PO2NT
for (i in 1:N){if (Tr[i]==1) {POa[i]=PO2T[i]}}
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##Generating potential outcome of treated with non
treated as missing

POt=POa
for (i in 1:N){if (Tr[i]==0) {POt[i]="NA"}}
POt=as.numeric(POt)

##Generating potential outcome of not treated with
treated as missing

POnt=POa
for (i in 1:N){if (Tr[i]==1) {POnt[i]="NA"} }
POnt=as.numeric(POnt)

PoPData=data.frame (ID, POb, Cvt1, Cvt2, Cvt3, Cvt4, PO2T,
PO2NT, Tr, POa, POt, POnt)

PoPDataMat=data.matrix(PoPData)

EvalData=PoPData
Eval1=subset(EvalData, Tr==1)
Eval0=subset(EvalData, Tr==0)

save(EvalData,file="EvalData.Rda")
save(Eval1,file="Eval1.Rda")
save(Eval0,file="Eval0.Rda")

##### In the bootstrap loop
n=50

load("EvalData.Rda")
load("Eval1.Rda")
load("Eval0.Rda")

SEval1=Eval1[sample(nrow(Eval1), n*0.46), ]
SEval0=Eval0[sample(nrow(Eval0), n*0.54), ]
FullData=rbind(SEval1, SEval0)

Xb1=FullData$Cvt1
Xb2=FullData$Cvt2
Xb3=FullData$Cvt3
Xb4=FullData$Cvt4
Yb=FullData$POb
Y2T=FullData$PO2T
Y2NT=FullData$PO2NT
T=FullData$Tr
Ya=FullData$POa
Yt=FullData$POt
Ynt=FullData$POnt
Data=data.frame (Ind=1:length(Yb), Yb, Xb1, Xb2, Xb3, Xb4, Y2T,

Y2NT, T, Ya, Yt, Ynt)
DataMat=data.matrix(Data)

##### True QTE in the Population
QTEpop=0
for (i in 1:9){

QTEpop[i]=quantile(PO2T, i/10)-quantile(PO2NT, i/10)
}
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Population MAR and NMAR

####CODE FOR POPULATION IN MAR or NMAR MODE
rm(list=ls())
N=10000
ID=1:N

##Generating covariates usefull for imputation
Cvt1=rbinom(N,1,0.55)
Cvt2=rbinom(N,3,0.25)
Cvt3=round(runif(N,15,60))
Cvt4=rbinom(N,2,1/3)

##Generating potential outcome before
POb=11*Cvt1+12*Cvt2+13*Cvt3+14*Cvt4+rnorm(N,500,250)

##Generating hypothetical potential outcome situation
where everyone is treated and everyone is not treated

PO2T=POb+runif(N,250,500)
PO2NT=POb+runif(N,100,250)

##Generating threshold variable
Inst=runif(N,10,6000)
TR=mean(Inst)
Tr=rep(0,N)

##Generating treatment variable (Assignment on purpose)
for (i in 1:N){if (Inst[i]<=TR) {Tr[i]=1}}

##Generating potential outcome after given that some are
treated and others not

POa=PO2NT
for (i in 1:N){if (Tr[i]==1) {POa[i]=PO2T[i]}}

##Generating potential outcome of treated with non
treated as missing

POt=POa
for (i in 1:N){if (Tr[i]==0) {POt[i]="NA"} }
POt=as.numeric(POt)

##Generating potential outcome of not treated with
treated as missing

POnt=POa
for (i in 1:N){if (Tr[i]==1) {POnt[i]="NA"} }
POnt=as.numeric(POnt)

##Generating full data set of population
PoPData=data.frame (ID, POb, Cvt1, Cvt2, Cvt3, Cvt4, PO2T, PO2NT,

Tr, POa, POt, POnt, Inst )
PoPDataMat=data.matrix(PoPData)

EvalData=PoPData
Eval1=subset(EvalData, Tr==1)
Eval0=subset(EvalData, Tr==0)

save(EvalData,file="EvalData.Rda")
save(Eval1,file="Eval1.Rda")
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save(Eval0,file="Eval0.Rda")

##### In the bootstrap loop
n=50

load("EvalData.Rda")
load("Eval1.Rda")
load("Eval0.Rda")

SEval1=Eval1[sample(nrow(Eval1), n*0.46), ]
SEval0=Eval0[sample(nrow(Eval0), n*0.54), ]
FullData=rbind(SEval1, SEval0)

Xb1=FullData$Cvt1
Xb2=FullData$Cvt2
Xb3=FullData$Cvt3
Xb4=FullData$Cvt4
Yb=FullData$POb
Y2T=FullData$PO2T
Y2NT=FullData$PO2NT
T=FullData$Tr
Ya=FullData$POa
Yt=FullData$POt
Ynt=FullData$POnt
Data=data.frame (Ind=1:length(Yb), Yb, Xb1, Xb2, Xb3, Xb4,

Y2T, Y2NT, T, Ya, Yt, Ynt)
DataMat=data.matrix(Data)

