
SINGLE SHOT MULTI BOX DETECTOR APPROACH TO

AUTONOMOUS VISION-BASED PICK AND PLACE

ROBOTIC ARM IN THE PRESENCE OF UNCERTAINTIES

PATRICK KIPKOSGEI CHEMELIL

MASTER OF SCIENCE

(MECHATRONIC ENGINEERING)

JOMO KENYATTA UNIVERSITY OF

AGRICULTURE AND TECHNOLOGY

2021

Single Shot Multi Box Detector Approach to Autonomous

Vision-Based Pick and Place Robotic Arm in The Presence of

Uncertainties

Patrick Kipkosgei Chemelil

A Thesis Submitted in Partial Fulfilment of the Requirements

for the Degree of Master of Science in

Mechatronic Engineering of the Jomo Kenyatta

University of Agriculture and Technology

2021

DECLARATION

This thesis is my original work and has not been presented for a degree in any other uni-
versity.

Signature... Date............../................/..................
Patrick Kipkosgei Chemelil

This thesis has been submitted for examination with our approval as university supervi-
sors:

Signature... Date............../................/..................
Dr.-Ing. Jackson G. Njiri, PhD
JKUAT, Kenya

Signature... Date............../................/..................
Dr.-Ing. James K. Kimotho, PhD
JKUAT, Kenya

ii

DEDICATION

I dedicate this work to my parents Mr and Mrs, Cherogony, my friends, and colleagues
who have supported me throughout. Thank you all for the support during my research
journey.

iii

ACKNOWLEDGEMENTS

Thanks be to God for the gift of life, good health and for sustaining me throughout this
research. I also thank my supervisors Dr.-Ing. Jackson G. Njiri and Dr.-Ing. James K.
Kimotho for their invaluable guidance and advice throughout my studies.

Special thanks goes to Jomo Kenyatta University of Agriculture and Technology (JKUAT)
for granting me the scholarship for my studies and for providing additional funding for
this research. My appreciation also goes to the staff of JKUAT for the assistance they
accorded me. I also thank my course-mates, who walked this journey with me, for their
encouragement and invaluable support.

I want also to extend my gratitude to the technologists and the staff members of the de-
partment of Mechatronic Engineering for their assistance and support during this period.
My sincere gratitude also goes to my family who gave me moral support and guidance
through out my journey.

iv

TABLE OF CONTENTS

DECLARATION . ii
DEDICATION . iii
ACKNOWLEDGMENT . iv
TABLE OF CONTENTS . v
LIST OF TABLES . viii
LIST OF FIGURES . ix
LIST OF APPENDICES . xi
LIST OF ABBREVIATIONS . xii
LIST OF SYMBOLS . xiii
ABSTRACT . xiv
CHAPTER ONE . 1

INTRODUCTION . 1
1.1 Background . 1

1.2 Problem Statement . 2

1.3 Objectives . 3

1.4 Scope . 3

1.5 Justification . 3

1.6 Outline of the Thesis . 4

CHAPTER TWO . 5
LITERATURE REVIEW . 5
2.1 Object Detection Overview . 5

2.2 Overview of Convolutional Neural Networks 6

2.2.1 How Convolutional Neural Networks Work 7

2.2.1.1 Convolution Layer . 7

2.2.1.2 Activation Layer . 8

2.2.1.3 Pooling Layer . 8

2.2.1.4 Dropout Layer . 9

2.3 Generic Object Detection . 12

2.4 Region Proposal . 12

2.4.1 R-CNN . 13

2.4.2 SPP-net . 15

v

2.4.3 Fast R-CNN . 16

2.4.4 Faster R-CNN . 18

2.5 Regression Based Framework . 19

2.5.1 You Only Look Once (YOLO) 20

2.5.2 Single Shot Multibox Detection (SSD) 22

2.6 Google Cloud Machine Learning Engine 23

2.7 Related Work . 24

2.8 Research Gap . 27

CHAPTER THREE . 28
EXPERIMENTAL DESIGN AND METHODOLOGY 28
3.1 Overview . 28

3.2 Methodology Flow Chart . 28

3.3 Image Collection and Preparation . 29

3.4 SSD Resnet-50 Implementation . 30

3.5 Training and Evaluation of the Network 31

3.6 Robot Vision . 32

3.7 Robot Control . 34

3.8 Inverse Kinematics of IRB1400 Replica Robot 36

3.9 Workspace Analysis . 37

3.10 Tactile Sensing . 38

3.11 Experimental Setup . 40

CHAPTER FOUR . 44
RESULTS AND DISCUSSION . 44
4.1 SSD Performance Evaluation . 44

4.2 Precision Evaluation . 44

4.3 Intersection Over Union (IOU) . 46

4.4 Recall Rate . 47

4.5 Learning Rate . 47

4.6 Network’s Loss . 49

4.7 SSD Performance under Different Lighting Conditions 50

4.8 Occlusion . 51

4.9 Camera pose . 52

vi

4.10 Real Time Speed Evaluation . 52

4.11 Grasping . 52

CHAPTER FIVE . 54
CONCLUSIONS AND RECOMMENDATIONS 54
5.1 Conclusions . 54

5.2 Recommendations for Future Work . 55

REFERENCES . 56
APPENDICES . 63

vii

LIST OF TABLES

Table 2.1: Comparison between SSD with Resnet-18 and VGG16 27

Table 3.1: List of objects used for image collection and object detection. . . 29
Table 3.2: SSD model training parameters 32
Table 3.3: DH Matrix To IRB-1400 Model Robot 37
Table 3.4: Maximum grasping force for individual objects. 40
Table 3.5: Experimental data setup . 42

Table 4.1: Performance of object detection and pick-and-place system . . . 51
Table 4.2: Real time speeds versus pixel area 52

viii

LIST OF FIGURES

Figure 2.1: Matrix convolution . 7
Figure 2.2: ReLU activation function . 8
Figure 2.3: How max pooling is achieved. 9
Figure 2.4: Drop-out layer . 10
Figure 2.5: LeNet-5 architecture . 11
Figure 2.6: Zero padding example. 11
Figure 2.7: Example of a typical CNN architecture showing the key compo-

nents of the network. 12
Figure 2.8: R-CNN flowchart . 13
Figure 2.9: SPP-net architecture . 16
Figure 2.10: Fast RCNN architecture . 17
Figure 2.11: Region proposal network in Faster RCNN 19
Figure 2.12: You Only Live Once network 20
Figure 2.13: SSD Architecture with VGG-16 as base network 23

Figure 3.1: A flow chart of the system configuration procedure 28
Figure 3.2: A mixture of single and multiple objects in one image that was

used for training. 30
Figure 3.3: Block diagram of SSD with VGG16. 31
Figure 3.4: Block diagram of SSD with Resnet-50. 31
Figure 3.5: Mapping object location to centre of the base of the robotic arm. 33
Figure 3.6: Images showing the original size and replica ARB1400 robotic

arm used for the experiments. 34
Figure 3.7: Flowchart of the steps followed from object detection to picking

the object. 35
Figure 3.8: Kinematic configuration of IRB1400 robot 36
Figure 3.9: The coordinates of the mean length of the object to be picked. . . 38
Figure 3.10: Sample workspace of the model ABB IRB1400 used in this ex-

periment. 39
Figure 3.11: a: Graphical relationship between force applied versus resistance.

