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ABSTRACT

Adaptive Noise Cancellation (ANC) entails estimation of signals corrupted by
additive noise or other interference. ANC utilizes a “reference” signal correlated
in some way with the “primary noise” in the noise cancellation process. In ANC,
the reference signal is adaptively filtered and thereafter subtracted from the “pri-
mary” input to obtain the desired signal estimate. Adaptive filtering before the
subtraction process allows for handling of inputs that are either deterministic
or stochastic, stationary or time varying. ANC has been widely applied in the
fields of telecommunication, radar and sonar signal processing. The performance
and efficiency of ANC schemes is based on how well the filtering algorithm can
adapt to the changing signal and noise conditions. It is worthwhile focusing on
developing better variants of AI algorithms from the point of view of ANC.
This thesis is focused on: development of a modified version of the Simulated
Annealing (SA) algorithm and its application in ANC. This is alongside an anal-
ysis of the effectiveness of the standard and modified SA algorithms in ANC in
comparison to standard Least Mean Square (LMS) and Normalized Least Mean
Square (NLMS) algorithms. Signals utilized in this study include: sinusoidal
signals, fetal electrocardiogram signals and randomly generated signals.
The modified SA algorithm has been developed on the basis of making modifica-
tions to the control parameters of the standard SA on the basis of the acceptance
probability and the cooling schedule. A low complexity acceptance probability
scheme has been proposed. The proposed cooling schedule is iteration-adaptive
to improve on algorithm convergence. The ANC problem is formulated as a min-
imization problem entailing the minimization of the difference between a noise
contaminated signal and a weighted estimate of the noise content. This is achieved
through optimal ANC tap-weight adjustment. The algorithms under study are
applied in the weight generation process with the expected outcome as ideally
a noise free signal. In this evaluation, performance measures analyzed in the
study are mis-adjustment and convergence rate. To evaluate these, Euclidean
distances and the correlation factors between the desired signal and the filtered
signal are applied. In the said analysis the improved SA is found to generate the
minimal error and fast execution speed in ANC compared to standard SA, LMS
and Normalized LMS.
The main contribution done in this study is the validation of the application of
modified SA algorithm in adaptive filters. This has been done through a series of
simulations involving the SA algorithm in a MATLAB environment. In addition,
through improvements made on the standard SA algorithm, the convergence rate
of SA has been increased alongside the overall solution accuracy.

xvi



CHAPTER ONE

INTRODUCTION

1.1 Background

Distortion of a signal of interest by other undesired signals (noise) is a problem

encountered in many signal processing applications. In most applications, the

desired signal has changing characteristics which require an update in the filter

coefficients for a good performance in signal extraction. Since conventional digital

filters with fixed coefficients do not have the ability to update their coefficients,

adaptive digital filters are used to cancel the noise.

Adaptive Noise Cancellation (ANC) filters have been of immense interest due to

their self-reconfiguration properties (Haykin, 2002). When some prior knowledge

about the statistics of a signal under consideration is available, an optimal fil-

ter for such application can be easily developed (for instance the Wiener Filter

which minimizes the respective Mean Square Error (MSE)). MSE is the difference

between the developed optimal filter output and the desired response (Haykin,

2002). If this prior knowledge is unavailable, adaptive filtering algorithms have

the ability to adapt the corresponding filter coefficients to be well-matched with

the involved signal statistics. Adaptive filtering/ noise cancellation algorithms

have been used in many fields such as signal processing, communications systems

and control systems (Haykin, 2002).

Adaptive filtering process consists of two major steps; the filtering process which

generates an output signal (response) from the input signal, and an adaptation

process; which adjusts the filter coefficients intelligently in order to result in an

optimal output. There are a number of filter structures and adaptive filtering

algorithms that are used in adaptive filtering applications. Such structures in-

clude: adaptive system identification, adaptive noise cancellation, adaptive linear

prediction, adaptive inverse system configurations. Of particular interest in this

thesis is the adaptive noise cancellation configuration. Adaptive noise cancella-

tion is essential in a broad range of communication and automation/ sensor based

systems.

Adaptive filters are usually classified into two main categories depending on their

impulse response: Finite Impulse Response (FIR) adaptive filter and to a limited

extent Infinite Impulse Response (IIR) adaptive filter (Bellanger, 2001). An FIR

adaptive filter’s impulse response has a finite duration since it goes to zero after a

finite time whereas an IIR adaptive filter has an internal feedback mechanism and

continues to respond indefinitely. FIR filters are generally preferred for adaptive

filtering due to their inherent stability.

1



General research and applications of adaptive noise cancellation can be found in

(Z.-K. Yang et al., 2020; Mehmood et al., 2019; Murugendrappa et al., 2020;

Thunga & Muthu, 2020; Wei & Shao, 2019; Miyahara et al., 2019; Maurya et al.,

2019; Balaji et al., 2020; Dixit & Nagaria, 2019; Patnaik et al., 2020).

1.2 Problem statement

Adaptive filters have a wide range of applications in a variety of engineering ap-

plications which basically lie in four broad categories namely: Interference cance-

lation, system identification, inverse system modeling as well as signal prediction.

Interference cancelation is the focus of this research.

In all these applications the performance and efficiency of the noise cancelation

scheme is based on how well the adaptive algorithm can adapt to the changing

signal and noise conditions. This therefore means that adaptive filters are basi-

cally governed by the weights adaptation process for the algorithms utilized in

the noise cancelation process.

Previous research has been centered and done in application of gradient based

algorithm like Least Mean Squares (LMS) in the weights adaptation process which

have shortcomings when applied to signals which have multiple maxima and/or

minima since in the process of exploring the solution space they may get trapped

in a local solution thus failing to generate the desired results. No much focus has

been placed on guided random search algorithms such as Simulated Annealing

(SA) and Genetic algorithm (GA) in ANC. An application of AI in ANC can

be found in (Xia et al., 2008), wherein the Particle Swarm Optimization (PSO)

algorithm has been utilized. However, PSO is found to suffer from premature

convergence. An application of AI in ANC can be found in (Chang & Chen, 2010),

wherein the GA algorithm has been utilized. However, GA is found to suffer

from slow convergence rate. Focus ought to be particularly on developing better

variants of AI algorithms from the point of view of adaptive noise cancellation.

SA is known to generate optimal results in global optimization problems but it

faces a major setback of having very slow convergence rate. This study looks into

the application of standard SA in ANC as well as explores the control param-

eters to increase convergence rate and reduce misadjustment. The influence of

the acceptance probability and the cooling schedule on the algorithm annealing

process are control parameters that are the basis of this study.
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1.3 Justification

The process of obtaining viable adaptive filter weights as quickly as possible in

noise cancelation schemes is crucial depending on the application and require-

ments at hand. Classical algorithms such as the Least Mean Squares (LMS)

algorithm fail in satisfying this requirement, hence the growing research into use

of Artificial Intelligence(AI) algorithms.

Use of AI in ANC adaptive weight evaluation is an active area of research with

Genetic Algorithm receiving the major research focus. This is unlike SA which

has had fewer studies conducted in application to optimization problems. SA is

a robust versatile algorithm due to its inherent nature of expansive search of the

solution space which guarantees a statistical optimal solution to an optimization

problem. This algorithm also has fewer number of control parameters that are

used in tuning its performance compared to other heuristic algorithms like GA.

Weight adaptation process in ANC requires a solution which is easily programmable,

This has a direct relationship with the number of control parameters and number

of cost evaluations thus SA proves to be the best candidate for this since the

key control parameters are the cooling schedule and the acceptance probability

schemes.

The major drawback for Simulated Annealing is the slow execution speed, though

the algorithm is said to be a ‘quick starter’ its overall execution speed is low

compared to other AI algorithms like GA. Thus there is need to work on improving

the execution speed for SA while at the same time comparing its efficiency in the

weights adaptation process to other conventional algorithms such as LMS,and

Normalized Least Mean Squares (NLMS).

1.4 Objectives

1.4.1 Main objective

To develop an improved version of the Simulated Annealing (SA) algorithm and

apply it in adaptive noise cancellation using simulation models in Matlab.

1.4.2 Specific objectives

1. To develop an adaptive noise cancellation model in Matlab.

2. To develop a modified version of the SA algorithm.

3



3. To apply standard SA algorithm and its modified version in the developed

ANC models and compare the effectiveness of the modified version in ANC

over the standard SA algorithm.

4. To analyze the effectiveness of the standard and modified Simulated An-

nealing algorithm in ANC in comparison to standard LMS and NLMS al-

gorithms.

1.5 Thesis organization

Chapter 1 lays down an introduction to the work carried out in the thesis. Chap-

ter 2 lays down a review of various works done by other researchers in the ANC

problem as well as a review of the SA algorithm. Chapter 3 (Methodology) de-

scribes the development of an ANC model and the development of an improved

SA algorithm. Chapter 4 (Results and Discussion) analyzes the effectiveness of

the improved SA algorithm in ANC. Chapter 5 gives an overall conclusion and

recommendations derived from the work done and possible scopes that can be

covered in future work.
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CHAPTER TWO

LITERATURE REVIEW

In this Chapter, reviews pertaining Adaptive Noise Cancellation (ANC), viable

ANC performance measures and use of Least Mean Squares (LMS)/ Normalized

LMS (NLMS) in ANC are presented. Use of artificial intelligence based algorithms

(in ANC in particular Simulated Annealing (SA) algorithm) has been reviewed.

2.1 Adaptive Noise Cancellation

In the filtering process there are two categories of filters, these are the fixed

filters and the adaptive filters. Fixed filters have a predefined fixed frequency

response which cannot change in the course of the filter operation irrespective of

the changes in noise and/or the desired signal.Their operation is basically achieved

by modeling the noise signal and subtracting it from the signal distorted by noise

(A. Singh, 2001).

For randomly changing signal conditions, this direct subtraction of the noise

at the desired signal point results in a high possibility of distorting the signal

more or also increasing the noise. This is because the nature of the transmission

channel and the noise that exists along the transmission channel are not known.

Moreover, for the noise signal to be eliminated the noise subtracted should be

highly correlated to the noise present at the desired signal tapping point. This

cannot be achieved without the use of a filter whose response can change with

the changing noise and signal conditions, hence adaptive filters (A. Singh, 2001).

Adaptive filters are the major component of ANC schemes. In communication

systems, the term filter refers to a system that reshapes the frequency components

of an input signal to generate an output signal with desirable features. Basically

an ANC would be of the nature illustrated in Figure 2.1 (Haykin, 2002), (Albert,

1991).

In this configuration, the input n0(n) (a noise source), is compared with a signal

d(n), which consists of a signal s(n) corrupted by some noise signal. Input x(n) is

highly correlated to the signal noise n0(n) and lowly correlated to signal s(n). As

y(n) adapts to n0(n), e(n) tends to s(n); The output e(n) as depicted in Equation

2.1 below is ideally free of noise.

e(n) = d(n)− y(n) (2.1)

W (n) is the adaptive filter with an adaptive algorithm as the main processor.

Adaptive algorithms are used in the weights adaptation generation and selection
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Figure 2.1: Adaptive noise canceller

to achieve the optimal weights thus, careful selection of the optimal adaptive filter

coefficients can lead to the error signal e (n) being equivalent to the signal s (n).

Applications of research in adaptive noise cancellation can be found in (Tsao et

al., 2018; Arif et al., 2017; Kapoor et al., 2017; Yelwande et al., 2017; D. Yang et

al., 2018).

2.2 Adaptive Noise cancellation performance measures

Adaptive noise cancellation performance measures can be categorized into: con-

vergence rate, computational complexity, robustness (Dimitris & Tsitsiklls, 1993)

and tracking capability (Widrow, 1975). In this thesis, performance measures of

interest are convergence rate and computational complexity, the subject of the

next two subsections. Convergence rate is a crucial factor in real-time systems.