##### True QTE in the Population
QTEpop=0
for (i in 1:9){

QTEpop[i]=quantile(PO2T, i/10)-quantile(PO2NT, i/10)
}
QTEpop

Bootstrap code to generate IB-DTE

####CODE FOR BOOTSTRAP
rm(list=ls())

n=2000

QTEclass=matrix(nrow =1000, ncol = 9)

ImpT1=0
ImpNT1=0
QTE1=matrix(nrow =1000, ncol = 9)
RMSEt1=0
RMSEnt1=0

ImpT11=0
ImpNT11=0
QTE11=matrix(nrow =1000, ncol = 9)
RMSEt11=0
RMSEnt11=0
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ImpT2=0
ImpNT2=0
QTE2=matrix(nrow =1000, ncol = 9)
RMSEt2=0
RMSEnt2=0

ImpT22=0
ImpNT22=0
QTE22=matrix(nrow =1000, ncol = 9)
RMSEt22=0
RMSEnt22=0

ImpT3=0
ImpNT3=0
QTE3=matrix(nrow =1000, ncol = 9)
RMSEt3=0
RMSEnt3=0

ImpT4=0
ImpNT4=0
QTE4=matrix(nrow =1000, ncol = 9)
RMSEt4=0
RMSEnt4=0

ImpT44=0
ImpNT44=0
QTE44=matrix(nrow =1000, ncol = 9)
RMSEt44=0
RMSEnt44=0

ImpT5=0
ImpNT5=0
QTE5=matrix(nrow =1000, ncol = 9)
RMSEt5=0
RMSEnt5=0

ImpT6=0
ImpNT6=0
QTE6=matrix(nrow =1000, ncol = 9)
RMSEt6=0
RMSEnt6=0

ImpT77=0
ImpNT77=0
QTE77=matrix(nrow =1000, ncol = 9)
RMSEt77=0
RMSEnt77=0

ImpT7=0
ImpNT7=0
QTE7=matrix(nrow =1000, ncol = 9)
RMSEt7=0
RMSEnt7=0

ImpT8=0
ImpNT8=0
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QTE8=matrix(nrow =1000, ncol = 9)
RMSEt8=0
RMSEnt8=0

ImpT10=0
ImpNT10=0
QTE10=matrix(nrow =1000, ncol = 9)
RMSEt10=0
RMSEnt10=0

for (k in 1:1000) {

##Sampling of size
load("EvalData.Rda")
load("Eval1.Rda")
load("Eval0.Rda")
SEval1=Eval1[sample(nrow(Eval1), n*0.46), ]
SEval0=Eval0[sample(nrow(Eval0), n*0.54), ]
FullData=rbind(SEval1, SEval0)

Xb1=FullData$Cvt1
Xb2=FullData$Cvt2
Xb3=FullData$Cvt3
Xb4=FullData$Cvt4
Yb=FullData$POb
Y2T=FullData$PO2T
Y2NT=FullData$PO2NT
T=FullData$Tr
Ya=FullData$POa
Yt=FullData$POt
Ynt=FullData$POnt
Data=data.frame (Ind=1:length(T), Yb, Xb1, Xb2, Xb3,

Xb4, Y2T, Y2NT, T, Ya, Yt, Ynt)
DataMat=data.matrix(Data)

##Classic QTE

for (j in 1:9){
QTEclass[k,j]=quantile(Yt, j/10, na.rm = TRUE)-

quantile(Ynt, j/10, na.rm = TRUE) }

##Imp Based estimators
##Mean imputation
Yt1=mean.imp(Yt)
Ynt1=mean.imp(Ynt)
ImpT1=ImpT1+Yt1
ImpNT1=ImpNT1+Ynt1
RMSEt1[k]=RMSE(Y2T,Yt1)
RMSEnt1[k]=RMSE(Y2NT,Ynt1)
for (j in 1:9){

QTE1[k,j]=quantile(Yt1, j/10, na.rm = TRUE)-
quantile(Ynt1, j/10, na.rm = TRUE) }

Yt11=cmean.imp(Yt, Xb1)
Ynt11=cmean.imp(Ynt, Xb1)
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ImpT11=ImpT11+Yt11
ImpNT11=ImpNT11+Ynt11
RMSEt11[k]=RMSE(Y2T,Yt11)
RMSEnt11[k]=RMSE(Y2NT,Ynt11)
for (j in 1:9){

QTE11[k,j]=quantile(Yt11, j/10, na.rm = TRUE)-
quantile(Ynt11, j/10, na.rm = TRUE) }

##Random Imputation
Yt2=random.imp(Yt)
Ynt2=random.imp(Ynt)
ImpT2=ImpT2+Yt2
ImpNT2=ImpNT2+Ynt2
RMSEt2[k]=RMSE(Y2T,Yt2)
RMSEnt2[k]=RMSE(Y2NT,Ynt2)
for (j in 1:9){

QTE2[k,j]=quantile(Yt2, j/10, na.rm = TRUE)-
quantile(Ynt2, j/10, na.rm = TRUE) }