b: FSR402 sensor. 39
Figure 3.12: Block diagram of the system designed. 40

ix

Figure 3.13: Actual experiment setup used. 41

Figure 4.1: Detection accuracy of some of the objects used in the experiment. 45
Figure 4.2: Precision of the network when detecting objects. 46
Figure 4.3: Recall rate of the network. 48
Figure 4.4: Learning rate of the network throughout the training steps. 49
Figure 4.5: The loss graphs for the network while training. 50

Figure II.1: Projection of links two and three onto the X-Y plane. 73
Figure II.2: Z-Y-X Euler’s rotation method. 76

x

LIST OF APPENDICES

Appendix SOFTWARE . 89

Appendix INVERSE KINEMATIC . 103

Appendix FSR data sheet . 111

LIST OF APPENDICES

I:I:

II:

III:

xi

SOFTWARE

INVERSE KINEMATICS

FSR 402 . . .

LIST OF ABBREVIATIONS

API Application Programming Interface
CNN Convolutional Neural Network
DH Denavit-Hartenberg
DOF Degrees of Freedom
DPM Discriminatively trained Part-based Model
FSR Force Sensing Resistor
GB Giga Byte
GCMLE Google CLoud Machine Learning Engine
IOU Intersection Over Union
PID Proportional Integral Derivative
RCNN Region-based Convolutional Neural Network
ResNet Residual Neural Network
RGB Red Green Blue
SSD Single Shot multibox Detector
TPU Tensor Processing Unit
UART Universal Asynchronous Receiver Transmitter
USB Universal Serial Bus
VGG Visual Geometry Group neural network
VM Virtual Machine

xii

LIST OF SYMBOLS

fps Frames Per Second
lm lumens
mAP mean Average Precision
x x-axis coordinate
y y-axis coordinate
z z-axis coordinate

xiii

ABSTRACT

This research presents a problem of real-time accurate object detection in picking and
placing objects using a robotic arm in conditions where conventional appearance-based
approaches are largely ineffective. These conditions include partial occlusion, varying
lighting, and change in camera pose. The methods presented in the literature have man-
aged to achieve real time detection but at the expense of presence of the above mentioned
scenarios which make them not usable in real world application. A single shot multibox
detector Convolutional Neural Network is proposed to handle this problem. The network
has been used for object detection in robotics but the performance of SSD with Resnet-50
as the backbone has not been explored. To evaluate the performance of the network, some
challenges were formulated. The network was tasked to identify objects under uncer-
tain conditions of varied lighting, partial occlusion, and changing camera pose. This was
achieved by using bulbs of different lumen, occluding the objects in a manner that half of
the object was visible to the camera and viewing the objects at an angle of 45◦. This angle
was different from the training viewing angle that was 0◦. The network’s performance
and speed of detection was tabulated for every experiment. The robot’s performance with
the network was then evaluated by timing how long it took to identify, pick objects from
one location, and place them in another. Successful attempts at grasping the objects were
also evaluated. The proposed network helps to achieve real time detection in the range
of 40 frames per second (fps) with accuracies of above 0.69 mAP (mean average preci-
sion) in varied lighting conditions, partial occlusion, and changing camera pose. This is
an improvement to the SSD300 which was using VGG16 and produced 30 fps with accu-
racies of 0.65 mAP. Autonomous pick and place function was tested and was found to take
between 15-30 seconds. The time was a factor of the shape of the object to be detected
and how easy it was to pick and place. Experimental results validated the performance
of the network and robot control method in a realistic scenario of picking and placing
objects.

xiv

CHAPTER ONE

INTRODUCTION

1.1 Background

Use of robots on the production floor is gaining popularity due to low robot labour cost per
hour of $2-3 as compared to the steadily rising human cost of $25 per hour (Karabegović,
Karabegović, Mahmić, & Husak, 2015). The global demand for products has increased
significantly due to e-commerce and platforms like Alibaba, Ebay, and Amazon. These
platforms have leveraged on the increased internet penetration to sell goods all over the
world which has driven companies to increase their production levels to meet the demand
(Javadi, Dolatabadi, Nourbakhsh, Poursaeedi, & Asadollahi, 2012).

Quality control has also driven the adoption of pick and place robots in factories, especially
in fruit industry. Such an industry relies a lot on skilled labourers who have years of
experience to pick the right fruit. When fitted with a camera, a robot can pick the best fruit
quality to be processed far better than a skilled labourer (Kondo, 2010).

Controlling such robots has been done predominately by proportional integral derivative
(P.I.D.) (Ferdinando, Wicaksono, & Wibowo, 2017) and robust controllers (Houska, Li, &
Chachuat, 2018). In this case, the robots is fitted with a proximity sensor and a motorized
arm is used to pick the desired object. The controllers are employed to sequence the
motion of the arm and fingers after the sensor identified an object. These robots reduce
production time and labour costs but visual inspection still relies on skilled personnel.
There is need to give the visual functionality to robots to increase productivity, reduce
cost while maintaining or improving quality (Gu, Xiong, & Wan, 2013).

Vision-based control has shown a lot of potential due to the advancement of high quality
imaging devices and accelerated development in image processing technology. Object de-
tection and robotics go hand in hand especially in visual robotic control and has been a
rich area of research (Kumar, Lal, Kumar, & Chand, 2014; H. I. Lin, Chen, & Chen, 2015;
Viola & Jones, 2011). These techniques have had short comings in real-time object detec-
tion or have low accuracies when faced with uncertainties like occlusion or varying light
intensity. Brachmann et al (Brachmann et al., 2014) used a learned object representation

1

combining dense 3D object coordinate labeling and dense class labelling for textured and
texture-less objects. These modern techniques are more accurate with object identification
and are also close to achieving real time detection.

Neural Networks pioneered by Hubel (Akogo & Palmer, 2019) has shown promise in
image processing and robot vision control. Lecun used a model of neural network that
had more neurons to develop a network called LeNet5 (Yoo, 2015). LeNet5 was able
to achieve character recognition of handwritten digits using a small memory footprint as
compared to pre-existing methods. With these achievements, LeNet5 was the foundation
for other networks and their accuracy levels kept increasing constantly.

The next major milestone in neural network based image detection is AlexNet (Krizhevsky,
Sutskever, & Hinton, 2012) in 2012. It was the first network to use several convoluted
layers to achieve image detection and it ushered in the age of deep convolutional neural
networks. Since then, deep convolutional neural networks have been used in robotics by
Ahlin et al (Konrad Ahlin & McMurray, 2016), Zeng et al (et al, 2017), De Magidtris et
al (De Magistris, Munawar, & Vinayavekhin, 2016), and Hossain et al (Hossain & Capi,
2016). Though there is significant development in vision-based pick and place robotics,
there exists some limitation which are highlighted in the next section.