Computational complexity is a factor of consideration in processors bearing low

computational power (typical of embedded systems).

2.2.1 Convergence rate

The convergence rate is the rate (time-wise) at which a filter converges to the

corresponding optimal state (minimal error state) (Haykin, 2002). Fast conver-

gence rate which is a time to converge issue, whilst ensuring stability, is a desired

characteristic of an adaptive system. During algorithm execution the error indica-

tors are evaluated and if they meet a predefined accuracy criterion the algorithm

execution stops (fast convergence implies low algorithm execution time).
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2.2.2 Computational complexity

Computational complexity is of significance in real-time adaptive filter applica-

tions. In the implementation of a real time system, there are hardware limitations

that may affect the performance of the resultant system (Hameed, 2012). The

level of computational complexity in ANC is dependent on the algorithm em-

ployed in the weights adaptation process. Additionally, it is determined by the

number of multiplications, additions, subtractions and divisions during the algo-

rithm execution.

The higher the number of mathematical operations the more the complexity of the

algorithm (Bajic, 2005). A highly complex algorithm will require much greater

hardware and processing resources than a less complex algorithm.

The filter length (count of tap weights) of an adaptive system is inherently tied to

many of the other performance measures, particularly computational complexity.

The length of the filter specifies how accurately a given system can be modeled

by the adaptive filter. In addition, the filter length affects the convergence rate,

by increasing or decreasing computation time and complexity (Busetti, 2005).

Computation time and complexity are directly proportional to the filter length.

2.3 Adaptive noise cancellation solutions in literature

2.3.1 Use of LMS and NLMS algorithms

LMS and NLMS algorithms are commonly used in adaptive noise cancellation.

LMS algorithm minimizes the Mean Square Error (MSE) function given by Equa-

tion 2.2 iteratively by updating filter weights in a manner negative to the direction

of the gradient of the MSE function J(n).

J(n) = E|e(n)|2 (2.2)

where J (n) is the MSE function, E is the expectation operator, e (n) is the error

signal.

The weights adaptation process is as per Equation 2.3.

ŵ(n+ 1) = ŵ(n) + 0.5µ[−∇J(n)] (2.3)

where ŵ is the filter weights vector, µ is the step-size, ∇J(n) is the gradient of

the MSE function.

In Equation 2.3, ŵ corresponds to the filter weighting at a given point in time.

The constant µ (step-size) determines the time to converge as well as the stability
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of the algorithm (Haykin, 2002). If the step size is made too small, the algorithm

will take more time to converge. However, if µ is made too large the convergence

rate is increased as well as the asymptotic error. Thus the selection of the step

size is a trade off between the application requirements, stability, accuracy and

convergence rate.

A subclass of LMS algorithms that is very commonly used is called the Normal-

ized Least Mean Square (NLMS) algorithm (Shi et al., 2019). This algorithm is

an upgrade to the standard LMS algorithm, and it is intended to increase con-

vergence speed, and stability of the algorithms despite increased complexity. The

reason for its development is the dependence of standard LMS adaptive filters

on the step size µ. The trade-offs regarding the step size can have a profound

impact on the applications. Increasing µ increases convergence speed, as well

as the asymptotic error, and hence decreases stability. For that reason, a scal-

ing factor for µ is added in order to constantly scale the step size, and in doing

so to increase the algorithm’s performance while increasing the stability. This

is achieved by normalizing the step size µ with an estimate of the input signal

power. The normalization factor, however, is inversely proportional to the sig-

nal instantaneous power (Shi et al., 2019). So, when the input signal is weak,

it increases the step size proportionally, and when the input is large, it reduces

the step size accordingly. It acts to both increase the stability, and increase the

convergence speed by allowing for variable step size to be used.(Widrow, 1975)

The definition of LMS algorithm can be presented as per Equations 2.4 through

2.6.

y(n) = ŵH(n)x(n) (2.4)

e(n) = d(n)− y(n) (2.5)

ŵ(n+ 1) = ŵ(n) + µe∗(n)x(n) (2.6)

where x(n) is the tap input vector and d(n) is the noise contaminated signal

s(n) + n0(n).

Normalized Least Mean Squares (NLMS) algorithm follows Equations 2.4 and

2.5, with a modification to the tap weight adaptation scheme as per Equation

2.7.

ŵ(n+ 1) = ŵ(n) +
µe∗(n)x(n)

ε+ xH(n)x(n)
(2.7)
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where in equation 2.7, ε is a regularization parameter to avoid division by zero.

In Bajic (2005), research on use of normalized LMS algorithm and wavelet trans-

form domain LMS (WLMS) algorithm in ANC is carried out. Experimentation

with audio (music) signals is carried out. Convergence speed is used as the per-

formance measure, with the WLMS algorithm achieving higher convergence rates

than LMS attributed to reducing the cost of mathematical operations. However,

more research needs to be done for non speech signals on algorithms that would

lead to improved convergence speed.

In Hameed (2012), use of Least Mean Squares (LMS), Normalized Least Mean

Squares (NLMS) and Recursive Least Squares (RLS) algorithms in ANC is sim-

ulated using Matlab under a variety of conditions. An experimental implemen-

tation of the same is also done. Mean Square Error (MSE) is used as a measure

of noise reduction. Achieved convergence rates however need to be compared to

those of better performing AI based algorithms.

In G. Singh et al. (2013), design of an adaptive noise canceller for music signals

encountering colored noise using LMS algorithm is carried out successfully. Im-

proved SINR performance is observed. Use of AI algorithms in such filters need

to be studied since AI based algorithms promise better performance in terms of

convergence rates and solution accuracy.

In A. Singh (2001), various applications of the ANC are studied including an

in depth quantitative analysis of its use in canceling sinusoidal interferences as a

notch filter, for bias or low-frequency drift removal and as adaptive line enhancer.

Other applications dealt qualitatively are use of ANC without a reference input

for canceling periodic interference, adaptive self-tuning filter and cancellation

of noise in speech signals. Computer simulations for all cases are carried out

using Matlab software and experimental results are presented that illustrate the

usefulness of Adaptive Noise Canceling Technique.

2.3.2 Use of artificial intelligence algorithms

In Jatoth (2006), a bio-medical application of adaptive noise cancelling tech-

niques for filtering of obtained noisy Electro Cardio Gram signals using Genetic

Algorithm (GA) and Particle Swarm Optimization (PSO) algorithm is studied.

In addition, their performance in this application are compared to that of LMS.

The results of this study show that the two Artificial Intelligence (AI) algorithms

outweigh LMS in the solution accuracy. This study also gives an insight into

the use of AI in adaptive filters thus showing the possibility of use of Simulated

Annealing in adaptive noise cancellation.
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In Zhou and Shao (2014), an improvement of Evolutionary Digital Filtering

(EDF) is presented. EDF notably exhibits the advantage of avoiding local op-

timums by utilizing cloning and mating rules in an adaptive noise cancellation

system. However, it is notable that convergence performance is hampered by

the large population of individuals required and the limited flow of information

communication among them. A beehive structure somewhat enables individu-

als on neighbour beehive nodes to easily pass information to each other and thus

enhances the information flow and search ability of the algorithm. Through intro-

duction of the beehive pattern evolutionary rules into the original EDF, this paper

overcomes the shortcomings of the original EDF. Simulation results demonstrate

the improved performance of the proposed algorithm in terms of convergence

speed compared with the conventional EDF. The results also verify the effec-

tiveness of the proposed algorithm in significantly extracting noise contaminated

signals.

In Thakur et al. (2014), an improved method based on evolutionary search meth-

ods is applied in speech signal de-noising. In Thakur et al. (2014), Artificial Bee

Colony (ABC), Cuckoo Search (CS) and Particle Swarm Optimization (PSO)

algorithms are utilized in adapting the filter parameters required for optimum

performance. Through simulations in Matlab, it is found that the ABC algo-

rithm and Cuckoo Search algorithm give better performance in terms of achieved

Signal-to-Noise Ratio (SNR) as compared to the PSO approach. The quantita-

tive (SNR, MSE and Maximum Error (ME)) and visual (de-noised speech signals)

results illustrate the superiority of the proposed technique over the conventional

speech signal de-noising techniques.

In Martinek et al. (2015), the implementation of Adaptive Neuro Fuzzy Inference

System (ANFIS) in non-linear suppression of noise and interference is presented.

The authors present a comprehensive ANFIS based system for adaptive interfer-

ence suppression in an audio communication link. The designed system is tested

on real voice signals. Performance measures utilized are Segmental Signal to

Noise Ratio (SSNR) and Dynamic Time Warping (DTW). The results obtained

imply that the ANFIS system is superior to LMS and Recursive Least Squares

(RLS) approaches.

Other studies involving application of artificial intelligence in adaptive noise can-

cellation can be found in (Pitchaiah et al., 2015; Shiva et al., 2016; Munjuluri et

al., 2015; Shubhra & Deepak, 2014; Ludger, 2015).
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2.4 Simulated Annealing algorithm

2.4.1 Introduction

Simulated annealing (SA) algorithm is an optimization technique based on the

way in which a metal cools and freezes into a minimum energy crystalline struc-

ture (the annealing process). This algorithm was proposed in 1983 by Kirk et

al (Patrick et al., 1983) as a probabilistic method for finding global minima or

maxima of a cost function that may possess several local minima or maxima. A

description of the SA algorithm can be found in (Emile et al., 2014). An imple-

mentation of SA algorithm in hardware is described in (Ferreiro et al., 2013). A

classic optimization problem involving train scheduling is solved on the basis of

the SA algorithm in (Kang & Zhu, 2016).

2.4.2 Algorithm operation

SA algorithm approaches optimization problems in an analogous manner to a

bouncing ball approach (a ball bouncing over mountains (function crests) and

from valley (function troughs) to valley). It begins at a high ”temperature”

which enables the ball to make very high bounces (enables it to bounce over

any mountain to access any valley, given enough bounces). As the temperature

declines the ball cannot bounce so high and it can also settle to become trapped

in relatively small ranges of valleys (Yao, 2008).

In this algorithm, a random distribution of possible valleys or states of the system

to be explored is initially generated within the confines of some search region. An

acceptance distribution is also defined, which depends on the difference between

the function value of the present generated valley to be explored and the last

saved lowest valley. The acceptance distribution decides probabilistically whether

to stay in a new lower valley or to bounce out of it. All the generating and

acceptance distributions depend on the temperature. It has been proved that by

carefully controlling the rate of cooling of the temperature, SA can easily find the

global optimum (Garcia et al., 2012).

Solutions inferior to “current” solutions are accepted with a probability P given

in Equation 2.8, where δf is the increase in f (objective function value) and T is

a control parameter, which by analogy with the original application is known as

the system “temperature” (Patrick et al., 1983).

P =
1

eδf/T
(2.8)
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2.4.3 Operational elements

The basic operational elements of the SA algorithm are:

� A representation of possible solutions.

� A generator of random changes in solutions.

� A means of evaluating the problem functions.

� An annealing schedule which is an initial temperature and rules for lowering

it as the search progresses.

Figure 2.2 shows the SA algorithm flowchart (Busetti, 2005). Initially, when the

annealing “temperature” is high, some large increases in the objective function f

are accepted and some areas far from the optimum are explored. As execution

continues and temperature T decreases as per the cooling schedule, fewer uphill

excursions are tolerated (and those that are tolerated are of smaller magnitude).

The main equation corresponds to the probability of accepting a worse state and

is given by Equation 2.9.

P =
1

ec/t
(2.9)

where: P is the probability of accepting a worse state (a worse state is accepted

if P is greater than a random number between 0 and 1.), c is the raw change in

the evaluation function, t is the current “temperature”.

This probability function is borrowed from Boltzmann law of thermodynamics.