Data2=data.frame(cbind(Yt, Ynt, Xb1, Xb2, Xb3, Xb4))
Imp.base=hotdeck(Data2)
Yt22=Imp.base$Yt
Ynt22=Imp.base$Ynt
ImpT22=ImpT22+Yt22
ImpNT22=ImpNT22+Ynt22
RMSEt22[k]=RMSE(Y2T,Yt22)
RMSEnt22[k]=RMSE(Y2NT,Ynt22)
for (j in 1:9){

QTE22[k,j]=quantile(Yt22, j/10, na.rm = TRUE)-
quantile(Ynt22, j/10, na.rm = TRUE) }

##Regression to perform deterministic imputation
lm.imp.1=lm(Yt~Xb1 + Xb2 + Xb3 + Xb4)

#Regression model for treated units
lm.imp.2=lm(Ynt~Xb1 + Xb2 + Xb3 + Xb4)

#Regression model for non treated units
pred.1=predict(lm.imp.1, Data)

#Predict using deterministic part
of reg model (treated)

pred.2=predict(lm.imp.2, Data)
#Predict using deterministic part

of reg model (non treated)

Yt3=reg.imp(Yt, pred.1)
Ynt3=reg.imp(Ynt, pred.2)
ImpT3=ImpT3+Yt3
ImpNT3=ImpNT3+Ynt3
RMSEt3[k]=RMSE(Y2T,Yt3)
RMSEnt3[k]=RMSE(Y2NT,Ynt3)
for (j in 1:9){

QTE3[k,j]=quantile(Yt3, j/10, na.rm = TRUE)-
quantile(Ynt3, j/10, na.rm = TRUE) }

##Nearest neigbour imputation (VIM Package)
Data4=data.frame(cbind(Yt, Ynt, Xb1, Xb2, Xb3, Xb4))
Imp.data=kNN(Data4, k=1)
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Yt4=Imp.data$Yt
Ynt4=Imp.data$Ynt
ImpT4=ImpT4+Yt4
ImpNT4=ImpNT4+Ynt4
RMSEt4[k]=RMSE(Y2T,Yt4)
RMSEnt4[k]=RMSE(Y2NT,Ynt4)
for (j in 1:9){

QTE4[k,j]=quantile(Yt4, j/10, na.rm = TRUE)-
quantile(Ynt4, j/10, na.rm = TRUE) }

sampImp <- kNN(Data4, dist_var = c("Xb1", "Xb2", "Xb3", "Xb4"),
k = 1, numFun = mean)

Yt44=sampImp$Yt
Ynt44=sampImp$Ynt
ImpT44=ImpT44+Yt44
ImpNT44=ImpNT44+Ynt44
RMSEt44[k]=RMSE(Y2T,Yt44)
RMSEnt44[k]=RMSE(Y2NT,Ynt44)
for (j in 1:9){

QTE44[k,j]=quantile(Yt44, j/10, na.rm = TRUE)-
quantile(Ynt44, j/10, na.rm = TRUE) }

##Regression with random prediction
lm.imp.3=lm(Yt~Xb1 + Xb2 + Xb3 + Xb4)

#Regression model for treated units
lm.imp.4=lm(Ynt~Xb1 + Xb2 + Xb3 + Xb4)

#Regression model for non treated units
pred.3=rnorm(n, predict(lm.imp.3, Data),

summary(lm.imp.3)$sigma)
#Random prediction of reg model (treated)

pred.4=rnorm(n, predict(lm.imp.4, Data),
summary(lm.imp.4)$sigma)
#Random prediction of reg model (non treated)

Yt5=reg.imp(Yt, pred.3)
Ynt5=reg.imp(Ynt, pred.4)
ImpT5=ImpT5+Yt5
ImpNT5=ImpNT5+Ynt5
RMSEt5[k]=RMSE(Y2T,Yt5)
RMSEnt5[k]=RMSE(Y2NT,Ynt5)
for (j in 1:9){

QTE5[k,j]=quantile(Yt5, j/10, na.rm = TRUE)-
quantile(Ynt5, j/10, na.rm = TRUE) }

##Multiple imputation using package MICE
Data6=data.frame(cbind(Yt, Ynt, Xb1, Xb2, Xb3, Xb4))
imp=mice(Data6, m=5)
Yt6=(complete(imp, 1)$Yt+complete(imp, 2)$Yt

+complete(imp, 3)$Yt+complete(imp, 4)$Yt
+complete(imp, 5)$Yt)/5

Ynt6=(complete(imp, 1)$Ynt+complete(imp, 2)$Ynt
+complete(imp, 3)$Ynt+complete(imp, 4)$Ynt
+complete(imp, 5)$Ynt)/5
ImpT6=ImpT6+Yt6
ImpNT6=ImpNT6+Ynt6
RMSEt6[k]=RMSE(Y2T,Yt6)
RMSEnt6[k]=RMSE(Y2NT,Ynt6)
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for (j in 1:9){
QTE6[k,j]=quantile(Yt6, j/10, na.rm = TRUE)-

quantile(Ynt6, j/10, na.rm = TRUE) }

##Maximum likelihood using MissMech package (check)
Data7=data.frame(cbind(Yt, Ynt, Xb1, Xb2, Xb3, Xb4))
Dat7=data.matrix(Data7)

Res77=Impute(Dat7, mu = NA, sig = NA,
imputation.method = "normal", resid = NA)