1.2 Problem Statement

Vision-based pick and place robots have become part of many industries because of their
ability to perform tedious and repetitive work more accurately without fatigue and at a
lower cost. Several techniques such as Stereo vision system have been implemented to
continuously improve visual robots and of late convolutional neural networks (CNN) have
become the most preferred method for object detection.

These CNNs have very high image classification accuracies and even rival human beings in
recognising objects in images. They have also been adapted to recognize objects and give
their location in an image with high accuracies. Despite the high accuracies, CNNs still
have challenges with some conditions like variation of light intensity, partial occlusion,
different object pose and viewing angle. Attaining real time speeds when performing
object detection is also an obstacle for CNNs that limits it from being used in high accuracy
high speed applications like pick and place robotics.

2

This research proposes a vision based convolutional neural network control system for
a pick and place robot that can achieve real-time speeds (30 frames per second) despite
uncertainties like variation of light intensity, partial occlusion, different object pose and
viewing angle.

1.3 Objectives

The goal of this work is to develop a convolutional neural network to detect objects using a
vision sensor and achieve real time speeds under uncertainty conditions. These conditions
of variation of light intensity, occlusion, and viewing angle should be overcome while
performing pick and place functions using a robotic arm. To achieve the main objective,
the following specific objectives were realized.

1. To develop a CNN motion control algorithm and a grasping algorithm for a pick-
and-place robot.

2. To implement the CNN in a pick and place robot and evaluate its functionality.

3. To evaluate the performance of the entire system (object detection and robotic arm)
in terms of accuracy of the overall system in performing pick-and-place tasks through
experiments.

1.4 Scope

The scope of this research will be to develop a Convolutional Neural Network, evaluate
the performance of the CNN under uncertain conditions of varying light intensity, partial
occlusion and viewing angle and, test pick-and-place robotic arm functionality. For eval-
uation of the CNN, 12 object classes will be used and three sets of grasping attempts will
be carried to explore the accuracy of the pick-and-place system.

1.5 Justification

In robotics, pick and place robotic arms have become the focus of warehousing and man-
ufacturing due to their accuracies and high productivity as compared to human beings.
With the increased use of these machines, more challenges are experienced which need
robust solutions. For robotic arms that are used to identify objects, pick and place them,

3

accuracy of detection and speed has become an important factor.

Developing the control systems that achieve object detection, picking and placing objects
will mean an increase in productivity. In the long term, reduction in the cost of production
will result in lower prices which benefits the consumers. For the companies that utilise
this technology, the increase in productivity means a reduction in operating costs hence
increased profits. For the researchers, this provides an opportunity to further research into
this field and fill gaps in research.

1.6 Outline of the Thesis

This thesis contains five chapters. The current chapter is the introduction to the research
which presents a general overview of the existing problem related to object detection in
pick and place robots and other shortcomings. A review of the existing literature on re-
search that has been done regarding object detection and robot kinematics is presented in
Chapter 2.

Experimental setup and the measured parameters to determine performance of the pro-
posed network and overall system is presented in Chapter 3. Results of the network train-
ing, performance under varied conditions and picking and placing are presented and dis-
cussed in Chapter 4. Conclusions and recommendations are presented in Chapter 5.

4

CHAPTER TWO

LITERATURE REVIEW

2.1 Object Detection Overview

Object detection involves identifying an object in an image and locating its position. Ob-
ject detection is hence divided into three steps: information region selection, feature ex-
traction, and classification (Zhao, Zheng, Xu, & Wu, 2019).

Information region selection: Objects may have different sizes, aspect ratio, and can ap-
pear on any part of an image. One method that has been used extensively to gather infor-
mation about objects is multi-scale sliding window (Gonzalez, Villalonga, Ros, Vázquez,
& López, 2015). Sliding window is a rectangular region of fixed width and height that
slides across an image and the details of each window are passed to an image classifier to
look for an object of interest and its position. Although this strategy can try to find out all
positions of the objects, it has some shortcoming. Since there are large number of candi-
date windows, it is computationally expensive and produces too many windows which are
redundant. However, if a fixed number of windows are used, there is a possibility of the
method providing unsatisfactory regions which may lead to non detections.

Feature extraction: For every window generated, visual features have to be extracted to
provide semantic and robust representation. Superpoint (DeTone, Malisiewicz, & Rabi-
novich, 2018), D2-net (Dusmanu et al., 2019), and LF-Net (Ono, Trulls, Fua, & Yi, 2018)
are the most commonly used feature extractors because of their accuracies. Despite their
success, some challenges like illumination conditions, diversity of appearances and back-
grounds have made it difficult to design a robust feature descriptor manually to describe
all kinds of objects with very little error.

Classification: A classifier is needed to distinguish a target object from other objects
and to have the representations more semantic, hierarchical and informative for visual
recognition. Supported Vector Machine (SVM) (Juang & Chen, 2011), AdaBoost (Freund
& Schapire, 2015) and Deformable Part-based Model (DPM) (Felzenszwalb, Girshick,
McAllester, & Ramanan, 2011) are the most commonly used classifiers. Among these
classifiers, the most flexible model is DPM because it combines object parts with defor-

5

mation cost to handle severe shape deformations. In DPM, with the help of graphical
models, carefully designed low-level features and kinematically inspired part decomposi-
tions are joined. Discriminative learning of graphical models also allows high-precision
part-based models to be developed for a variety of classes.

The steps stated above have been used to develop shallow architectures and have per-
formed well in PASCAL Visual Object Classes 2005 (VOC) competition (Everingham,
Van Gool, Williams, Winn, & Zisserman, 2011) by averaging 0.76mAP, 0.73mAP, and
0.75mAP for SVM, Adaboost, and DPM respectively. Despite these successes, not much
gains were being made with respect to accuracies and speeds until Deep Neural Networks
(DNNs)(Krizhevsky et al., 2012) were developed. Significant gains were later obtained
with the introduction of Regions with Convolutional Neural Network features (R-CNN)
(Girshick, Donahue, Darrell, & Malik, 2014). These CNNs have deeper architecture (net-
works with more than 1 hidden layer) with the ability to learn more complex features than
the shallow architectures. Another advantage of these networks is the robust training al-
gorithms used. They allow the networks to learn informative object features without the
need to design features manually (LeCun, Bengio, & Hinton, 2015).

Since the development of R-CNN, more advanced models have been suggested which
include Fast R-CNN that optimizes classification and bounding box regression tasks to-
gether (Girshick, 2015), Faster R-CNN that has an additional sub-network to generate
region proposals (S. Ren, He, Girshick, & Sun, 2015), and Single Shot Multi-box Detec-
tion that achieves object detection using a fixed-grid regression (Liu et al., 2016). These
advancements in detection have yielded improvement in performance as compared to the
primary R-CNN and make real-time and accurate object detection feasible (Girshick et al.,
2014).