The law of thermodynamics states that for some physical body at temperature, t,

the probability P of an increase in energy magnitude δE, is as given in Equation

2.10 where k is the Boltzmann’s constant.

P (δE) =
1

eδE/kt
(2.10)

Temperature reduction involves a linear decrement as given in Equation 2.11.

ti = αti−1 (2.11)

where α is a positive constant less than 1 i.e 0 < α < 1.

2.4.4 One Dimensional Minimization problem

A simple one-dimensional minimization problem is depicted in Figure 2.3. The

minimal value is as indicated by an asterisk. This minimal value is to be obtained
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Input and assess initial solution

Estimate initial temperature

Generate new solution

Assess new solution

Accept new solution

Update stores

Adjust temperature

Terminate search

Stop

Yes

Yes

No

No

Figure 2.2: SA algorithm operation

through the SA algorithm.

Figure 2.3: Typical one-dimension minimization problem
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The first step involves generating a possible random solution. This possible so-

lution is as indicated by a circular dot sign in Figure 2.3. The function value at

this location is consequently evaluated. What follows is a random movement to

another location as depicted in Figure 2.4.

Figure 2.4: Initial iteration solution (dot symbol) as compared against the optimal
solution (asterisk symbol).

The function value at this new location is consequently evaluated. A comparison

is then made between the previous function value and the current function value

. The difference between the two functions is utilized in the solution acceptance

scheme depicted in Equation 2.9. The acceptance probability value obtained

from Equation 2.9 is compared against some random value. If the acceptance

probability value is greater than this random value, the new solution is accepted

as the new benchmark and if the acceptance probability value is less than this

random value, the new solution is not accepted. In this particular case, since the

function value as per Figure 2.4 is way above that depicted by Figure 2.3, the

new solution is not accepted. The operation temperature is then reduced as per

Equation 2.11. A random movement to another location as depicted in Figure 2.5

follows. As this illustration is a minimization problem the solution is accepted.

Further movements are as depicted by Figures 2.6 and 2.7 and finally 2.8.

2.4.5 SA algorithm strengths

Simulated annealing can deal with highly nonlinear models, chaotic and noisy

data and many constraints. Its main advantages over other local search meth-

ods are its flexibility and its ability to approach global optimality (Bezakova et

al., 2006). The algorithm is quite versatile and its parameters are easily tuned.

Despite having lower convergence rate as compared to other algorithms, the SA

algorithm eventually generates an optimal solution. The convergence speed of
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Figure 2.5: Second iteration solution (dot symbol) as compared against the opti-
mal solution (asterisk symbol).

Figure 2.6: Third iteration solution (dot symbol) as compared against the optimal
solution (asterisk symbol).

Figure 2.7: Fourth iteration solution (dot symbol) as compared against the opti-
mal solution (asterisk symbol).

SA is governed by the cooling schedule, neighbourhood selection process and the

acceptance probability scheme. Through optimization of these factors to improve

the convergence performance of the SA algorithm, it can be a better choice in
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Figure 2.8: Final iteration solution (dot symbol) as compared against the optimal
solution (asterisk symbol).

ANC. This is the subject of the research work carried out. SA algorithm accepts

poor solutions with a certain probability figure (Yao, 2008). This ensures that

the algorithm never gets trapped in local solutions.

2.4.6 SA algorithm improvements

The search method utilized by meta-heuristic algorithms is in fact a local search

in the solution space. Investigations of these methods show that their efficiency in

solving different types of problems significantly depends on the applied strategy in

searching the solution space. Traditional neighborhood selection methods have

disregarded the essential characteristics embodied in the chosen neighborhood.

In Alazamir et al. (2008), the efficiency of solving combinatorial optimization

problems using simulated annealing method by taking the advantages embodied

in neighborhood structures is examined. The proposed algorithm (Alazamir et al.,

2008) improves simulated annealing in two different aspects: First, by employing

multiple neighborhood structures, it performs a more powerful search and second,

using optimal stopping problem, it finds the best time to change the temperature

which is a critical issue in simulated annealing. However, the novel algorithm is

examined on the basis of a very simple problem (the traveling salesman problem)

and as such the improvements done might prove unsuitable in complex problems.

In Bisht (2004), the aspect of finding a better solution by applying the existing

best solution from the population space as the initial starting point is studied.

The genetic algorithm is used to generate the best start-point solution creating

a hybrid optimization method. The basic idea is to use the genetic operators of

genetic algorithm to quickly converge the search to near-global minima/ maxima

that will further be refined to a near-optimum solution by simulated annealing
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algorithm. The new hybrid algorithm has been applied to optimal weapon allo-

cation in multilayer defense scenario problem to arrive at a better solution than

produced by simulated annealing algorithm alone. However, algorithm hybridiza-

tion leads to more computationally complex algorithms and consequently longer

convergence time.

In Bayram and Azahin (2013), a study on improving the search capability of SA

algorithm through integration of two new neighborhood mechanisms is presented.

The results derived on the basis of the Travelling Salesman Problem have shown

that the proposed techniques are more effective than conventional SA, both in

terms of solution quality and time. However, the improvement done has not

been studied on the basis of any other optimization problem. The proposed

integration mechanism potentially leads to an increase in computation complexity,

a negativity in terms of convergence time.

In Bezakova et al. (2006), an improved cooling schedule for simulated annealing

algorithms for combinatorial counting problems is presented. Under the new

schedule the rate of cooling accelerates as the temperature decreases. Thus,

fewer intermediate temperatures are needed as the simulated annealing algorithm

moves from the high temperature (easy region) to the low temperature (difficult

region). This results in accelerated algorithm execution speed. However, the

proposed approach has the potential of hampering on solution accuracy.

In Y. Li et al. (2013), a hybrid Genetic algorithm/ SA algorithm is proposed and

applied successfully in an e-supply chain problem. Another scenario featuring

algorithm hybridization can be found in (Yannibelli & Amandi, 2013), whereby

the SA algorithm is hybridized with evolutionary search algorithm in a scheduling

problem yielding good results. In Nouri et al. (2013), a hybrid firefly-SA algorithm

is developed for a shop problem with learning features and flexible maintenance

activities yielding significant results. All in all, algorithm hybridization usually

results in computation complexity and reduction of speed of convergence.

Other SA algorithm improvements can be found in (Zhang et al., 2017; Xu et al.,

2017; Wu et al., 2017; Shang et al., 2020).

2.4.7 SA Versus Other AI Algorithms

SA’s major advantage over other non-gradient based methods (such as Genetic

Algorithm, Tabu Search algorithm, Differential Evolution) is an ability to avoid

becoming trapped in local minima. This is because the algorithm employs a ran-

dom search technique, which not only accepts changes that decrease the objective

function value f (assuming a minimization problem), but also some changes that
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increase it with some degree of probability. This therefore guarantees that SA per-

forms better than other AI algorithms (such as Genetic Algorithm, Tabu Search

algorithm, Differential Evolution) in optimization problems thus the choice in

ANC, the subject of this research. However, the major drawback of SA is slow

execution speed which can be increased by optimization of the control parame-

ters, acceptance probability and the cooling schedule.This is the key focus of this

research.

2.5 Summary

This chapter has reviewed pertinent issues in ANC. ANC performance measures

in particular convergence rate and computation complexity have been reviewed.

A review on the use of LMS/ NLMS in ANC has been presented. This is along-

side use of artificial intelligence based algorithms in ANC in particular the SA

algorithm. Various applications of SA algorithm in ANC have been presented.

The shortcomings of the SA algorithm have been presented alongside a review of

potential improvements.

It has been noted that the convergence speed of SA is mainly governed by the

cooling schedule and the utilized acceptance probability scheme. Through op-

timization of these two factors to improve the convergence performance of the

SA algorithm, it can be a better choice in ANC. Corresponding SA algorithm

improvements are presented in Chapter 3 of this Thesis.

It is desirable that the improvements made on the SA algorithm are analyzed on

the basis of different signals and noise conditions, a task carried out in Chapter

4 of this Thesis.

In the next Chapter, an ANC simulation model is developed. The development of

an improved SA algorithm (through improved acceptance probability and cooling

schedule) is also presented.
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CHAPTER THREE

METHODOLOGY

In this chapter an adaptive noise cancellation model is developed. Three signal

formats (electrocardiogram, sinusoidal and irregular random signals) utilized in

the subsequent chapter are presented. Euclidean distance and correlation coeffi-

cient performance measures have been presented.

Improvements on the conventional SA algorithm performance by proposed cooling

schedule and acceptance probability schemes have been presented.

The procedural steps taken towards the application of the standard SA algorithm

and its modified version in adaptive noise cancellation have been presented. This

is alongside a highlight of the methods applied in establishing the effectiveness of

the standard and modified Simulated Annealing algorithm in ANC in comparison

to standard LMS and NLMS algorithms.

3.1 Development of an adaptive noise cancellation model

3.1.1 ANC model formulation

An adaptive noise canceller is illustrated in Figure 2.1.

To observe the outcome of adaptive noise cancellation in a broad way, a series

of signals are used as input signal S. The signals utilized are Electrocardiogram

signals, sinusoidal signals and randomly generated signals. Additive White Gaus-

sian Noise (AWGN) plus other random noise is used as the noise data n0. AWGN

is representative of naturally occurring noise. A viable filter order is identified

in line with the problem at hand (long enough to allow for proper performance

bearing in mind the higher the order, the higher the computation intensity).

3.1.2 Cost function formulation

As per Figure 2.1, an adaptive noise canceller has two inputs primary (repre-

sented by d) and reference (represented by x). The primary input is a signal s

that is corrupted by the presence of noise n0 that is uncorrelated with the signal.

The reference input is a noise signal x(n) that is uncorrelated with the signal s

but correlated in some way with the noise n0. The noise x(n) passes through

an adaptive filter to generate an output y that is a close estimate of the primary

input noise n0. This noise estimate is consequently subtracted from the corrupted

signal to generate an estimate of the signal e, the ANC system output.

In typical noise cancellation systems, the objective is usually to produce a system

output (Equation 3.12) that is a best fit in the least squares sense to the signal
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of interest s. This objective is met through feeding back the system output e

to the adaptive filter and consequently adjusting the filter through an adaptive

algorithm with an aim of minimizing the total system output power. The system

output is typically the error signal for the adaptive process.

In the following analysis, it is assumed that s, n0 and n1 are statistically stationary

and have zero means; The signal s is uncorrelated with n0 and n1, and n1 is

correlated with n0.

e = s+ n0 − y (3.12)

e2 = s2 + (n0 − y)2 + 2s(n0 − y) (3.13)

Taking the expectation of both sides in Equation 3.13 and realizing that s is

uncorrelated with n0 and y,

E[e2] = E[s2] + E[(n0 − y)2] + 2E[s(n0 − y)] (3.14)

and consequently

E[e2] = E[s2] + E[(n0 − y)2] (3.15)

The signal power E[s2] is not affected since the filter is adjusted to minimize the

total output power E[e2] as per Equation 3.16.

minE[e2] = E[s2] +minE[(n0 − y)2] (3.16)

When the filter weights are adjusted with an aim towards minimizing the total

output power E[e2], the output noise power E[(n0 − y)2 is also minimized. Since

the signal power in the output remains constant, minimizing the total output

power maximizes the output Signal to Noise Ratio (SNR).

In consideration of the various signal formats described in the previous section,

the cost function developed is as per Equation 3.17.

ES = NCS −WNE (3.17)

where: ES denotes Error Signal, NCS denotes Noise Contaminated Signal, WNE

denotes Weighted Noise Estimate.

Let wT be some MX1 tap-weight vector, wT = [w1, w2, ..., wM ] where M is the

filter length.