Yt77=Res77$yimp[,1]
Ynt77=Res77$yimp[,2]
ImpT77=ImpT77+Yt77
ImpNT77=ImpNT77+Ynt77
RMSEt77[k]=RMSE(Y2T,Yt77)
RMSEnt77[k]=RMSE(Y2NT,Ynt77)
for (j in 1:9){

QTE77[k,j]=quantile(Yt77, j/10, na.rm = TRUE)-
quantile(Ynt77, j/10, na.rm = TRUE) }

Res7=Impute(Dat7, mu = NA, sig = NA,
imputation.method = "dist.free", resid = NA)

#method can also be normal
Yt7=Res7$yimp[,1]
Ynt7=Res7$yimp[,2]
ImpT7=ImpT7+Yt7
ImpNT7=ImpNT7+Ynt7
RMSEt7[k]=RMSE(Y2T,Yt7)
RMSEnt7[k]=RMSE(Y2NT,Ynt7)
for (j in 1:9){

QTE7[k,j]=quantile(Yt7, j/10, na.rm = TRUE)-
quantile(Ynt7, j/10, na.rm = TRUE) }

##Propensity score imputation
mylogit <- glm(T~Xb1 + Xb2 + Xb3 + Xb4, family=binomial)
X <- mylogit$fitted
result <- Match(Y=Ya, Tr=T, X=X, estimand = "ATE", M=1)
Yt8=result$mdata$Y[1:n]
Ynt8=result$mdata$Y[(n+1):(2*(n))]
ImpT8=ImpT8+Yt8
ImpNT8=ImpNT8+Ynt8
RMSEt8[k]=RMSE(Y2T,Yt8)
RMSEnt8[k]=RMSE(Y2NT,Ynt8)
for (j in 1:9){

QTE8[k,j]=quantile(Yt8, j/10, na.rm = TRUE)-
quantile(Ynt8, j/10, na.rm = TRUE) }

##Quantile regression imputation
rq.imp1=rq(Yt~Xb1+Xb2+Xb3+Xb4, c(0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9), Data)
rq.imp2=rq(Ynt~Xb1+Xb2+Xb3+Xb4, c(0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9), Data)
p.rq1=predict(rq.imp1, Data)
p.rq2=predict(rq.imp2, Data)
Yt10=Yt
for (i in 1:length(Yb)) {
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if (Yb[i]<=quantile(Yb, 0.1) && is.na(Yt[i])==1)
{ Yt10[i]=p.rq1[,1][i] } }

for (i in 1:length(Yb)) {
if (Yb[i]>quantile(Yb, 0.1) && Yb[i]<=quantile(Yb, 0.2)

&& is.na(Yt[i])==1) { Yt10[i]=p.rq1[,2][i] } }
for (i in 1:length(Yb)) {

if (Yb[i]>quantile(Yb, 0.2) && Yb[i]<=quantile(Yb, 0.3)
&& is.na(Yt[i])==1) { Yt10[i]=p.rq1[,3][i] } }

for (i in 1:length(Yb)) {
if (Yb[i]>quantile(Yb, 0.3) && Yb[i]<=quantile(Yb, 0.4)

&& is.na(Yt[i])==1) { Yt10[i]=p.rq1[,4][i] } }
for (i in 1:length(Yb)) {

if (Yb[i]>quantile(Yb, 0.4) && Yb[i]<=quantile(Yb, 0.5)
&& is.na(Yt[i])==1) { Yt10[i]=p.rq1[,5][i] } }

for (i in 1:length(Yb)) {
if (Yb[i]>quantile(Yb, 0.5) && Yb[i]<=quantile(Yb, 0.6)

&& is.na(Yt[i])==1) { Yt10[i]=p.rq1[,6][i] } }
for (i in 1:length(Yb)) {

if (Yb[i]>quantile(Yb, 0.6) && Yb[i]<=quantile(Yb, 0.7)
&& is.na(Yt[i])==1) { Yt10[i]=p.rq1[,7][i] } }

for (i in 1:length(Yb)) {
if (Yb[i]>quantile(Yb, 0.7) && Yb[i]<=quantile(Yb, 0.8)

&& is.na(Yt[i])==1) { Yt10[i]=p.rq1[,8][i] } }
for (i in 1:length(Yb)) {

if (Yb[i]>quantile(Yb, 0.8) && is.na(Yt[i])==1)
{ Yt10[i]=p.rq1[,9][i] } }

Ynt10=Ynt
for (i in 1:length(Yb)) {

if (Yb[i]<=quantile(Yb, 0.1) && is.na(Ynt[i])==1)
{ Ynt10[i]=p.rq2[,1][i] } }

for (i in 1:length(Yb)) {
if (Yb[i]>quantile(Yb, 0.1) && Yb[i]<=quantile(Yb, 0.2)

&& is.na(Ynt[i])==1) { Ynt10[i]=p.rq2[,2][i] } }
for (i in 1:length(Yb)) {

if (Yb[i]>quantile(Yb, 0.2) && Yb[i]<=quantile(Yb, 0.3)
&& is.na(Ynt[i])==1) { Ynt10[i]=p.rq2[,3][i] } }

for (i in 1:length(Yb)) {
if (Yb[i]>quantile(Yb, 0.3) && Yb[i]<=quantile(Yb, 0.4)