2.2 Overview of Convolutional Neural Networks

Convolutional neural networks (CNNs) are made up of layers of neurons that have learn-
able weights and biases. Each neuron receives some inputs, calculates a dot product, and
optionally follows it with a nonlinear function. This process is repeated layer by layer until
the output layer, where the network’s prediction is generated. These networks are specif-
ically designed to work with grid-structured inputs that have strong spatial dependencies
in local regions of the grid. The most obvious example is the natural image. Natural im-

6

ages exhibit spatial dependencies where adjacent pixels often have similar colour values.
Therefore, the features within an image have dependencies among one another based on
spatial distances (Pinaya, Vieira, Garcia-Dias, & Mechelli, 2020).

2.2.1 How Convolutional Neural Networks Work

To understand convolutional neural networks, it is important to first understand how some
layers function in these neural network.

2.2.1.1 Convolution Layer

This layer is usually the first layer in a CNN and it can be repeated within the network
but with different parameters. Starting with a 7x7 matrix as shown in Figure 2.1, a 3x3
filter/neuron/kernel is introduced and it scans the matrix horizontally from top left to the
last window at bottom right (sliding window) in steps of 1 pixel(single stride); the area
it scans is called the receptive field as shown in Figure 2.1 (Patin, 2013). The kernel

Figure 2.1: How matrix convolution is achieved (Patin, 2013)

used here is a diagonal filter and it will extract any diagonal feature from the image. The
values in the first receptive area (first 3x3 matrix from the top-left corner) are multiplied
to the value of the kernel, summed up and the answer stored in the first segment of the
feature map matrix (4x4). The kernel moves one stride to the right and the process is
repeated again as before and the values stored on the second column of the feature map.
This process is repeated until the whole input is completely scanned. The values of the
feature map will tell if a diagonal line is present or not by simply looking at the numbers;
big positive numbers affirm presence while negative or zero number mean absence of

7

the same. To extract more features like: vertical lines, diagonal lines etc, more filters
are introduced and they will all scan the image to generate feature maps which can be
analyzed to determine presence or absence of the desired features (Patin, 2013).

2.2.1.2 Activation Layer

An activation layer is usually applied after a convolutional layer to solve the problem of
vanishing gradient which slows down the network training process (X. Wang, Qin, Wang,
Xiang, & Chen, 2019). The layer also introduces non-linearity to a network that has been
computing linear operations in the convolutional layer. The three common functions used
include: tanh, sigmoid, and rectified linear units (ReLU): ReLU that has become popular
because it helps the network train faster with minimum loss of accuracy (Xu, Wang, Chen,
& Li, 2015). This function converts all negative activations to zero using the function
shown in equation 2.1.

f(x) = max(0, x) (2.1)

where x is the input of the network’s neuron. ReLU(Patin, 2013) can be graphically repre-
sented as shown in Figure 2.2 where any input value x below zero is outputted as zero but
greater than zero is outputted proportionally.

Figure 2.2: Graphical representation of ReLU activation network (Patin, 2013).

2.2.1.3 Pooling Layer

This layer is also called a down-sampling layer. As the name suggests, it helps reduce
the amount of information being fed into it but in a way that the most important bits are
maintained and it is normally used after an activation layer. The two main reasons for this
approach are

8

• To reduce the cost of computing by reducing the number of parameters the network
needs.

• To reduce the chances of over-fitting. This is a phenomenon where the network is
exceptional at learning the training data but fails miserably at evaluating the test data
or any other data given to it.

The types of pooling layer include; maxpooling, L1-norm, L2-norm and average pooling.
Maxpooling is popular and it is achieved by introducing a filter say 2x2 with a stride of the
same dimension (two) and it picks the maximum number in the category as it convolves
the input as shown in Figure 2.3 (Oquab, Bottou, Laptev, & Sivic, 2014).

Figure 2.3: How max pooling is achieved.

2.2.1.4 Dropout Layer

This layer helps the network with the over-fitting problem discussed previously. It ran-
domly drops out some of the neurons and their connections inward and outward as shown
in Figure 2.4. This technique was proposed by Smirnov et al (Smirnov, Timoshenko, &
Andrianov, 2014) and it reduced overfitting but at the expense of training time. To under-
stand the operation of CNN, LeNet-5 architecture depicted in Figure 2.5(Wei, Li, Zhao,
& He, 2019) is used. The network had 8 layers but 7 layers contain trainable weights. A

9

20x20 pixel image was first padded into a 32x32 pixel image. Padding is adding a outer
boundary layer that does not affect the original image as shown in Figure 2.6. Padding
helps to preserve as much information about the original image so that the network can
extract low-level features such as stroke end-points or corners by centering it. The image
was then normalized (dividing each element of a matrix by its determinant) so that the
white background corresponded to -0.1 and the black foreground to correspond to 1.175.
This leads to a mean input of 0 and a variance of about 1 which has been shown to accel-
erate the learning rate of the network.

The first step in training a neural network is initialising all filters and weights with ran-
dom values. The input image (for instance a picture of an apple) is then fed into the
network and it goes through convolution, ReLU and pooling operations (forward propa-
gation) after which it outputs the probabilities of the image being a member of the classes,
for example [boat=0.4, cat=0.3, cow=0.1, apple=0.2]. The outputs are usually random the
first time since weights are initialized randomly. A error is then calculated using Equa-
tion. 2.2.

E =
∑ 1

2
(TP −OP)2 (2.2)

where E is error, TP is target probability, and OP is output probability.

Back propagation (Cilimkovic, 2015) is then used to calculate the gradient of the error
with respect to all weights in the network and gradient descent (Bottou, 2010) is used
to update all filter weights to minimize the output error. The weights are then adjusted

Figure 2.4: Drop-out pictorial representation (Smirnov et al., 2014).

10

Figure 2.5: Architecture of LeNet-5, a convolutional neural network for digital
recognition(Wei et al., 2019).

(a) A 4x4 matrix before zero
padding.

(b) A zero padded matrix.

Figure 2.6: Zero padding example.

in proportion to their contribution to the total error which would now give an output of
[0.1,0.1,0.1,0.7] which is closer to [0,0,0,1] meaning the network has learnt to classify an
apple in an image. This whole process is repeated with all images and the more the images
the better trained a network gets. A summary of the working of these layers is shown in
Figure 2.7

11

Figure 2.7: Example of a typical CNN architecture showing the key components of
the network.

2.3 Generic Object Detection

In generic object detection, the aim is to locate and classify existing objects in an image
and label them with a bounding box to show the confidences of existence in percentage
form. Generic object detection methods can be broadly grouped into two types, region
proposal or regression based. In region proposal, the traditional object detection pipeline
is used, that is generating region proposals and then classifying each proposal into dif-
ferent object classes. Regression based detection involves viewing object detection as a
regression or classification problem, adopting a unified framework to achieve categories
and locations. Region proposal based methods include R-CNN (Girshick et al., 2014),
Spatial pooling pyramid network (SPP-net) (He, Zhang, Ren, & Sun, 2015), Fast R-CNN
(Girshick, 2015) and Faster R-CNN (S. Ren et al., 2015). The regression based methods
mainly includes You Only Look Once (YOLO) (Redmon, Divvala, Girshick, & Farhadi,
2016) and SSD (Liu et al., 2016).