Let xT (n) be some MX1 input vector, xT (n) = [x(n), x(n−1), ..., x(n−M + 1)].
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Then the filter output y(n|xn) can be framed as wHx(n) where H is the Hermitian

transpose operator.

Equation 3.17 can consequently be written as per Equation 3.18, where e(n) is

the filter output, d(n) the noise contaminated signal, w(n) a set of filter weights

and x(n) an estimate of the noise signal.

e(n) = d(n)−wHx(n) (3.18)

The mean squared error (cost function) J(w) can consequently be expressed as

E[e(n)e*(n)] (expanded in Equation 3.19).

J(w) = E[(d(n)−wHx(n))(d∗(n)− xH(n)w)] (3.19)

Minimizing the cost function as per Equation 3.19 through filter weights opti-

mization yields an optimal solution (ideally a noise free signal).

3.1.3 Correlation performance measure

In general, the term correlation can imply any statistical association, though it

commonly refers to how close two variables are in terms of a linear relationship

with each other.

Pearson’s product-moment correlation coefficient

“Pearson product-moment correlation coefficient”, or “Pearson’s correlation co-

efficient”, commonly referred to as “correlation coefficient” is a common measure

of dependence between two variables. Pearson’s correlation coefficient is obtained

by dividing the covariance of the two variables under consideration by the product

of their standard deviations.

The population correlation coefficient ρX,Y between two random variables X and

Y with expected values µX and µY and standard deviations σX and σY is defined

as per Equation 3.20 below.

ρX,Y = corr(X, Y ) =
cov(X, Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY
(3.20)

In Equation 3.20:

E is the expectation operator;

cov implies covariance;

corr implies correlation coefficient.

The Pearson correlation measure is defined/ valid if and only if both variables’

standard deviations are non-zero and finite. The Pearson correlation measure is

+1 in the case of a perfect direct (increasing) linear relationship (correlation). The
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Pearson correlation measure is -1 in the case of a perfect decreasing (inverse) linear

relationship (anti-correlation). In all other cases, the Pearson correlation measure

is a value within the interval (-1, 1). As the correlation measure approaches

zero, there is less of a relationship between the variables in question (closer to

uncorrelated). A coefficient with a value close to either -1 or 1 implies strong

correlation between variables.

3.1.4 Euclidean distance performance measure

In the performance evaluation comparison, Euclidean distances play a pivotal role

in the analysis of final solution convergence for different optimization algorithms

studied in this thesis. Euclidean distance is a measure of similarity or dissimilarity

that can be used to compare two sets of vectors and compute a single number

which evaluates the similarity/dissimilarity. For two points in a two dimensional

space Euclidean distance is the length of the path connecting them in the plane.

The distance between say two points (x1, y1) and (x2, y2, ) is given by Equation

3.21.

d =
√

(x2 − x1)2 + (y2 − y1)2. (3.21)

In Euclidean three-space plane, the distance between points (x1, y1, z1) and (x2, y2, z2)

is given by Equation 3.22.

d =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. (3.22)

In general, given two n-dimensional vectors:

� x̂ = [x1, x2, x3 ... xn]T

� ŷ = [y1, y2, y3 ... yn]T

The Euclidian distance d between them is given by Equation 3.23.

d =

√√√√ n∑
i=1

(xi − yi)2 (3.23)

3.2 Simulated annealing algorithm improvement

The structure of the utilized standard SA algorithm is of the nature described in

the listing below (implemented in MATLAB).
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1. The SA function definition is framed as: [OptimalPosition,OptimalValue]

= SA(CostFunction, InitialRandomSolution, SAoptions).

The SAoptions structure holds the following parameters:

� cooling schedule; formulated as a linear relationship: CurrentTemper-

ature=PreviousTemperature*0.8.

� initial temperature; formulated as 1

� solution generation; a small random modification of the current solu-

tion; formulated as: NewSolution= CurrentSolution+SmallRandomValue.

2. Evaluation of the cost function at the initial random solution position.

3. Generation of a new solution position as per the solution generation mech-

anism described in 1.

4. Evaluation of the cost function at the new solution position. If the eval-

uation yields a better result than the previous result, the current solution

position is adopted. If the evaluation yields a worse result than the previous

result, the current solution position is adopted with some probability value

defined as a check on: RandomV alue < exp
(PreviousResult−CurrentResult)

(Temperature) .

5. Temperature is consequently adjusted as per the cooling schedule defined

in 1.

6. Steps 3 to 5 are repeated until some stopping criteria is met.

Figure 3.9 illustrates the SA algorithm flow chart.

As seen from the above structure, the solution acceptance scheme and the cooling

schedule play a pivotal role in the SA algorithm. The improvements done on the

SA algorithm focus on the two items, and are consequently described.

3.2.1 Acceptance Probability

During SA algorithm run, not only better solutions are accepted but also worse

solutions but with a decreasing probability as execution progresses. The aim of

accepting worse solutions during SA algorithm run is to avoid convergence to

a local minimum. The probability of accepting a worse solution is determined

by two parameters: the temperature and the difference between the objective

function values of current solution and neighbor solution (solution under probe).
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Figure 3.9: SA algorithm flow chart

In the standard SA algorithm, the probability of accepting a worse move is based

on an exponential calculation involving the parameters mentioned in the previous

paragraph.

The corresponding exponential equation is given in Equation 3.24, where δf is

the change in f (objective function value) and T is a control parameter, which by

analogy with the original simulated annealing application is known as the system

”temperature”. The nature of Equation 3.24 is generally based on the manner in

which a metal cools and freezes into a minimum energy crystalline structure (the

annealing process)as described in the literature review section.

P =
1

e(δf/T )
(3.24)

Exponential calculations are computationally intensive and consequently this
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slows down algorithm execution speed whilst taking up huge processing resources.

Use of simpler but efficient functions would result in increased algorithm conver-

gence rate.

An efficient acceptance probability scheme is hereby defined as per Equation 3.25.

P (δf ) = 1− δf/T (3.25)

where δf is representative of change in objective function value and T is repre-

sentative of system temperature.

The graph relayed in Figure 3.10 clearly indicates that a linear function of the

nature depicted by Equation 3.25 approximates the exponential function for eval-

uation values in the neighborhood of zero.

This corresponds to the ANC problem at hand whereby objective function values

are typically in the neighborhood of zero. The developed Equation 3.25 result

is identically equal to the exponential case result depicted in Equation 3.24 for

evaluation value of zero.

Figure 3.10: Exponential/ linear functions comparison.

Table 3.1 gives numerical comparison between the exponential and linear cases

results within a variable input range -0.1 to +0.1.
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Table 3.1: Exponential/ linear functions comparison.
x = −δf/T -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

exp 0.904837 0.923116 0.941765 0.960789 0.980199 1 1.020201 1.040811 1.061837 1.083287 1.105171

linear 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1

Equation 3.25 approximates the exponential calculation utilized in the standard

SA algorithm. This approach emanates from the binomial series expansion of an

exponential function as given in Equation 3.26.

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ .... (3.26)

Taking x = −(δf/T ), Equation 3.26 can be framed as Equation 3.27.

e−(δf/T ) = 1 +
(−δf/T )

1!
+

(−δf/T )2

2!
+

(−δf/T )3

3!
+ .... (3.27)

In typical situations, δf/T is usually very small (typically in the neighborhood

of zero as per Figure 3.10), and Equation 3.27 can be approximated to Equation

3.28 giving rise to Equation 3.25.

e−(δf/T ) = 1 +
−(δf/T )

1!
= 1− δf/T (3.28)

A typical comparison between utilizing the exponential function and the proposed

function is illustrated in Figure 3.11.

The scheme illustrated in Figure 3.11 is typical of a minimization problem, with

annealing being performed at constant temperature. The execution speed in-

volved in obtaining acceptance probability is dramatically increased upon using

the proposed scheme (roughly three-fold). The code developed to cover this sce-

nario is depicted in Appendix 2.

3.2.2 Cooling scheme

In the standard SA algorithm, at high temperatures many worse solutions are

accepted. At high temperatures, the probability of accepting worse solutions is

high. As the temperature decreases, the probability of accepting worse solutions

decreases. If one starts at too high a temperature a random search is emulated

and until the temperature cools sufficiently any solution can be reached and

could have been used as a starting position. At lower temperatures, very few

worse moves are accepted. Generally, SA algorithm does most of its work during

the middle stages of the cooling schedule. This seemingly suggests that annealing

at a roughly constant temperature in the middle stage is a workable idea. An
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Figure 3.11: Developed acceptance probability scheme (Data collected from Mat-
lab simulations).

efficient temperature decision scheme is hereby developed for the ANC problem

with an aim of giving faster convergence speed.

An exponentially decreasing temperature is defined as per Figure 3.12. The

temperature reduction rate is kept low in the mid stages of algorithm run. This

is a departure from the standard SA algorithm in which temperature reduction is

linear. Figure 3.12 is a typical representation of a situation with 6,000 (this figure

can be adjusted to accommodate different problems) maximum iterations. The

middle iteration range is 2,000 to 4,000 iterations. The code developed to cover

this scenario is depicted in Appendix 2. The constant α as shown in Equation

3.29 is varied in accordance with iteration number as per Equation 3.30. At high

and low iteration numbers α is kept low. In the mid iteration range α is kept

high.

NT = α× PT (3.29)

where NT denotes New Temperature and PT denotes Previous Temperature.
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Figure 3.12: Developed cooling schedule (graph derived from Equation 3.30).

NT =


0.9996× PT, for 1 < IterNo ≤ (MaxIter)/3

0.99991× PT for (MaxIter)/3 < IterNo ≤ (MaxIter) ∗ 2/3

0.999× PT for (MaxIter) ∗ 2/3 < IterNo ≤ (MaxIter)

(3.30)

The values 0.9996, 0.99991 and 0.999 have been manually selected to befit the

6,000 maximum iterations problem. The figures can be adjusted to accommodate

different problems (in terms of maximum iterations).

Cooling schemes in literature

Development of improved cooling schedules is a significant area of research in SA

algorithm improvement/ modification (Mahdi et al., 2017). Convenient cooling

schedules tend to be problem specific. Selected cooling schedules in literature are

herein described.

Logarithmic Cooling Schedule

A logarithmic cooling schedule is defined in (Mahdi et al., 2017) as per Equation

3.31.

NT =
c

log(1 + IterNo)
(3.31)
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where NT is the new working temperature and c is a positive constant indepen-

dent of IterNo but dependant on the optimization problem under consideration.

The logarithmic cooling schedule is found to converge at a very slow rate and

also requires a somewhat large computation time.

Geometrical cooling schedule

A geometrical cooling schedule is defined in (Mahdi et al., 2017) as per Equation

3.32.

NT = Tinitα
IterNo (3.32)

where Tinit is the initial temperature and α is a constant between 0 and 1. A

value of α close to 1 implies a slow decrease of temperature.

Linear cooling schedule

A linear cooling schedule is defined in (Mahdi et al., 2017) as per Equation 3.33.

NT = Tinit − n(IterNo) (3.33)

where n is a decay parameter.

Graphical comparison

A graphical comparison of the cooling schedules described above are as per Figure

3.13 (Mahdi et al., 2017).
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Figure 3.13: Selected cooling schedules in literature.
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The cooling schedule constants for the schemes illustrated in Figure 3.13 are given

in Table 3.2.

Table 3.2: Selected cooling schedules in literature: constant values used.

Cooling schedule Parameters

Proposed Adaptive, as per Equation 3.30

Logarithmic c=0.3

Geometric α = 0.99947

Linear n = 0.00016

The cooling schedule schemes’ computation time is given in Table 3.3. The val-

ues are generated through Matlab’s computation timer in a uniform computation

environment. Lower computation time is indicative of lower computation com-

plexity. The proposed cooling schedule performs than the other schedules.