&& is.na(Ynt[i])==1) { Ynt10[i]=p.rq2[,4][i] } }
for (i in 1:length(Yb)) {

if (Yb[i]>quantile(Yb, 0.4) && Yb[i]<=quantile(Yb, 0.5)
&& is.na(Ynt[i])==1) { Ynt10[i]=p.rq2[,5][i] } }

for (i in 1:length(Yb)) {
if (Yb[i]>quantile(Yb, 0.5) && Yb[i]<=quantile(Yb, 0.6)

&& is.na(Ynt[i])==1) { Ynt10[i]=p.rq2[,6][i] } }
for (i in 1:length(Yb)) {

if (Yb[i]>quantile(Yb, 0.6) && Yb[i]<=quantile(Yb, 0.7)
&& is.na(Ynt[i])==1) { Ynt10[i]=p.rq2[,7][i] } }

for (i in 1:length(Yb)) {
if (Yb[i]>quantile(Yb, 0.7) && Yb[i]<=quantile(Yb, 0.8)

&& is.na(Ynt[i])==1) { Ynt10[i]=p.rq2[,8][i] } }
for (i in 1:length(Yb)) {

if (Yb[i]>quantile(Yb, 0.8) && is.na(Ynt[i])==1)
{ Ynt10[i]=p.rq2[,9][i] } }

ImpT10=ImpT10+Yt10
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ImpNT10=ImpNT10+Ynt10
RMSEt10[k]=RMSE(Y2T, Yt10)
RMSEnt10[k]=RMSE(Y2NT, Ynt10)
for (j in 1:9){

QTE10[k,j]=quantile(Yt10, j/10, na.rm = TRUE)-
quantile(Ynt10, j/10, na.rm = TRUE) } }

#Summary results

##True QTE and Classic QTE
QTEpop=0
for (i in 1:9){

QTEpop[i]=quantile(PO2T, i/10)-quantile(PO2NT, i/10)}
QTEpop
colMeans(QTEclass)

#Summary mean imputation
BQTE1=0
for (i in 1:9){

BQTE1[i]=quantile(ImpT1/1000,i/10)-quantile(ImpNT1/1000,i/10)}
BQTE1
colMeans(QTE1)

data1=cbind(1:n,ImpNT1/1000,ImpT1/1000)
data1=data1[order(data1[,2],decreasing=FALSE),]
GQTE1=0
for (i in 1:9){

GQTE1[i]=data1[n*i/10,3]-data1[n*i/10,2]}
GQTE1

BQTE11=0
for (i in 1:9){

BQTE11[i]=quantile(ImpT11/1000, i/10)-quantile(ImpNT11/1000, i/10)}
BQTE11
colMeans(QTE11)

data11=cbind(1:n,ImpNT11/1000,ImpT11/1000)
data11=data11[order(data11[,2],decreasing=FALSE),]
GQTE11=0
for (i in 1:9){

GQTE11[i]=data11[n*i/10,3]-data11[n*i/10,2]}
GQTE11

#Summary random imputation imputation
BQTE2=0
for (i in 1:9){

BQTE2[i]=quantile(ImpT2/1000, i/10)-quantile(ImpNT2/1000, i/10)}
BQTE2
colMeans(QTE2)

data2=cbind(1:n,ImpNT2/1000,ImpT2/1000)
data2=data2[order(data2[,2],decreasing=FALSE),]
GQTE2=0
for (i in 1:9){

GQTE2[i]=data2[n*i/10,3]-data2[n*i/10,2]}
GQTE2
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BQTE22=0
for (i in 1:9){

BQTE22[i]=quantile(ImpT22/1000,i/10)-quantile(ImpNT22/1000,i/10)}
BQTE22
colMeans(QTE22)

data22=cbind(1:n,ImpNT22/1000,ImpT22/1000)
data22=data22[order(data22[,2],decreasing=FALSE),]
GQTE22=0
for (i in 1:9){

GQTE22[i]=data22[n*i/10,3]-data22[n*i/10,2]}
GQTE22

#Summary linear regression deterministic imp
BQTE3=0
for (i in 1:9){

BQTE3[i]=quantile(ImpT3/1000, i/10)-quantile(ImpNT3/1000, i/10)}
BQTE3
colMeans(QTE3)

data3=cbind(1:n,ImpNT3/1000,ImpT3/1000)
data3=data3[order(data3[,2],decreasing=FALSE),]
GQTE3=0
for (i in 1:9){

GQTE3[i]=data3[n*i/10,3]-data3[n*i/10,2]}
GQTE3

#Summary nearest neigbour imputation
BQTE4=0
for (i in 1:9){

BQTE4[i]=quantile(ImpT4/1000, i/10)-quantile(ImpNT4/1000, i/10)}
BQTE4
colMeans(QTE4)

data4=cbind(1:n,ImpNT4/1000,ImpT4/1000)
data4=data4[order(data4[,2],decreasing=FALSE),]
GQTE4=0
for (i in 1:9){