2.4 Region Proposal

This is a two-step process, mimicking the human brain’s attention mechanism to some
point, which scans of the whole scene first then focuses on the regions of interest. Some
related works include (Hinton, Krizhevsky, & Wang, 2011; Sermanet et al., 2013; Taylor,
Spiro, Bregler, & Fergus, 2011) the most representative being Overfeat network (Sermanet
et al., 2013). This network merges CNN and sliding window method which predicts the
bounding boxes directly from locations of the top most feature map after obtaining the

12

confidences of underlying object categories. The networks discussed in the proceeding
section employ this framework but with different iterations.

2.4.1 R-CNN

This network was developed to improve quality of candidate bounding boxes and to extract
high-level features [15]. The R-CNN was able to achieve a mean average precision (mAP)
of 53% which was an improvement over DPM’s best result of 42% (X. Ren & Ramanan,
2013) on PASCAL VOC 2007. Figure 2.8 shows the three main stages of an R-CNN
detection process.

• Region proposal generation. Selective search (Uijlings, Van De Sande, Gevers, &
Smeulders, 2013) is used to generate almost 2000 region proposals for every image.
The selective search method depends on simple bottom-up grouping and saliency
cues to generate more accurate arbitrary sized candidate boxes quickly and area to
search for objects (Deng et al., 2010; Felzenszwalb et al., 2011).

• CNN feature extraction. Every region proposal is warped into a fixed resolution
and a CNN module utilized to extract a 4096 pixel dimensional feature. Due to large
learning capacity, dominant expressive power and hierarchical structure of CNNs,
a high-level, semantic and robust feature representation for each region proposal is
obtained.

• Classification and localization. Support Vector Machines (SVM) is used to score
different regions proposed (Juang & Chen, 2011). The regions are assigned positive
scores but the background is given negative scores. The scored regions are then
adjusted using bounding box regression and a greedy non-maximum suppression

Figure 2.8: The flowchart of R-CNN (Girshick et al., 2014).

13

(NMS) is used as a filter to produce final bounding boxes (Rothe, Guillaumin, &
Van Gool, 2014).

The R-CNN also allows for pre-training the network when there is insufficient labelled
data. This is achieved by first conducting supervised pre-training on ILSVRC dataset
followed by application-specific fine-tuning (Girshick, 2015).

Despite improved accuracies and speed as compared to previous methods, some chal-
lenges are still exhibited:

• The presence of a fully connected (FC) layer requires the input image of fixed size
which directly leads to re-computation of the whole CNN for each evaluated region,
taking a lot of time.

• The whole process is multi-stage requiring fine tuning of the convolutional network
for object proposal, the softmax classifier has to be replaced by SVM to fit the
features and the bounding box regressors are also trained. These stages makes the
network slow.

• The speed being low makes the training time expensive computationally since a lot
of features are generated and have to be stored in memory discs.

• Although Selective Search has been proven to generate region proposals with high
recall, the region proposals obtained are mostly redundant meaning a lot of time is
wasted. The number of layers and stride also increased in Selective Search which
led to loss of resolution and hence making localization a challenge.

To solve these challenges, techniques such as multi-scale combinatorial grouping (Ar-
beláez, Pont-Tuset, Barron, Marques, & Malik, 2014) searches different scales of the im-
age for multiple hierarchical segmentations and combinatorially groups different regions
to produce proposals. This technique improved the time taken to develop proposals from
20 s per image to 17 s per image. Instead of extracting visually distinct segments, the
edge boxes method (Zitnick & Dollár, 2014) adopts the idea that objects are more likely
to exist in bounding boxes with fewer contours straggling their boundaries. A recall of
96% was obtained at 0.5 overlap and 96% at 0.7 overlap which demonstrated better recall
rate than R-CNN. Also some studies such as DeepBox (Kuo, Hariharan, & Malik, 2015),

14

and SharpMask (Pinheiro, Lin, Collobert, & Dollár, 2016) tried to refine pre-extracted
region proposals to remove unnecessary ones and obtained only valuable ones. DeepBox
increased precision of R-CNN by 4 mAP while attaining speeds of 3.8 fps which is far
from real time speeds (30 fps). SharpMask was 50% faster than DeepBox further improv-
ing speed of R-CNN with an increase in recall rate precision by 10%-20%. The speed was
still not fast enough to attain real time speeds.

Attempts to solve Inaccurate localisation have also been made. Bayesian optimization-
based search algorithm has been used to guide the regressions of different bounding boxes
sequentially, and trained class specific CNN classifiers with a structured loss to penalize
the localization inaccuracy (Zhang, Sohn, Villegas, Pan, & Lee, 2015). Object detection
for red-green-blue-distance (RGB-D) images was improved with semantically rich im-
age and depth features (Gupta, Girshick, Arbeláez, & Malik, 2014), and learned a new
geocentric embedding for depth images to encode each pixel. The combination of object
detectors and super-pixel classification framework poses a promising result on semantic
scene segmentation task.

2.4.2 SPP-net

Fully connected (FC) layers take a fixed-sized input and it prompted R-CNN to crop each
region proposal to the same size. This meant a loss of information since some objects
might exist in the cropped area and also cropping might introduce some errors to the
output feature. This cropping lead to inaccuracies in the final result (Lee, Kim, & Oh,
2016).

To solve this problem, He et al. (He et al., 2015) took the theory of spatial pyramid match-
ing (SPM) (Lazebnik, Schmid, & Ponce, 2010; Perronnin, Sánchez, & Mensink, 2010)into
consideration and proposed a CNN architecture named SPP-net (He et al., 2015). The
SPM takes several finer to coarser scales to partition the image into a number of divisions
and aggregates quantized local features into mid-level representations as shown in Fig-
ure 2.9. In the Figure, the input image is scanned and features of different pooling levels
are generated that is L0 (1×1 grid), L1 (2×2 grid) and L2 (4×4 grid). These features con-
tain object information that is used by the fully connected layers (FC layers) to classify
the objects in the image.

15

Figure 2.9: SPP-net architecture (He et al., 2015)

Different from R-CNN, SPP-net reuses feature maps of the 5-th convolutional layer (conv5)
to project region proposals of arbitrary sizes to fixed-length feature vectors. The feasibility
of the reusability of these feature maps is due to the fact that the feature maps not only
involve the strength of the local response, but also have relationships with their spatial
positions (He et al., 2015). The layer after the final convolutional layer is referred to as
spatial pyramid pooling layer (SPP layer). If the number of feature maps in conv5 is 100,
taking a 3-level pyramid, the final feature vector for each region proposal obtained after
SPP layer has a dimension of 100×(12 + 22 + 42) = 2100.

The SPP-net not only produces better results with correct estimation of different region
proposals irrespective of scale, but also improves detection efficiency in testing period
with the sharing of computation cost before SPP layer among different proposals.

2.4.3 Fast R-CNN

Although SPP-net has achieved impressive improvements in both accuracy and efficiency
over R-CNN, it still has some notable drawbacks. The SPP-net takes almost the same
multi-stage pipeline as R-CNN, including feature extraction, network fine-tuning, SVM
training and bounding box regressor fitting. So an additional expense on storage space is
still required. Additionally, the convolutional layers preceding the SPP layer cannot be
updated with the fine-tuning algorithm introduced in (He et al., 2015). As a result, an
accuracy drop-off is realized. To solve this limitation with SPP, a multi-task loss function

16

on classification and bounding box regression was introduced and a CNN architecture
named Fast R-CNN was developed (Girshick, 2015), as depicted in Figure 2.10.