Table 3.3: Selected cooling schedules in literature: computation time.

Cooling schedule Function evaluation time (seconds)

Proposed 0.0012

Logarithmic 0.0053

Geometric 0.0034

Linear 0.0027

3.3 Application and analysis of the modified SA algorithm

in adaptive noise cancellation

This section presents the procedural steps taken towards the application and

analysis of the modified SA algorithm in adaptive noise cancellation. Performance

validation is on the basis of a comparative analysis against the standard SA

algorithm. Signal formats utilized in the next Chapter (Results and Discussion)

have been brought to the fore.

3.3.1 Noise cancellation framework

In general, the cost function as per Equation 3.34 is utilized in the adaptive noise

cancellation process.

J(w) = E[(d(n)−wHx(n))(d∗(n)− xH(n)w)] (3.34)
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Minimizing the cost function as per Equation 3.34 through filter weights opti-

mization yields an optimal solution (ideally a noise free signal). The modified

SA algorithm is utilized in obtaining the optimal weights. The performance of

the modified SA algorithm is to be weighed against that of the standard SA

algorithm.

The noise cancellation process is captured in Figure 3.14 where the noise con-

taminated signal is de-noised using an ANC filter in which the weight adaptation

algorithms are applied in the weight generation and adaptation process.

 Noise corrupted signal 

Adaptive noise canceller 

Noise free signal 

Figure 3.14: Adaptive noise cancellation process.

For purposes of validating the performance of the modified SA algorithm in

adaptive noise cancellation against the standard SA algorithm, a noise corrupted

speech signal has been utilized.

3.3.2 Speech signal framework

The utilized speech signal is framed in stereo format (bearing left and right chan-

nels). The speech signal is MPEG-4 Audio (M4A) encoded. M4A corresponds to

the file extension for an audio recording encoded using Advanced Audio Coding

(AAC) (a lossy compression technique).

3.4 Performance comparison: SA algorithm against stan-

dard LMS and NLMS algorithms in adaptive noise

cancellation.

To further establish the effectiveness of SA algorithm in adaptive noise cancella-

tion, performance comparison against classical adaptive noise cancellers (LMS/
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NLMS algorithm based) is done. The signal formats described in Section 3.4.1

have been utilized (Sinusoidal, irregular and fetal electrocardiogram signals).

3.4.1 Utilized signal formats

Electrocardiogram signals framework

Continuous monitoring of fetal heart condition during pregnancy is of great med-

ical significance. One area of application of adaptive noise cancellation is in ex-

traction of fetal heartbeat signals from signal measurements taken at the mother’s

abdomen. Electro Cardio Gram (ECG) is used to record changes in heartbeat

thus can diagnose any heart malfunction. The obtained fetal ECG (FECG) sig-

nal is usually severely contaminated by maternal cardiogram (MECG), and other

external interferences. The resultant low signal to noise ratio of fetal ECG makes

it difficult to analyze it effectively necessitating noise cancellation mechanisms.

Research involving application of adaptive noise cancellation in medical instru-

mentation can be found in (L. Li et al., 2016) in which lung sound noise cancel-

lation and classification is performed satisfactorily. Other corresponding appli-

cations can be found in (Abdelghani et al., 2015), (Dewangan & M., 2014) and

(Tanaka et al., 2016).

Typical waveforms corresponding to electrocardiogram signals for both the mother

and the corresponding fetus are hereby defined.

Mother’s heartbeat

The mother’s heart rate is simulated to be approximately 89 beats per minute

with the peak voltage of the signal being 3.25 millivolts. This is informed by the

work laid out in (Ghodsi et al., 2010). A typical mother’s heartbeat signal (noise

free) is as given in Figure 3.15.
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Figure 3.15: Maternal Electrocardiogram Signal (noise free).

Fetus heartbeat

Fetal heart rate is usually noticeably higher than that of the mother, with heart

rate figures ranging from around 120 to 160 beats per minute. Fetal heartbeat

amplitude is weaker than that of the maternal heartbeat. The fetus heartbeat

signal is simulated to correspond to a heart rate of 139 beats per minute with a

peak voltage of 0.25 millivolts. This is informed by the work laid out in (Ghodsi

et al., 2010). A typical fetus heartbeat signal (noise free) is as given in Figure3.16.
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Figure 3.16: Fetal Electrocardiogram Signal (noise free).

Measured fetal signal

The measured fetal heartbeat signal from the abdomen of a mother is usually

distorted by the maternal heartbeat signal. This effect has to be taken into

consideration in the fetal heartbeat signal extraction process. In simulations in

a later chapter, in addition, AWGN is added to simulate any other noise sources

within the measurement.

A typical measured fetal heartbeat signal is as given in Figure 3.17.
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Figure 3.17: Measured Fetal Electrocardiogram Signal

Measured Mother’s heartbeat

The maternal electrocardiogram signal is typically obtained from the chest of a

mother. The role of an ANC in this task is to adaptively remove the maternal

heartbeat signal from the fetal electrocardiogram signal. The ANC requires a

reference signal generated from a maternal electrocardiogram to perform this task.

AWGN is added to the maternal electrocardiogram signal. A typical measured

maternal signal is as given in Figure 3.18.
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Figure 3.18: Reference Electrocardiogram Signal

The choice of a reference signal is based on the nature of the noise source and

the desired signal to be recovered from the noise corrupted signal. Typically, a

reference signal should be highly correlated with the noise and low correlation

with the desired signal.

Other simulated signals

Sinusoidal waveforms and other random irregular waveforms depicted in the Fig-

ures 3.19 and 3.20 were taken into consideration. A sinusoidal waveform can be

described by Equation 3.35. It is worthwhile performing simulations from the

point of view of sinusoidal waveforms given that any signal can be expressed as

a composition of sinusoids (fourier decomposition).

s(n) = A sin 2πfn (3.35)

In Equation 3.35, A is the amplitude and f the frequency.
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Figure 3.19: Sinusoidal waveform
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Figure 3.20: Irregular waveform

The irregular waveform was generated using the MATLAB in-built function rand.

Many signals naturally take up an irregular form. Examples include clinical sensor
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signals, automation sensor signals among others.

These signals were considered as desired signal inputs to the adaptive filter so as

to evaluate the performance of the algorithms under different signal conditions.

3.4.2 Performance metrics

Performance comparison metrics utilized include: correlation measures, graphical

analysis and Euclidean distance measures.

3.5 Summary

In this chapter, the development of an Adaptive noise cancellation model is pre-

sented. Signal formats utilized in the subsequent chapter have been presented.

Signals utilized include: sinusoidal signals, fetal electrocardiogram signals and a

set of randomly generated signals. Performance measures applied, most notably

correlation and Euclidean distance measures have been presented.

An improved SA algorithm has been developed on the basis of making modifica-

tions to the control parameters of the standard SA. In particular, the acceptance

probability and the cooling schedule procedures have been adjusted.

The effectiveness of the improvements in ANC is the focus of the next Chapter.
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CHAPTER FOUR

RESULTS AND DISCUSSION

Comparisons are hereby done between the performance of SA, its improved ver-

sion, LMS and NLMS algorithms under a variety of signal and noise conditions

in ANC. The LMS and NLMS algorithm schemes utilized follow those utilized

in (Hameed, 2012). Performance measures taken into consideration are conver-

gence speed and final solution accuracy (error amount) measured as a correlation

value. All algorithms are run for equal adaptation durations. Consequently, a

better convergence rate can be deduced from higher waveform correlation values

between desired waveform and adaptation result waveform.

4.1 Comparison of the improved SA algorithm against the

standard SA algorithm in adaptive noise cancellation

In this Section, the effectiveness of the SA algorithm improvements proposed in

Section 3.2 are analyzed in a speech signal noise cancellation application. The

utilized speech signal is as described in Section 3.3.2.

Figures 4.21 and 4.23 are representative of the results obtained upon application

of the improved and standard SA algorithms in adaptive noise cancellation. The

figures portray the outcomes associated with two audio channels (stereo audio

scenario).

39



ð ðòë ï ïòë î îòë

Ì·³» ø­÷ ïðë

óî

ð

î

Ò±·­» ½±®®«°¬»¼ ­°»»½¸ ­·¹²¿´æ Ý¸¿²²»´ ï

ð ðòë ï ïòë î îòë

Ì·³» ø­÷ ïðë

óðòë

ð

ðòë
Ò±·­» ½¿²½»´´»¼ ­·¹²¿´ «­·²¹ ·³°®±ª»¼ Íßæ Ý¸¿²²»´ ï

ð ðòë ï ïòë î îòë

Ì·³» ø­÷ ïðë

óðòë

ð

ðòë
Ò±·­» ½¿²½»´´»¼ ­·¹²¿´ «­·²¹ ­¬¿²¼¿®¼ Íßæ Ý¸¿²²»´ ï

ð ðòë ï ïòë î îòë

Ì·³» ø­÷ ïðë

óðòë

ð

ðòë
Û¨°»½¬»¼ ø»®®±®óº®»»÷ ­·¹²¿´æ Ý¸¿²²»´ ï

Figure 4.21: Comparison of the results obtained upon adaptive noise cancellation

in a speech signal problem using improved and standard SA algorithms: Audio

Channel 1.

From Figure 4.21 (channel 1 results), it is observable that the improved SA algo-

rithm yields a better outcome as compared to the standard SA algorithm. The

shape of the waveform associated with the improved SA algorithm almost matches

the desired signal waveform.
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Figure 4.22: Comparison of the results obtained upon adaptive noise cancellation

in a speech signal problem using improved and standard SA algorithms: Audio

Channel 2.

From Figure 4.23 (channel 2 results), it is observable that the improved SA algo-

rithm yields a better outcome as compared to the standard SA algorithm. The

shape of the waveform associated with the improved SA algorithm almost matches

the desired signal waveform.

Comparative correlation values are given in Table 4.4. The improved and stan-

dard SA algorithm correlation results values have been obtained upon averaging

the outcome of 50 independent adaptive noise cancellation runs.
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Table 4.4: Comparative correlation values.

Channel 1 Channel 2

Correlation between the desired signal and: Mean SD Mean SD

Corrupted signal 0.0796 N/A 0.0805 N/A

ISA algorithm noise cancellation result 0.7418 0.013 0.7523 0.012

SA algorithm noise cancellation result 0.5609 0.014 0.5349 0.017
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Figure 4.23: A graph portraying the correlation values presented in Table 4.4.

The results presented herein portray the efficacy of the SA algorithm improve-

ments presented in Section 3.2.

4.2 Comparison of the improved simulated annealing al-

gorithm in adaptive noise cancellation with standard

SA, NLMS and LMS algorithms

In this section the use of improved and standard SA algorithms in ANC is ana-

lyzed against the commonly used NLMS and LMS algorithms. Adaptive weight

generation is studied comprehensively under a variety of sinusoidal signal and

noise conditions. Varying signal frequencies have been utilized to give a com-

prehensive algorithm performance comparison. High frequency sinusoidal signals

featuring AWGN have been used as the noise signals. The improved SA algo-

42



rithm is found to outweigh the performance of the other algorithms. The entire

analysis is done through simulations in MATLAB software.

4.2.1 Sinusoidal waveform

Herein, an analysis of adaptive noise cancellation in scenarios featuring sinusoidal

signals of varying frequency is carried out. Analysis from the perspective of

varying signal frequency allows for a check into ANC weight adaptation efficiency

given a slow (low frequency) or a fast (high frequency) changing signal.

Signal set 1

The sinusoidal signal depicted in Figure 4.24 as per Equation 4.36 is utilized as

the desired signal in the first set of simulations.
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Figure 4.24: Desired signal: Sinusoidal waveform. s(n) = 5 ∗ sin(12 ∗ n) where
n = 1 : 0.025 : 4.5

s(n) = 5 ∗ sin(12 ∗ n) ; n = 1 : 0.025 : 4.5 (4.36)

A noise signal as per Figure 4.25 is added to the desired sinusoidal signal.