GQTE4[i]=data4[n*i/10,3]-data4[n*i/10,2]}
GQTE4

BQTE44=0
for (i in 1:9){

BQTE44[i]=quantile(ImpT44/1000,i/10)-quantile(ImpNT44/1000,i/10)}
BQTE44
colMeans(QTE44)

data44=cbind(1:n,ImpNT44/1000,ImpT44/1000)
data44=data44[order(data44[,2],decreasing=FALSE),]
GQTE44=0
for (i in 1:9){

GQTE44[i]=data44[n*i/10,3]-data44[n*i/10,2]}
GQTE44

#Summary regression with random imputation
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BQTE5=0
for (i in 1:9){

BQTE5[i]=quantile(ImpT5/1000, i/10)-
quantile(ImpNT5/1000, i/10)}

BQTE5
colMeans(QTE5)

data5=cbind(1:n,ImpNT5/1000,ImpT5/1000)
data5=data5[order(data5[,2],decreasing=FALSE),]
GQTE5=0
for (i in 1:9){

GQTE5[i]=data5[n*i/10,3]-data5[n*i/10,2]}
GQTE5

#Summary multiple imputation using mICE
BQTE6=0
for (i in 1:9){

BQTE6[i]=quantile(ImpT6/1000, i/10)-
quantile(ImpNT6/1000, i/10)}

BQTE6
colMeans(QTE6)

data6=cbind(1:n,ImpNT6/1000,ImpT6/1000)
data6=data6[order(data6[,2],decreasing=FALSE),]
GQTE6=0
for (i in 1:9){

GQTE6[i]=data6[n*i/10,3]-data6[n*i/10,2]}
GQTE6

#Summary maximum likelihood
BQTE77=0
for (i in 1:9){

BQTE77[i]=quantile(ImpT77/1000, i/10)-
quantile(ImpNT77/1000, i/10)}

BQTE77
colMeans(QTE77)

data77=cbind(1:n,ImpNT77/1000,ImpT77/1000)
data77=data77[order(data77[,2],decreasing=FALSE),]
GQTE77=0
for (i in 1:9){

GQTE77[i]=data77[n*i/10,3]-data77[n*i/10,2]}
GQTE77

BQTE7=0
for (i in 1:9){

BQTE7[i]=quantile(ImpT7/1000, i/10)-
quantile(ImpNT7/1000, i/10)}

BQTE7
colMeans(QTE7)

data7=cbind(1:n,ImpNT7/1000,ImpT7/1000)
data7=data7[order(data7[,2],decreasing=FALSE),]
GQTE7=0
for (i in 1:9){

GQTE7[i]=data7[n*i/10,3]-data7[n*i/10,2]}
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GQTE7

#Summary propensity score imutation
BQTE8=0
for (i in 1:9){

BQTE8[i]=quantile(ImpT8/1000, i/10)-quantile(ImpNT8/1000, i/10)}
BQTE8
colMeans(QTE8)

data8=cbind(1:n,ImpNT8/1000,ImpT8/1000)
data8=data8[order(data8[,2],decreasing=FALSE),]
GQTE8=0
for (i in 1:9){

GQTE8[i]=data8[n*i/10,3]-data8[n*i/10,2]}
GQTE8

#Summary quantile regression imputation
BQTE10=0
for (i in 1:9){

BQTE10[i]=quantile(ImpT10/1000,i/10)-quantile(ImpNT10/1000,i/10)}
BQTE10
colMeans(QTE10)

data10=cbind(1:n,ImpNT10/1000,ImpT10/1000)
data10=data10[order(data10[,2],decreasing=FALSE),]
GQTE10=0
for (i in 1:9){

GQTE10[i]=data10[n*i/10,3]-data10[n*i/10,2]}
GQTE10

#Matrices outputs
Results1=rbind(BQTE1,BQTE11,BQTE2,BQTE22,BQTE3,BQTE4,

BQTE44,BQTE5,BQTE6,BQTE77,BQTE7,BQTE8,BQTE10)
Results1

Results2=rbind(colMeans(QTE1),colMeans(QTE11),
colMeans(QTE2),colMeans(QTE22),colMeans(QTE3),
colMeans(QTE4),colMeans(QTE44),colMeans(QTE5),
colMeans(QTE6),colMeans(QTE77),colMeans(QTE7),
colMeans(QTE8),colMeans(QTE10))

Results2

Results3=rbind(GQTE1,GQTE11,GQTE2,GQTE22,GQTE3,GQTE4,
GQTE44,GQTE5,GQTE6,GQTE77, GQTE7, GQTE8, GQTE10)

Results3
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Appendix A3

Code for generating data, classical tests of comparison of distribution

and MTP approaches implemented.