Figure 2.10: Fast RCNN architecture for object detection (Girshick, 2015)

In the image, the input image is fed to the Deep ConvNet for image classification and the
RoI (region of interest) projection for region of interest generation. Here the output is a
feature map that is sent to RoI pooling for compression and FCs (fully connected layer) for
weight learning. The output of the FCs is a RoI feature vector which is a 7×7 grid which
is fed to two FCs, one for classification and another one for bounding box regressor.

Similar to SPP-net, the whole image is processed with convolutional layers to produce
feature maps. Then, a fixed-length feature vector is extracted from each region proposal
with a region of interest (RoI) pooling layer. The RoI pooling layer is a special case of
the SPP layer, which has only one pyramid level. Each feature vector is then fed into a
sequence of FC layers before finally branching into two output layers. One output layer is
responsible for producing softmax probabilities for all object classes and the background
categories while the other output layer generates bounding box positions with four real-
valued numbers.

To improve on accuracy, L1 loss function is adopted to fit bounding-box regressors. To
accelerate the pipeline of Fast R-CNN, computation and memory are shared by RoIs from
the same image in the forward and backward pass. Since much time is spent in computing
the FC layers during the forward pass (Girshick, 2015), Singular Value Decomposition
(SVD) (Xue, Li, & Gong, 2013) is used to compress large FC layers and to accelerate the
testing procedure.

In Fast R-CNN, regardless of region proposal generation, the training of all network layers
can be processed in a single-stage with a multi-task loss function. Multi-task loss function

17

optimizes both classification and regression events at the same time unlike loss function
like Softmax that can only optimize either of these events one at a time. This saves on
storage space, and improves both accuracy and efficiency during training.

2.4.4 Faster R-CNN

Despite trying to generate candidate boxes with biased sampling, object detection net-
works rely on additional methods, such as selective search and Edgebox, to generate a
candidate pool of isolated region proposals. Region proposal computation is also a bot-
tleneck in improving efficiency. To solve this problem, Ren et al (S. Ren et al., 2015)
introduced an additional Region Proposal Network (RPN), which acts in a nearly cost-
free way by sharing full-image convolutional features with detection network.

The RPN is achieved with a fully-convolutional network, which has the ability to predict
object bounds and scores at each position simultaneously. Similar to Selective Search
(Uijlings et al., 2013), RPN takes an image of arbitrary size to generate a set of rectangular
object proposals. The RPN operates on a specific convolutional layer with the preceding
layers shared with object detection network.

The architecture of RPN is shown in Figure 2.11. The network slides over the conv feature
map and fully connects to an n×n spatial window. A low dimensional vector (512-d for
VGG16) is obtained in each sliding window and fed into two sibling FC layers, namely
box-classification layer (cls) and box-regression layer (reg). This architecture is imple-
mented with an n×n convolutional layer followed by two 1×1 convolutional layers. To
increase non-linearity, ReLU is applied to the output of the n×n convolutional layer (Li &
Yuan, 2017).

The regressions towards true bounding boxes are achieved by comparing proposals relative
to reference boxes (anchors). In the Faster R-CNN, anchors of 3 scales and 3 aspect ratios
are adopted. The loss function used is given by Equation. 2.3(S. Ren et al., 2015).

L(pi, ti) =
1

Ncls

∑
i

Lcls(pi, p
∗
i) + λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i), (2.3)

where pi represents the predicted probability of the i-th anchor being an object. Ground
truth p∗i is 1 if the anchor positive, else, 0. ti stores the four coordinates of the predicted

18

Figure 2.11: RPN in Faster RCNN (S. Ren et al., 2015)

bounding box. t∗i represents the ground truth box. Lcls is a binary loss function. Lreg is a
smooth L1 loss function similar to one used in Fast R-CNN. Lcls and Lreg are normalized
by number of anchors locations Nreg and mini-batch size Ncls.

With the proposal of Faster R-CNN, region proposal based CNN architectures for object
detection can really be trained in an end-to-end way. A frame rate of 5 FPS (Frame Per
Second) on a GPU is achieved with state-of-the-art object detection accuracy which is an
improvement as compared to Fast R-CNN whic has 0.4 fps on PASCAL VOC 2007 and
2012 (Li & Yuan, 2017).

2.5 Regression Based Framework

In region proposal network, there are several stages including region proposal generation
stage, feature extraction, classification and bounding box regression. These many stages
hinder these networks from attaining real time detection. Regression based networks use
one-step frameworks from input to output hence reducing time spent and consequently
attaining real time detection (J. Huang et al., 2017).

19

2.5.1 You Only Look Once (YOLO)

Redmon et al. (Redmon et al., 2016) proposed a framework which makes use of the whole
topmost feature map to predict both confidences for multiple categories and bounding
boxes. As shown in Figure 2.12, YOLO divides the input image into an S×S grid and each
grid cell is responsible for predicting the object centred in that grid cell. Each grid cell
predicts B bounding boxes and their corresponding confidence scores. Formally, confi-
dence scores are defined as Pr(Object)xIOU truth

pred , which indicates how likely there exist
objects Pr(Object) ≥0 and shows confidences of its prediction IOU truth

pred . Where IOU
stands for intersection over union. At the same time, regardless of the number of boxes,
C conditional class probabilities Pr(Classi|Object) should also be predicted in each grid
cell. It should be noted that only the contribution from the grid cell containing an object
is calculated.

At test time, class-specific confidence scores for each box are achieved by multiplying the
individual box confidence predictions with the conditional class probabilities as shown in

Figure 2.12: Illustration of YOLO (Redmon et al., 2016).

20

Equation 2.4(Redmon et al., 2016).

Pr(Object)× IOU truth
pred × Pr(Classi|Object)

= Pr(Classi)× IOU truth
pred

(2.4)

During training, the loss function in Equation 2.5(Redmon et al., 2016) is optimized,

L = λcoord

S2∑
i=0

B∑
j=0

Oobj
ij [(xi − x̂i)2 + ((yi − ŷi)2)]+

λcoord

S2∑
i=0

B∑
j=0

Oobj
ij [(wi − ŵi)

2 + (hi − ĥi)2]+

S2∑
i=0

B∑
j=0

Oobj
ij (Ci − Ĉi)

2+

λnoobj

S2∑
i=0

B∑
j=0

Onoobj
ij (Ci − Ĉi)

2+

S2∑
i=0

Oobj
i

∑
c∈classes

(pi(c)− p̂i(c))2

(2.5)

Where cell i, (xi, yi) denotes the centre of the box relative to the bounds of the grid cell,
(wi, hi) are the normalized width and height relative to the image size, Ci represents con-
fidence scores, Oobj

i indicates the existence of objects and Oobj
ij denotes that the prediction

is conducted by the jth bounding box predictor (Redmon & Farhadi, 2017). The loss
function only penalizes classification errors when an object is present in that grid.