The noise signal has been framed as a sinusoidal waveform (of higher frequency

than the desired signal and at roughly 50 Hz in frequency mimicking the usual

grid electricity frequency) featuring additive gaussian noise as per Equation 4.37.
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Figure 4.25: Noise signal: Sinusoidal waveform with additive gaussian noise.
no(n) = sin(300 ∗ n) + awgn where n = 1 : 0.025 : 4.5

no(n) = sin(300 ∗ n) + awgn ; n = 1 : 0.025 : 4.5 (4.37)

The correlation between the desired signal and the used noise signal is 0.0356.

The noise corrupted signal is depicted in Figure 4.26 as per Equation 4.38.

d(n) = s(n) + no(n) ; n = 1 : 0.025 : 4.5

d(n) = 5 ∗ sin(12 ∗ n) + sin(300 ∗ n) + awgn ; n = 1 : 0.025 : 4.5
(4.38)

The correlation between the desired signal and the noise corrupted signal is

0.9786.
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Figure 4.26: Corrupted signal: d(n) = 5 ∗ sin(12 ∗ n) + sin(300 ∗ n) + awgn.

The reference signal utilized in the adaptation process is depicted in Figure 4.27

as per Equation 4.39. The reference signal is intentionally designed as highly

correlated to the noise signal.

x(n) = sin(300 ∗ n) + awgnReference ; n = 1 : 0.025 : 4.5 (4.39)

The correlation between the used reference signal and the noise signal is 0.8887.

A comparison between the reference signal and the noise signal is depicted in

Figure 4.28.
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Figure 4.27: Reference signal (highly correlated to the noise signal): x(n) =
sin(300 ∗ n) + awgnReference.
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Figure 4.28: A comparison between the reference and noise signals.

The adaptive filter length utilized is 16 (the length is based on a give and take

fact: too small a filter length might hamper convergence whereas too large a
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filter length might unnecessarily increase computation complexity). The filter is

invoked to minimize the cost function E[e(n)e∗(n)] where e(n) is as per Equation

4.40.

e(n) = [s(n) + no(n)]−wH [x(n)] ; n = 1 : 0.025 : 4.5

e(n) = [5 ∗ sin(12 ∗ n) + sin(300 ∗ n) + awgn]−wH [sin(300 ∗ n) + awgnReference]

(4.40)

The results obtained using the improved SA, standard SA, LMS and NLMS al-

gorithms are depicted in Figures 4.29 and 4.30.
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Figure 4.29: Comparison (against the desired signal) of the results obtained upon
adaptive noise cancellation using the improved SA, standard SA, LMS and NLMS
algorithms.
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Figure 4.30: Comparison of the results obtained upon adaptive noise cancellation
using the improved SA, standard SA, LMS and NLMS algorithms.

The correlation between the desired signal and the noise canceled signal using

the:

� improved SA algorithm is 0.9971.

� SA algorithm is 0.9965.

� NLMS algorithm is 0.9944.

� LMS algorithm is 0.9890.

A visual analysis of the results depicted by Figures 4.29 and 4.30 indicates that

the improved SA algorithm outperforms the other algorithms. The shape of the

noise-filtered signal in the case of the improved SA algorithm almost matches the

desired signal shape presented in Figure 4.24.

Statistical analysis

Given in Table 4.5 and Figure 4.31 are results obtained from averaging 50 inde-

pendent adaptive noise cancellation correlation outcomes. The 50 runs feature

independent AWGN. The sinusoidal signal depicted in Figure 4.24 as per Equa-

tion 4.36 is utilized as the desired signal in all 50 runs. The results statistically

validate the efficacy of the improved SA algorithm in adaptive noise cancellation.
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Table 4.5: Comparative correlation values.

Correlation between the desired signal and: Mean SD

Corrupted signal 0.8889 0.0001

ISA algorithm noise cancellation result 0.9984 0.0001

SA algorithm noise cancellation result 0.9967 0.0013

NLMS algorithm noise cancellation result 0.9943 0.0019

LMS algorithm noise cancellation result 0.9887 0.0023
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Figure 4.31: A graph portraying the correlation values presented in Table 4.5.

Reference signal selection

It is usually desired that the selected reference signal be highly correlated to

the noise in question in an adaptive signal processing scheme. This requirement

is confirmed in the set of results presented herein. In a particular simulation,

the correlation between the used reference signal and the noise corrupted signal

is 0.5981. A comparison between the reference signal and the noise signal is

depicted in Figure 4.32.
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Figure 4.32: A comparison between the reference and noise signals.

The adaptive noise cancelation result obtained using the SA algorithm is depicted

in Figure 4.33.
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Figure 4.33: SA algorithm result
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The correlation between the desired signal and the noise canceled signal using

the SA algorithm is 0.9496; whereas the correlation between the desired signal

and the noise corrupted signal is 0.9451. This depicts a situation in which the

adaptive noise canceler fails due to poor selection of a reference signal. The

adaptive noise canceler fails in adapting the tap weights to the ideal values due

to usage of an improper reference signal.

Signal set 2

The signal depicted in Figure 4.34 is utilized as the desired signal as per Equation

4.41 in the second set of simulations.
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Figure 4.34: Desired signal: Sinusoidal waveform. s(n) = 5 ∗ sin(6 ∗ n) where
n = 1 : 0.025 : 4.5

s(n) = 5 ∗ sin(6 ∗ n) ; n = 1 : 0.025 : 4.5 (4.41)

A noise signal as per Figure 4.35 is added to the desired sinusoidal signal.
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Figure 4.35: Noise signal: Sinusoidal waveform with additive gaussian noise.
no(n) = 2 ∗ sin(300 ∗ n) + awgn where n = 1 : 0.025 : 4.5

The noise signal has been framed as a sinusoidal waveform (of higher frequency

than the desired signal) featuring additive gaussian noise as per Equation 4.42.

no(n) = 2 ∗ sin(300 ∗ n) + awgn ; n = 1 : 0.025 : 4.5 (4.42)

The correlation between the desired signal and the used noise signal is 0.0473.

The noise corrupted signal is depicted in Figure 4.36 as per Equation 4.43.

d(n) = s(n) + no(n) ; n = 1 : 0.025 : 4.5

d(n) = 5 ∗ sin(6 ∗ n) + 2 ∗ sin(300 ∗ n) + awgn ; n = 1 : 0.025 : 4.5
(4.43)

The correlation between the desired signal and the noise corrupted signal is

0.9278.
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Figure 4.36: Corrupted signal: d(n) = 5 ∗ sin(6 ∗ n) + 2 ∗ sin(300 ∗ n) + awgn.

The reference signal utilized in the adaptation process is depicted in Figure 4.37

as per Equation 4.44. The reference signal is highly correlated to the noise signal.

x(n) = 2 ∗ sin(300 ∗ n) + awgnReference ; n = 1 : 0.025 : 4.5 (4.44)

The correlation between the used reference signal and the noise signal is 0.8696.

A comparison between the reference signal and the noise signal is depicted in

Figure 4.38.
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Figure 4.37: Reference signal (highly correlated to the noise signal): x(n) =
sin(300 ∗ n) + awgnReference.
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Figure 4.38: A comparison between the reference and noise signals.

The adaptive filter is invoked to minimize the cost function E[e(n)e ∗ (n)] where

e(n) is as per Equation 4.45.
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e(n) = [s(n) + no(n)]−wH [x(n)] ; n = 1 : 0.025 : 4.5

e(n) = [5 ∗ sin(6 ∗ n) + 2 ∗ sin(300 ∗ n) + awgn]−wH [2 ∗ sin(300 ∗ n) + awgnReference]

(4.45)

The results obtained using the improved SA, standard SA, LMS and NLMS al-

gorithms are depicted in Figures 4.39 and 4.40.
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Figure 4.39: Comparison (against the desired signal) of the results obtained upon
adaptive noise cancellation using the improved SA, standard SA, LMS and NLMS
algorithms.
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Figure 4.40: Comparison of the results obtained upon adaptive noise cancellation
using the improved SA, standard SA, LMS and NLMS algorithms.

The correlation between the desired signal and the noise canceled signal using

the:

� improved SA algorithm is 0.9939.

� SA algorithm is 0.9897.

� NLMS algorithm is 0.9829.

� LMS algorithm is 0.9781.

As per the results depicted by Figures 4.39 and 4.40, the improved SA algo-

rithm outperforms the other algorithms. The shape of the noise-filtered signal in

the case of the improved SA algorithm almost matches the desired signal shape

presented in Figure 4.34.

Signal set 3

The signal depicted in Figure 4.41 is utilized as the desired signal as per Equation

4.46 in the third set of simulations.
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Figure 4.41: Desired signal: Sinusoidal waveform. s(n) = 5 ∗ sin(2 ∗ n) where
n = 1 : 0.025 : 4.5

s(n) = 5 ∗ sin(2 ∗ n) ; n = 1 : 0.025 : 4.5 (4.46)

A noise signal as per Figure 4.42 is added to the desired sinusoidal signal.
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Figure 4.42: Noise signal: Sinusoidal waveform with additive gaussian noise.
no(n) = 2 ∗ sin(300 ∗ n) + awgn where n = 1 : 0.025 : 4.5

The noise signal has been framed as a sinusoidal waveform (of higher frequency

than the desired signal) featuring additive gaussian noise as per Equation 4.47.

no(n) = 2 ∗ sin(300 ∗ n) + awgn ; n = 1 : 0.025 : 4.5 (4.47)

The correlation between the desired signal and the used noise signal is 0.0089.

The noise corrupted signal is depicted in Figure 4.43 as per Equation 4.48.

d(n) = s(n) + no(n) ; n = 1 : 0.025 : 4.5 ; n = 1 : 0.025 : 4.5

d(n) = 5 ∗ sin(2 ∗ n) + 2 ∗ sin(300 ∗ n) + awgn ; n = 1 : 0.025 : 4.5
(4.48)

The correlation between the desired signal and the noise corrupted signal is

0.9104.
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Figure 4.43: Corrupted signal: d(n) = 5 ∗ sin(2 ∗ n) + 2 ∗ sin(300 ∗ n) + awgn.

The reference signal utilized in the adaptation process is depicted in Figure 4.44

as per Equation 4.49.

x(n) = 2 ∗ sin(300 ∗ n) + awgnReference ; n = 1 : 0.025 : 4.5 (4.49)

The correlation between the used reference signal and the noise signal is 0.8899.

A comparison between the reference signal and the noise signal is depicted in

Figure 4.45.
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Figure 4.44: Reference signal (highly correlated to the noise signal): x(n) =
2 ∗ sin(300 ∗ n) + awgnReference.
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Figure 4.45: A comparison between the reference and noise signals.

The filter is invoked to minimize the cost function E[e(n)e ∗ (n)] where e(n) is as

per Equation 4.50.
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e(n) = [s(n) + no(n)]−wH [x(n)] ; n = 1 : 0.025 : 4.5

e(n) = [5 ∗ sin(2 ∗ n) + 2 ∗ sin(300 ∗ n) + awgn]−wH [2 ∗ sin(300 ∗ n) + awgnReference]

(4.50)

The results obtained using the improved SA, standard SA, LMS and NLMS al-

gorithms are depicted in Figures 4.46 and 4.47.
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Figure 4.46: Comparison (against the desired signal) of the results obtained upon
adaptive noise cancellation using the improved SA, standard SA, LMS and NLMS
algorithms.
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Figure 4.47: Comparison of the results obtained upon adaptive noise cancellation
using the improved SA, standard SA, LMS and NLMS algorithms.