####CODE FOR POPULATION IN MCAR MODE (random assignment)
rm(list=ls())
N=1000

####Poutential outcome before treatment
Id=1:N
Y0=rnorm(N,1000,100)
Y1=Y0 + rnorm(N,250,25)
Y1Sav=Y1
M=cbind(Id, Y0, Y1)

####Effect of different treatment and potential
outcome after treatment (six PO)

Index=sample(M[,1],0.1*N, F)
M10=M
M10[Index,2]=M10[Index,3]
Y10=M10[,2]

Index=sample(M[,1],0.2*N, F)
M20=M
M20[Index,2]=M20[Index,3]
Y20=M20[,2]

Index=sample(M[,1],0.3*N, F)
M30=M
M30[Index,2]=M30[Index,3]
Y30=M30[,2]

Index=sample(M[,1],0.4*N, F)
M40=M
M40[Index,2]=M40[Index,3]
Y40=M40[,2]

Index=sample(M[,1],0.5*N, F)
M50=M
M50[Index,2]=M50[Index,3]
Y50=M50[,2]

Index=sample(M[,1],0.6*N, F)
M60=M
M60[Index,2]=M60[Index,3]
Y60=M60[,2]

Index=sample(M[,1],0.7*N, F)
M70=M
M70[Index,2]=M70[Index,3]
Y70=M70[,2]
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Index=sample(M[,1],0.8*N, F)
M80=M
M80[Index,2]=M80[Index,3]
Y80=M80[,2]

Index=sample(M[,1],0.9*N, F)
M90=M
M90[Index,2]=M90[Index,3]
Y90=M90[,2]

####Graphs of potential outcome
hist(Y0)
ecdf(Y0)

par(mfrow=c(2,2))

plot(ecdf(Y0), col="red", xlab = ’’, ylab = ’’,
main = ’Empirical Cumluative Distribution\nPotential Outcome’)

lines(ecdf(Y10), lty=2, col="blue")
mtext(text = expression(hat(F)[n](x)), side = 2, line = 2.5)
legend (’topleft’, legend=c("Y0", "Y10") ,

lty=1, col=c(’red’, ’blue’), bty=’n’, cex=.75)

plot(ecdf(Y0), col="red", xlab = ’’, ylab = ’’,
main = ’Empirical Cumluative Distribution\nPotential Outcome’)

lines(ecdf(Y50), lty=2, col="blue")
legend (’topleft’, legend=c("Y0", "Y50") , lty=1,

col=c(’red’, ’blue’), bty=’n’, cex=.75)

plot(ecdf(Y0), col="red", xlab = ’Sample Quantiles of Outcomes’,
ylab = ’’, main = ’’)

lines(ecdf(Y80), lty=2, col="blue")
mtext(text = expression(hat(F)[n](x)), side = 2, line = 2.5)
legend (’topleft’, legend=c("Y0", "Y80") , lty=1,

col=c(’red’, ’blue’), bty=’n’, cex=.75)

plot(ecdf(Y0), col="red", xlab = ’Sample Quantiles of Outcomes’,
ylab = ’’, main = ’’)

lines(ecdf(Y1), lty=2, col="blue")
legend (’topleft’, legend=c("Y0", "Y1") , lty=1,

col=c(’red’, ’blue’), bty=’n’, cex=.75)

####KS and Wilcox tests
ks.test(Y0,Y0)
wilcox.test(Y0,Y0)

ks.test(Y0,Y10)
wilcox.test(Y0,Y10)

ks.test(Y0,Y20)
wilcox.test(Y0,Y20)

ks.test(Y0,Y30)
wilcox.test(Y0,Y30)
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ks.test(Y0,Y40)
wilcox.test(Y0,Y40)

ks.test(Y0,Y50)
wilcox.test(Y0,Y50)

ks.test(Y0,Y60)
wilcox.test(Y0,Y60)

ks.test(Y0,Y70)
wilcox.test(Y0,Y70)

ks.test(Y0,Y80)
wilcox.test(Y0,Y80)

ks.test(Y0,Y90)
wilcox.test(Y0,Y90)

ks.test(Y0,Y1)
wilcox.test(Y0,Y1)

####MTP section

#Y1=Y20
Y1=Y50

##Point Wise Test CDF
M=min(max(Y0), max(Y1))
m=max(min(Y0), min(Y1))

st=(M-m)/10

r=m+st
test=t.test(Y0<r, Y1<r)
P1=test$p.value

for (i in 2:9){
r=m+i*st
test=t.test(Y0<r, Y1<r)
P1=c(P1, test$p.value)}

P1

##Point Wise Test for quantile function

DQ1=0; DQ2=0; DQ3=0; DQ4=0; DQ5=0; DQ6=0; DQ7=0; DQ8=0; DQ9=0
s=0.85

for (i in 1:1000) {
SY0=sample(Y0, s*N, F)
SY1=sample(Y1, s*N, F)

DQ1[i]=quantile(SY1, 1/10)-quantile(SY0, 1/10)
DQ2[i]=quantile(SY1, 2/10)-quantile(SY0, 2/10)
DQ3[i]=quantile(SY1, 3/10)-quantile(SY0, 3/10)
DQ4[i]=quantile(SY1, 4/10)-quantile(SY0, 4/10)
DQ5[i]=quantile(SY1, 5/10)-quantile(SY0, 5/10)
DQ6[i]=quantile(SY1, 6/10)-quantile(SY0, 6/10)