The YOLO network consists of 24 convolutional layers and 2 FC layers, of which some
conv layers construct ensembles of inception modules with 1×1 reduction layers followed
by 3×3 convolutional layers. The network can process images in real-time at 45 FPS and
a simplified version Fast YOLO can reach 155 FPS with better results than other real-
time detectors. Furthermore, YOLO produces fewer false positives on background, which
makes the integration with Fast R-CNN possible.

21

2.5.2 Single Shot Multibox Detection (SSD)

You only Look Once (YOLO) has a difficulty in dealing with small objects in groups,
which is caused by strong spatial constraints imposed on bounding box predictions (Red-
mon et al., 2016). Meanwhile, YOLO struggles to generalize objects in new/unusual as-
pect ratios/ configurations and produces relatively coarse features due to multiple down-
sampling operations.

To solve these challenges, Liu et al.(Liu et al., 2016) proposed a Single Shot MultiBox
Detector (SSD), which was inspired by the anchors adopted in MultiBox (Erhan, Szegedy,
Toshev, & Anguelov, 2014), RPN (S. Ren et al., 2015) and multi-scale representation
(Bell, Lawrence Zitnick, Bala, & Girshick, 2016). Given a specific feature map, instead
of fixed grids adopted in YOLO, the SSD takes advantage of a set of default anchor boxes
with different aspect ratios and scales to discretize the output space of the bounding boxes.
To handle objects with various sizes, the network fuses predictions from multiple feature
maps with different resolutions.

The architecture of SSD is demonstrated in Figure 2.13. Given the VGG16 backbone ar-
chitecture, SSD adds several feature layers to the end of the network, which are responsible
for predicting the offsets to default boxes with different scales and aspect ratios and their
associated confidences. The network is trained with a weighted sum of localization loss
(e.g. Smooth L1) and confidence loss (e.g. Softmax). Final detection results are obtained
by conducting NMS on multi-scale refined bounding boxes. Integrating with hard negative
mining, data augmentation and a larger number of carefully chosen default anchors, SSD
significantly outperforms the Faster R-CNN in terms of accuracy on PASCAL VOC and
COCO, while being three times faster. The SSD300 (input image size is 300×300) runs at
59 FPS, which is more accurate and efficient than YOLO. However, SSD performs poorly
when dealing with small objects(objects with pixel area less than 1024 pixels), which can
be improved by adopting better feature extractor backbone (e.g. ResNet-50), adding de-
convolution layers with skip connections to introduce additional large-scale context (Fu,
Liu, Ranga, Tyagi, & Berg, 2017) and designing better network structure (e.g. Stem Block
and Dense Block) (Shen et al., 2017).

22

Figure 2.13: SSD Architecture using VGG-16 for feature extraction (Liu et al., 2016).

2.6 Google Cloud Machine Learning Engine

This is a dedicated platform offered by Google for machine learning and offers a way to
link Tensor Processing Units (TPUs) with the model being trained (Ciaburro, Ayyadevara,
& Perrier, 2018). The platform’s servers is built from Ubuntu 16.0 operating system with
Python 3.6 as the default programming language.

Tensorflow(Abadi et al., 2016) is a major machine learning library that is used by re-
searchers and developers in machine learning. It offers an object detection Application
Programming Interface, API (a set of subroutine definitions, communication protocols,
and tools for building software which allows for a developer to come up with any ob-
ject detection model) (J. Huang et al., 2017). The images are first collected and labelled
and uploaded to the Google Cloud Machine Learning Engine (GCMLE) setup for train-
ing.

A decision on either training a network from scratch or using a pre-trained network that
has learnt basic objects and customizing it to fit desired application has to be made at this
point. Starting from scratch is advantageous because it is flexibility in design although it
takes a lot of time and needs a lot of computing power. The other option needed one to
get a project almost similar to the one undertaken and either add or remove details like the
number of layer or neurons.

23

2.7 Related Work

Researchers have been trying to model complex systems using techniques like system
identification and function approximation methods. Complex problems like controlling a
helicopter to fly in acrobatic manoeuvres is one of the challenges where system identifica-
tion has been utilised but without much success.

Punjani et al. (Punjani & Abbeel, 2015) however used a CNN with functional approxi-
mating algorithm and rectifiers to model a radio-controlled helicopter. An expert flew the
helicopter through some manoeuvres ranging from basic to complex aerobatic ones and
these moves were used as training data. The data included the keys pressed by the operator
and the corresponding velocity and the direction achieved by the helicopter. The data was
then fed to the CNN which came up with a relationship between the keys pressed and the
desired output. The network was then compared to three state-of-the-art methods and it
out performed them by about 60% in obtaining helicopter dynamics. Despite the impres-
sive performance, the CNN was not efficient in training since the researchers needed a
6 core Intel i7 server with 32GB RAM yet the network size is smaller than plain region
proposal networks (Dai, Li, He, & Sun, 2016; S. Ren et al., 2015). The system was also
not able to achieve autonomous operation mainly because it could not achieve real time
performance.

Neverova (Neverova, Wolf, Taylor, & Nebout, 2014) used a Faster R-CNN to model how
long between a driver’s head movement and a manoeuvre occurring at varied vehicle
speed. Upon testing, the network was able to make predictions every 0.8s based on the
preceding 5 s of data and anticipated manoeuvres about 3.5 s before they occurred, with
90.5 % accuracy. This research was able to achieve 24 fPS which is a pointer on how to
achieve real time speeds (30 fps) while still achieving high detection accuracy. This was a
guide to this research on methods of collecting training data and handling noise introduced
to the vision sensor. Significant number of researchers have used function approximating
models in different domains and they have been grouped by (Pierson & Gashler, 2017)
into (a) detection and perception, and (b) grasping objects and manipulation.

In detection and perception, convolutional neural networks (CNN) have been favoured by
researchers because the input images do not need to be prepared before hand which is
cheaper and consumes less time. Such preparation include developing feature vectors for

24

input images that have to be done manually and are time consuming. These feature vectors
may also need experts to analyse them hence increasing overall cost of specialised labour
(LeCun et al., 2015).

Mariolis et al. (Mariolis, Peleka, Kargakos, & Malassiotis, 2015) developed a system
that uses SPP-net to estimate pose and recognise deformed garments hanged from a sin-
gle point autonomously using a robotic arm and a depth vision sensor. The system was
trained using pants, towels and shirts of different shapes, sizes, and material properties.
The system was able to achieve 100 % accuracy in recognition and was further able to
predict grasping point for these article of clothing with an error of 5 cm. Comparing these
results to support vector machine (SVM) implementation of the same task, the CNN out-
performed SVM by 2 % showing its superiority, though by a narrow margin. The system
was not able to achieve real time speeds and the picking and placing feature was not in-
corporated. The network also only accepted input images of 160x64 pixels which meant a
sub-routine had to be used to down case images from a camera. This further hindered real
time performance of the network. Partial occlusion was discussed as a challenge when
picking garments especially when the robot was tasked to identify and pick multiple gar-
ments but a solution was not proposed. The researchers did not look into the impact of
change in lighting conditions or change in camera angle.