The correlation between the desired signal and the noise canceled signal using

the:

� improved SA algorithm is 0.9883.

� SA algorithm is 0.9851.

� NLMS algorithm is 0.9833.

� LMS algorithm is 0.9786.

As per the results depicted by Figures 4.46 and 4.47, the improved SA algo-

rithm outperforms the other algorithms. The shape of the noise-filtered signal in

the case of the improved SA algorithm almost matches the desired signal shape

presented in Figure 4.41.

Discussion

The improved SA algorithm is found to generate better results than the other

algorithms in all simulated scenarios. The algorithms were run for equal dura-

tions (4.5 seconds). Lower noise levels over a uniform noise cancellation period
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are achieved using the improved SA algorithm as compared to the other algo-

rithms as per Figures 4.29, 4.30, 4.39, 4.40, 4.46 and 4.47. This indicates better

convergence speed when using the improved SA algorithm as compared to the

other algorithms.

Generated signal graphs and correlation values relay the following information:

� The improved SA algorithm yields a less noise corrupted signal.

� Irrespective of the waveform frequency involved, the improved SA algorithm

produces better results.

The improved SA algorithm yields a noise-cancelled signal output more correlated

with the desired signal as compared to the other algorithms.

Deductions

Adaptive noise cancellers play a crucial role in modern communication networks.

The role of efficient adaptation algorithms for use in adaptive noise cancellers

cannot be underestimated. Generally the improved and standard SA algorithms

are found to be more efficient than the NLMS and LMS algorithms in MMSE

based adaptive noise cancellation as far as sinusoidal signals are concerned.

4.2.2 Irregular waveform

In this section the use of improved and standard SA algorithms in ANC is an-

alyzed against the commonly used NLMS and LMS algorithms in an irregularly

shaped signal case. An irregularly shaped signal accommodates a wide variety of

signals that feature in many practical occurrences. A randomly generated noise

signal has been used. The improved SA algorithm is found to outweigh the per-

formance of the other algorithms. The entire analysis is done through simulations

in MATLAB software.

The signal depicted in Figure 4.48 is utilized as the desired signal as per Equation

4.51 in the second set of simulations.

s(n) = rand(n; [−2.5 : 2.5]) ; n = 1 : 0.2 : 4.5 (4.51)
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Figure 4.48: Desired signal: Irregular waveform. s(n) = rand(n; [−2.5 : 2.5])
where n = 1 : 0.2 : 4.5

Equation 4.51 is representative of a random generation of numbers within the

range -2.5 to 2.5.

The noise signal is depicted in Figure 4.49 as per Equation 4.52.

n0(n) = rand(n; [−0.5 : 0.5]) + awgnnoise ; n = 1 : 0.02 : 4.5 (4.52)

The noise corrupted signal is depicted in Figure 4.50 as per Equation 4.53.

d(n) = s(n) + n0(n) ; n = 1 : 0.2 : 4.5

d(n) = rand(n; [−2.5 : 2.5]) + rand(n; [−0.5 : 0.5]) + awgnnoise ; n = 1 : 0.2 : 4.5

(4.53)
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Figure 4.49: Noise signal: Random waveform with additive gaussian noise.
n0(n) = rand(n; [−0.5 : 0.5]) + awgnnoise where n = 1 : 0.02 : 4.5
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Figure 4.50: Corrupted signal: d(n) = rand(n; [−2.5 : 2.5]) + rand(n; [−0.5 :
0.5]) + awgnnoise.
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The reference utilized signal is depicted in Figure 4.51 as per Equation 4.54.
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Figure 4.51: Reference signal (highly correlated to the noise signal): x(n) =
n0(n) + awgnref .

x(n) = n0(n) + awgnref ; n = 1 : 0.2 : 4.5 (4.54)

A comparison of the noise and the reference signals is depicted in Figure 4.52.

The results obtained using the improved SA, standard SA, LMS and NLMS al-

gorithms are depicted in Figures 4.53 and 4.54.
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Figure 4.52: A comparison of the reference and noise signals.

67



1 2 3 4

Time (Seconds)

-2

0

2

V
ol

ta
ge

 (
V

ol
ts

)

ISA
Desired

1 2 3 4

Time (Seconds)

-2

0

2

V
ol

ta
ge

 (
V

ol
ts

)

SA
Desired

1 2 3 4

Time (Seconds)

-2

0

2

V
ol

ta
ge

 (
V

ol
ts

)

NLMS
Desired

1 2 3 4

Time (Seconds)

-2

0

2

V
ol

ta
ge

 (
V

ol
ts

)

LMS
Desired

Figure 4.53: Comparison (against the desired signal) of the results obtained upon
adaptive noise cancellation using the improved SA, standard SA, LMS and NLMS
algorithms.
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Figure 4.54: Comparison of the results obtained upon adaptive noise cancellation
using the improved SA, standard SA, LMS and NLMS algorithms.
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As per the results depicted by Figures 4.53 and 4.54 the improved SA algorithm

outperforms the standard SA algorithm, NLMS and LMS algorithms. The shape

of the noise-filtered signal in the case of the improved SA algorithm matches the

desired signal shape presented in Figure 4.48 to the greatest extent.

Figure 4.55 shows a performance comparison between the utilized algorithm. The

figure depicts faster convergence with the improved SA algorithm as compared

to use of the standard SA, NLMS and LMS algorithms.

Figure 4.55: Algorithm performance comparison.

Table 4.6 shows signal correlation comparison between the utilized algorithm

results. Going by the presented results, the performance of the improved SA

algorithm is better than that of the standard algorithm and the NLMS/ LMS

algorithms.

Figure 4.56 shows a point by point Euclidean distance comparison between the

utilized algorithm results. Herein, Euclidean distance comparison is of essence in

order to bring out in a clear way the minute waveform differences as depicted in

Figures 4.53 and 4.54. Going by Figure 4.56 and Table 4.7, the performance of

the improved SA algorithm is better than that of the standard algorithm.
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Table 4.6: Signal correlation comparison

Correlation between the desired signal and noise 0.147

Correlation between the desired signal and corrupted signal 0.9777

Correlation between the reference signal and noise 0.8756

Correlation between the desired signal and ISA algorithm result 0.9887

Correlation between the desired signal and SAalgorithm result 0.9851

Correlation between the desired signal and NLMS algorithm result 0.9817

Correlation between the desired signal and LMS algorithm result 0.9812

Figure 4.56: Point by point Euclidean distances comparison
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Table 4.7: Iregular waveform Euclidean distance comparison

Average Euclidean distance (Improved SA) 0.0401

Average Euclidean distance (SA) 0.0793

Average Euclidean distance (NLMS) 0.1187

Average Euclidean distance (LMS) 0.1546

Discussion

The corrupted waveform and the desired waveform correlation value is 0.9777.

The improved SA result and the desired waveform correlation value is 0.9887.

The standard SA result and the desired waveform correlation value is 0.9851.

The NLMS result and the desired waveform correlation value is 0.9817. The

LMS result and the desired waveform correlation value is 0.9812.

The improved SA algorithm is found to generate better results than the standard

SA algorithm, NLMS algorithm and LMS algorithm in the simulated scenarios.

Generated signal graphs and the corresponding correlation values show that the

improved SA algorithm yields a less noise corrupted signal.

4.2.3 Electrocardiogram waveform

The signal depicted in Figure 4.57 (fetal electrocardiogram signal) is utilized as

the desired signal in the third set of simulations.

The noise signal is depicted in Figure 4.58. The noise signal is composed of

maternal heartbeat and sinusoidal noise.

The noise corrupted signal is depicted in Figure 4.59. The noise signal is composed

of maternal heartbeat and sinusoidal noise.
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Figure 4.57: Desired signal: Typical fetal electrocardiogram signal.
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Figure 4.58: Noise signal: Maternal heartbeat and sinusoidal noise.
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Figure 4.59: Noise corrupted fetal electrocardiogram signal.

The reference signal utilized in the adaptation process is depicted in Figure 4.60.
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Figure 4.60: Reference signal (highly correlated to the noise signal).

A comparison of the noise and the reference signals is depicted in Figure 4.61.
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Figure 4.61: A comparison of the reference and noise signals.

The results obtained using the improved SA, standard SA, LMS and NLMS al-

gorithms are depicted in Figures 4.62 and 4.63.
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Figure 4.62: Comparison (against the desired signal) of the results obtained upon
adaptive noise cancellation using the improved SA, standard SA, LMS and NLMS
algorithms.
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Figure 4.63: Comparison of the results obtained upon adaptive noise cancellation
using the improved SA, standard SA, LMS and NLMS algorithms.
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As per the results depicted by Figures 4.62 and 4.63 the improved SA algorithm

outperforms the standard SA algorithm, NLMS and LMS algorithms. The shape

of the noise-filtered signal in the case of the improved SA algorithm matches the

desired signal shape presented in Figure 4.57 to the greatest extent.

Figure 4.64 shows a performance comparison between the utilized algorithm. The

figure depicts faster convergence with the improved SA algorithm as compared

to use of the standard SA, NLMS and LMS algorithms.

Figure 4.64: Algorithm performance comparison

Figure 4.65 shows a Euclidean distance comparison between the improved SA

result, the standard SA result , the NLMS result and the LMS result. Figure

4.66 shows an average Euclidean distance comparison between the improved SA

result (0.0250), the standard SA result (0.0909), the NLMS result (0.1160) and

the LMS result (0.1076). Going by Figure 4.66, the performance of the improved

SA algorithm is better than that of the standard algorithm.
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Figure 4.65: Euclidean distances comparison

Figure 4.66: Average Euclidean distances comparison

79



Table 4.8: Electrocardiogram waveform Euclidean distance comparison

Average Euclidean distance (Improved SA) 1.8380e-04

Average Euclidean distance (SA) 0.0043

Average Euclidean distance (NLMS) 0.0055

Average Euclidean distance (LMS) 0.0051

Discussion

The corrupted waveform and the desired waveform correlation value is -0.0966.

The improved SA result and the desired waveform correlation value is 0.9987.

The standard SA result and the desired waveform correlation value is 0.9933.

The NLMS result and the desired waveform correlation value is 0.9765. The

LMS result and the desired waveform correlation value is 0.9895.

The improved SA algorithm is found to generate better results than the standard

SA algorithm, NLMS algorithm and LMS algorithm in the simulated scenarios.

Generated signal graphs and the corresponding correlation values show that the

improved SA algorithm yields a less noise corrupted signal.

4.3 Summary

In this chapter, the improved Simulated Annealing algorithm’s performance has

been analyzed on the basis of a variety of signals notably sinusoidal, irregular and

fetal electrocardiogram signals. Accurate measurement of fetal electrocardiogram

signals signals is vital in assessing physiological changes occurring in a fetus. Such

signals are usually contaminated with noise, in particular the maternal heartbeat

signal.

Generally the improved SA algorithm is found to be more efficient than the

standard SA algorithm, the LMS and the NLMS algorithm in Minimum Mean

Square Error (MMSE) based ANC in extracting noise contaminated sinusoidal,

irregular and fetal ECG signals. The improved SA algorithm generates better

results compared to the other algorithms over identical adaptation durations. The

comparison made is in terms of graphical and numeric data involving correlation

values and Euclidean distance measures.
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

Noise contamination is a common occurrence upon signal transmission through a

noisy channel. Adaptive Noise Cancellation (ANC) is vital in extracting signals

from some noise corrupted signal in a receiver. In this study, ANC in a variety of

signal models typical of signals encountered in communication channels has been

considered.

5.1.1 Highlights and deductions

In particular, the following listing gives the highlights/ deductions made in the

work carried out.

1. An ANC model has been developed in Matlab. The modeled signals include:

sinusoidal signals, fetal electrocardiogram signals and a set of randomly

generated signals.