157



DQ7[i]=quantile(SY1, 7/10)-quantile(SY0, 7/10)
DQ8[i]=quantile(SY1, 8/10)-quantile(SY0, 8/10)
DQ9[i]=quantile(SY1, 9/10)-quantile(SY0, 9/10)}

test=t.test(DQ1, mu=0)
P3=test$p.value
for (i in 2:9){

test=t.test(get(paste("DQ", i, sep = "")), mu=0)
P3=c(P3, test$p.value)}

P3

##Point Wise Test for quantile groups
G01=0
G11=0
for (i in 1:1000){

if (Y0[i] < quantile(Y0, 1/10)){G01=c(G01, Y0[i])}
if (Y1[i] < quantile(Y1, 1/10)){G11=c(G11, Y1[i])}

}
G01=G01[2:length(G01)]
G11=G11[2:length(G11)]

G02=0
G12=0
for (i in 1:1000){

if (Y0[i] < quantile(Y0, 2/10) && Y0[i] >=
quantile(Y0, 1/10)){G02=c(G02, Y0[i])}

if (Y1[i] < quantile(Y1, 2/10) && Y1[i] >=
quantile(Y1, 1/10)){G12=c(G12, Y1[i])}}

G02=G02[2:length(G02)]
G12=G12[2:length(G12)]

G03=0
G13=0
for (i in 1:1000){

if (Y0[i] < quantile(Y0, 3/10) && Y0[i] >=
quantile(Y0, 2/10)){G03=c(G03, Y0[i])}

if (Y1[i] < quantile(Y1, 3/10) && Y1[i] >=
quantile(Y1, 2/10)){G13=c(G13, Y1[i])}}

G03=G03[2:length(G03)]
G13=G13[2:length(G13)]

G04=0
G14=0
for (i in 1:1000){

if (Y0[i] < quantile(Y0, 4/10) && Y0[i] >=
quantile(Y0, 3/10)){G04=c(G04, Y0[i])}

if (Y1[i] < quantile(Y1, 4/10) && Y1[i] >=
quantile(Y1, 3/10)){G14=c(G14, Y1[i])}}

G04=G04[2:length(G04)]
G14=G14[2:length(G14)]

G05=0
G15=0
for (i in 1:1000){

if (Y0[i] < quantile(Y0, 5/10) && Y0[i] >=
quantile(Y0, 4/10)){G05=c(G05, Y0[i])}

158



if (Y1[i] < quantile(Y1, 5/10) && Y1[i] >=
quantile(Y1, 4/10)){G15=c(G15, Y1[i])}}

G05=G05[2:length(G05)]
G15=G15[2:length(G15)]

G06=0
G16=0
for (i in 1:1000){

if (Y0[i] < quantile(Y0, 6/10) && Y0[i] >=
quantile(Y0, 5/10)){G06=c(G06, Y0[i])}

if (Y1[i] < quantile(Y1, 6/10) && Y1[i] >=
quantile(Y1, 5/10)){G16=c(G16, Y1[i])}}

G06=G06[2:length(G06)]
G16=G16[2:length(G16)]

G07=0
G17=0
for (i in 1:1000){

if (Y0[i] < quantile(Y0, 7/10) && Y0[i] >=
quantile(Y0, 6/10)){G07=c(G07, Y0[i])}

if (Y1[i] < quantile(Y1, 7/10) && Y1[i] >=
quantile(Y1, 6/10)){G17=c(G17, Y1[i])}}

G07=G07[2:length(G07)]
G17=G17[2:length(G17)]

G08=0
G18=0
for (i in 1:1000){

if (Y0[i] < quantile(Y0, 8/10) && Y0[i] >=
quantile(Y0, 7/10)){G08=c(G08, Y0[i])}

if (Y1[i] < quantile(Y1, 8/10) && Y1[i] >=
quantile(Y1, 7/10)){G18=c(G18, Y1[i])}}

G08=G08[2:length(G08)]
G18=G18[2:length(G18)]

G09=0
G19=0
for (i in 1:1000){

if (Y0[i] < quantile(Y0, 9/10) && Y0[i] >=
quantile(Y0, 8/10)){G09=c(G09, Y0[i])}

if (Y1[i] < quantile(Y1, 9/10) && Y1[i] >=
quantile(Y1, 8/10)){G19=c(G19, Y1[i])}}

G09=G09[2:length(G09)]
G19=G19[2:length(G19)]

test=t.test(G01, G11)
P2=test$p.value
for (i in 2:9){

test=t.test(get(paste("G0", i, sep = "")), get(paste("G1", i, sep = "")))
P2=c(P2, test$p.value)}

P2

##MTP test with prob P1, P2 and P3 at 5% (sgof)
install.packages("sgof")
install.packages("poibin")
library(poibin)
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library(sgof)

mtp1=BH(P1, alpha=0.05)
summary(mtp1)
mtp1$Adjusted.pvalues
mtp1$Rejections
mtp1$FDR

mtp3=BH(P3, alpha=0.05)
summary(mtp3)
mtp3$Adjusted.pvalues
mtp3$Rejections
mtp3$FDR

mtp2=BH(P2, alpha=0.05)
summary(mtp2)
mtp2$Adjusted.pvalues
mtp2$Rejections
mtp2$FDR
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