2. An improved SA algorithm has been developed on the basis of making mod-

ifications to the control parameters of the standard SA. In particular, the

acceptance probability and the cooling schedule procedures have been ad-

justed. An analysis on the acceptance probability and the cooling schedule

procedures relays the superiority of the measures taken towards improving

the SA algorithm.

3. The conventional algorithms utilized in ANC namely Least Mean Squares

(LMS) and Normalized Least Mean Squares (NLMS) algorithms have been

employed and comparisons made against Simulated Annealing (SA) algo-

rithm. Generally the improved SA algorithm is found to be more efficient

than the standard SA algorithm, the LMS and the NLMS algorithm in

Minimum Mean Square Error (MMSE) based ANC in extracting noise con-

taminated sinusoidal, irregular and fetal ECG signals. The improved SA

algorithm generates better results compared to the other algorithms over

identical adaptation durations. The comparison made is in terms of graph-

ical and numeric data involving correlation values and Euclidean distance

measures.

SA algorithm major advantage over other non-gradient based methods (such as

Genetic Algorithm, Tabu Search algorithm, Differential Evolution) is an ability to
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avoid becoming trapped in local minima. This is because the algorithm employs

a random search technique, which not only accepts changes that decrease the

objective function f (assuming a minimization problem), but also some changes

that increase it with some degree of probability. This therefore guarantees that

the SA algorithm performs better than other AI algorithms in optimization prob-

lems thus the choice in Adaptive Noise Cancellation (ANC), the subject of this

research.

5.1.2 Contribution

A worthwhile contribution of this work has been an analysis on the use of the SA

algorithm in ANC involving sinusoidal, irregular and fetal ECG signals. This is

alongside making worthwhile improvements on the standard SA algorithm. The

improvements are on the basis of making modifications to the control parameters

of the standard SA algorithm. In particular, the acceptance probability and

the cooling schedule procedures have been adjusted. Moreover, the improved

SA algorithm offers a practical solution to noise cancellation problems owing to

its inherent low computation complexity. This work lays forward SA algorithm

advantages over other existing weight update algorithms in ANC.

5.2 Recommendations

The proposed improved SA algorithm is an attractive candidate for use in ANC.

This has been confirmed through simulations involving speech, sinusoidal, irreg-

ular and electrocardiogram waveforms.

As such, it is recommended that the following scenarios be studied further to

establish the full potential of the proposed SA algorithm:

� It is advisable to do a practical analysis concerning the application of SA in

ANC. Due to limitations in laboratory facilities, physical implementations

were not possible in this research.

� Further SA algorithm improvements can be considered particularly towards

further reducing computational complexity.

� It has been established that the adopted cooling schedule bears a huge

impact on the overall SA algorithm performance. Further improvements

on the SA algorithm particularly in the cooling schedule structure can be

considered.
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APPENDICES

Appendix 1: Published Work

The following papers arising from the research work have been published:

1. Kevin Mwongera, Kibet Lang’at, and E. N. Ndung’u: Design of adaptive noise

canceler in speech signals using simulated annealing algorithm. (Proceedings of

SIR conference, 2015) In this paper, use of the simulated annealing algorithm in

adaptive noise cancelation in speech signals is studied. A comparison is made

between use of the simulated annealing algorithm and the commonly used Least

Mean Squares (LMS) algorithm. The simulated annealing algorithm is found to

perform better than the LMS algorithm. The entire analysis is made through

simulations in Matlab software.

2. Kevin Mwongera, Kibet Lang’at, and E. N. Ndung’u: Design of adaptive noise

canceler in fetal electrocardiogram signal extraction using simulated annealing

algorithm. (Proceedings of SIR conference, 2015) This paper analyzes use of

adaptive noise canceling techniques in filtering noisy FECG using simulated an-

nealing algorithm. A comparison is made between use of the simulated annealing

algorithm and the commonly used Least Mean Squares (LMS) algorithm. Ob-

tained correlation values are used as the performance measure. The simulated

annealing algorithm is found to perform better than the LMS algorithm. The

entire analysis is made through simulations in Matlab software.

3. K. Mwongera, K. Lang’at, and E. N. Ndung’u: Fetal Heartbeat Signal Extrac-

tion using an Adaptive Noise Canceller implemented with an improved Simulated

Annealing Algorithm. (IOSR -JVSP Journal vol 7 issue 5, 2017) In this paper,

an improved Simulated Annealing (SA) algorithm is utilized in ANC to yield a

minimal-noise fetal electrocardiogram signal through simulations done in MAT-

LAB. A performance analysis between use of the improved SA algorithm and

the standard SA algorithm (alongside Genetic, Least Mean Squares (LMS) and

Normalized Least Mean Squares (NLMS) algorithms) is done.On the basis of con-

vergence rate and final solution accuracy the improved SA algorithm performance

is found to outweigh the other algorithms considered in the study.
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Appendix 2: Matlab Code

The following are developed code extracts.

Modified cooling schedule

91



Modified acceptance probability scheme
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Simulated annealing algorithm code
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Correlation and Euclidean distance evaluation code

Results comparison
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FPCFromClipboardUntitled
%clear;clc;

  canceLMS = load ('LMS.mat');
  canceNLMS = load ('NLMS.mat');
  canceISA = load ('ISA.mat');
  canceSA = load ('SA.mat');
  canceGA = load ('GA.mat');
  des = load ('DESIRED.mat');

 t=0:0.0125:2;

figure(21);
plot(t,des.desired,'k--','LineWidth',2);hold on;
plot(t,canceLMS.cancelled,'r','LineWidth',2);grid on;
plot(t,canceNLMS.cancelled,'b','LineWidth',2);
plot(t,canceGA.cancelled,'k','LineWidth',2);
plot(t,canceSA.cancelled,'m','LineWidth',2);
plot(t,canceISA.cancelled,'g','LineWidth',2); hold off;
grid on;
%title('Noise Cancellation Comparison');
ylabel('Magnitude');
xlabel('Signal point');
legend('Desired','LMS','NLMS','GA','Standard SA','Improved SA');
saveas(gcf,'NoiseCancelComparison','png');
close;

  summLMS=0;
  summNLMS=0;
  summGA=0;
  summSA=0;
  summISA=0;

for idx=1:length(t)
   diffLMS(idx)=(canceLMS.cancelled(idx))-(des.desired(idx));
   diff2LMS(idx)=diffLMS(idx)^2;
   summLMS=summLMS+diff2LMS(idx);

   diffNLMS(idx)=(canceNLMS.cancelled(idx))-(des.desired(idx));
   diff2NLMS(idx)=diffNLMS(idx)^2;
   summNLMS=summNLMS+diff2NLMS(idx);

   diffGA(idx)=(canceGA.cancelled(idx))-(des.desired(idx));
   diff2GA(idx)=diffGA(idx)^2;
   summGA=summGA+diff2GA(idx);
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   diffSA(idx)=(canceSA.cancelled(idx))-(des.desired(idx));
   diff2SA(idx)=diffSA(idx)^2;
   summSA=summSA+diff2SA(idx);

   diffISA(idx)=(canceISA.cancelled(idx))-(des.desired(idx));
   diff2ISA(idx)=diffISA(idx)^2;
   summISA=summISA+diff2ISA(idx);
end

  euclideanLMS=sqrt(diff2LMS);
  SUMeuclideanLMS=sqrt(summLMS)

  euclideanNLMS=sqrt(diff2NLMS);
  SUMeuclideanNLMS=sqrt(summNLMS)

  euclideanGA=sqrt(diff2GA);
  SUMeuclideanGA=sqrt(summGA)

  euclideanSA=sqrt(diff2SA);
  SUMeuclideanSA=sqrt(summSA)

  euclideanISA=sqrt(diff2ISA);
  SUMeuclideanISA=sqrt(summISA)

figure;
plot(t,euclideanLMS,'r','LineWidth',2);hold on;
 plot(t,euclideanNLMS,'b','LineWidth',2);grid on;
 plot(t,euclideanGA,'k-','LineWidth',2);
 plot(t,euclideanSA,'m','LineWidth',2);
 plot(t,euclideanISA,'g','LineWidth',2); hold off;
 grid on;
 %title('Euclidean distance from desired signal');
 ylabel('Magnitude');
  xlabel('Signal point');
  legend('LMS','NLMS','GA','Standard SA','Improved SA');
  saveas(gcf,'EuclidCompare','png');
  close;

  for idx=1:length(t)
   OverallLMS(idx)=SUMeuclideanLMS;
   OverallNLMS(idx)=SUMeuclideanNLMS;
   OverallGA(idx)=SUMeuclideanGA;
   OverallSA(idx)=SUMeuclideanSA;
   OverallISA(idx)=SUMeuclideanISA;
end
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 figure;
plot(t,OverallLMS,'r','LineWidth',2);hold on;
 plot(t,OverallNLMS,'b','LineWidth',2);grid on;
 plot(t,OverallGA,'k-','LineWidth',2);
 plot(t,OverallSA,'m','LineWidth',2);
 plot(t,OverallISA,'g','LineWidth',2); hold off;
 grid on;
 %title('Overall euclidean distance from desired signal');
 ylabel('Magnitude');
  xlabel('Signal point');
 legend('LMS','NLMS','GA','Standard SA','Improved SA');
 saveas(gcf,'OverallEuclidCompare','png'); 
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figure;
load('LMSFitness.mat');
plot(GAXdata,GAYdata,'r','LineWidth',2);hold on;
load('NLMSFitness.mat');
plot(GAXdata,GAYdata,'b','LineWidth',2);
load('SAFitness.mat');
plot(GAXdata,GAYdata,'m','LineWidth',2);
load('ISAFitness.mat');
plot(GAXdata,GAYdata,'g','LineWidth',2);
title('');
xlabel('Iteration'); 
ylabel('Objective function value');
grid on;
legend('LMS','NLMS','Standard SA','Improved SA');

%saveas(gcf,'PFitnessComparisonThesis','png');

figure;
load('SAFitness.mat');
plot(GAXdata,GAYdata,'k','LineWidth',2);hold;
load('ISAFitness.mat');
plot(GAXdata,GAYdata,'k--','LineWidth',2);
title('');
xlabel('Iteration'); 
ylabel('Objective function value');
grid on;
legend('Standard SA','Improved SA');

%saveas(gcf,'PFitnessComparisonThesis2','png');

figure;
load('LMSFitness.mat');
GAXdataTime=(5*GAXdata)/max(GAXdata);
plot(GAXdataTime,GAYdata,'r','LineWidth',2);hold on;
load('NLMSFitness.mat');
GAXdataTime=(5*GAXdata)/max(GAXdata);
plot(GAXdataTime,GAYdata,'b','LineWidth',2);
load('SAFitness.mat');
GAXdataTime=(5*GAXdata)/max(GAXdata);
plot(GAXdataTime,GAYdata,'m','LineWidth',2);
load('ISAFitness.mat');
GAXdataTime=(5*GAXdata)/max(GAXdata);
plot(GAXdataTime,GAYdata,'g','LineWidth',2);
title('');
xlabel('Time (seconds)'); 
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ylabel('Objective function value');
grid on;
legend('LMS','NLMS','Standard SA','Improved SA');

saveas(gcf,'PFitnessComparisonThesisHE','png');

figure;

load('SAFitness.mat');
GAXdataTime=(5*GAXdata)/max(GAXdata);
plot(GAXdataTime,GAYdata,'k','LineWidth',2);hold on;
load('ISAFitness.mat');
GAXdataTime=(5*GAXdata)/max(GAXdata);
plot(GAXdataTime,GAYdata,'k--','LineWidth',2);
title('');
xlabel('Time (seconds)'); 
ylabel('Objective function value');
grid on;
legend('Standard SA','Improved SA');

saveas(gcf,'PFitnessComparisonThesis2HE','png'); 
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