Having achieved high degree of accuracy with object recognition, other researchers looked
at the ability of vision based pick and place robots to handle tasks it had never seen before.
Yang et al. (Yang, Li, Fermuller, & Aloimonos, 2015) trained a Faster R-CNN to identify
common kitchen items and generate grasping points for these forty eight (48) items after
watching eighty eight (88) YouTube videos. These videos were new to the robot and were
not made with the robot in mind. The system achieved 79 % object recognition and 91
% grasp classification accuracy. Neural networks have also been used for path planning
using vision sensors like in research by Chen et al. (W. Chen et al., 2014) which used
a RCNN to identify existence of a door and its pose. To identify pose of the doors, the
researchers looked into the effect of change of camera angle and it was observed that
precision decreased with increase in angle from 0◦. This was because the items used in
the experiment were not symmetrical and as the angle increased the network could no
longer distinguish the object precisely. Precision dropped by 0.4 mAP from 0◦ to 90◦. The
performance of the network with respect to real time speed was not evaluated supposedly

25

because speed was not a strength of Faster R-CNN.

On grasping and object manipulation, CNN was used to categorize five three-dimensional
objects laying on a surface and identify their orientation. The objects were known before
hand and the task was limited to object recognition and pose estimation only leaving grasp
planning to simply positioning a parallel gripper at the respective object’s centre. The
impact of varying light intensity on grasping was also examined. The system was able to
achieve object recognition and grasping accuracy of over 90 % with a light source of 1300
lm. The lowest grasping accuracy was at 60 % when a 500 lm light source was shone on
the objects. It was discussed that increasing the light intensity had a direct relationship
with increase in grasping accuracy. Faster R-CNN was used by Lenz et al (Lenz, Lee,
& Saxena, 2015) to develop grasping points for objects new to the network by using a
red green blue and distance (RGB-D) camera. The network generated numerous potential
grasping points then the best was chosen. This system was tested on PR2 and Baxter robots
and they achieved accuracies of 89 % and 84 % respectively as compared to state-of-the
art algorithm that had 31 %. The challenge of attaining real time speeds and inability to
work effectively in conditions of partial occlusion was described and the authors proposed
using a regression based detection to solve these challenges.

Levine et al. (Levine, Pastor, Krizhevsky, Ibarz, & Quillen, 2018) trained an Fast-RCNN
to evaluate the potential of a particular robot motion for successfully grasping common
office objects from image data, and used a second network to provide continuous feedback
through the grasping process. Inspired by hand-eye coordination in humans, the system
was robust to object movement and uncertainty in gripper mechanics. To achieve these
results, two networks were used which made the whole system commutatively intense
and the speeds were close to 20 fps which was short of real time (30 fps). Challenges
of partial occlusion were discussed and it was pointed out that a network with a large
dimension fully connected layer would increase the networks performance when exposed
to the uncertainty.

Huang et al. (P.-C. Huang & Mok, 2018) used YOLO (Redmon & Farhadi, 2017) to de-
velop an autonomous pick and place robot for warehouses and could handle objects never
seen before. The system achieved high object detection accuracies and also real time
speeds even in conditions of uncertainty like poor lighting (450lm and below) and partial
occlusion. Despite these results, the system still had challenges identifying small objects

26

Table 2.1: Comparison between SSD with Resnet-18 and VGG16
Parameter SSD with Resnet-18 SSD with VGG16
Light intensity with 450 lm bulb (%) 59 40
Partial Occlusion-50% (%) 71 65
Real time speeds (fps) 37 35

(area of less than 1024 pixels) and medium sized objects (area of between 1024 and 9216
pixels) mainly because of the incapabilities of the YOLO network. The SSD network de-
signed by Liu et al. (Liu et al., 2016) had better performance with small and medium sized
objects as compared to YOLO but research by Chen et al. (S. Chen et al., 2019) has shown
improvements of up to 5% in detection accuracies by replacing VGG16 with Resnet-50
as the base network in SSD. Uncertainties in terms of light intensity and occlusion were
also examined by Xiong et al.(Xiong, Yao, Ma, & Wu, 2019) using SSD with Resnet-18
and Liu et al. (Liu et al., 2016) as well as real time speeds as shown in Table 2.1. From
the table, SSD with Resnet-18 showed improved performance than SSD with VGG16 in
terms of object detection under different conditions while still achieving better real time
speeds. A variation of SSD that used Resnet-50 had not been evaluated with respect to
these uncertainities and specifically in robotics though it would be hypothesised that its
performance would rival the SSD version that used Resnet-18.

2.8 Research Gap

Convolutional neural network (CNN) are built with a back born network for classification
of objects. To gain performance advantages like accuracy and speed, researchers have in-
terchanging these back born networks. In robotics this has also been done and focus has
been on improving object detection accuracy and speed. The CNNs that have been modi-
fied to improve performance include fast R-CNN, faster R-CNN and even regression based
CNNs like Single Shot multi-box detector (SSD). So far, researchers have interchanged the
back bone VGG16 network in SSD with networks like Mobinet and Inception.

Advancements in feature extraction have improved the performance of Resnet-50 in terms
of speed and accuracy and it has been shown that it out performed networks like VGG16.
Speed and object detection in pick and place robotics can be improved by developing a
SSD model that uses Resnet-50 as the backbone object classifier.

27

CHAPTER THREE

EXPERIMENTAL DESIGN AND METHODOLOGY

3.1 Overview

In this chapter, a single-shot multibox detector (SSD) is developed, trained, and tested for
real-time object detection. A robotic arm control system is also developed and coupled
to the object detection system for pick and place. The whole system was tested under
different lighting conditions, viewing angles, and partial occlusion.

3.2 Methodology Flow Chart

Figure 3.1, shows a flow chart of the steps followed to develop the object detection pick
and place robotic system. The first step being collection of the images for training the neu-
ral network to identify the object followed by setting up the Google cloud for the actual
training and evaluation. Once training was done, the network was tested to ensure that it
met the requirements for the task such as mAP, real times speed, and bounding box accu-
racy. Robot vision was the next step and it involved how the robot perceives the objects
and how the location information was going to be processed by the inverse kinematics.
The inverse kinematics for the replica robot was calculated since some dimensions did not
match the original robot; hence, the kinematics in literature could not be used. An inverse

Figure 3.1: A flow chart of the system configuration procedure

28

kinematic formula was generated and tested for the IRB1400 replica robot. Additionally,
the force needed to grasp all objects was finally obtained.

3.3 Image Collection and Preparation

The pick-and-place robot should be versatile and be used with as many objects as possi-
ble. As such, thirteen objects from different classes were selected and these objects are
depicted in Table 3.1. The choice of the objects was based on the texture (testing gripping

Table 3.1: List of objects used for image collection and object detection.
S/n Object
1 Toothpaste
2 Toothbrush
3 Onion
4 Orange
5 Insulating tape
6 Phone charger
7 Remote control
8 Match box
9 Flash light
10 Tomato
11 Plastic toy
12 Pen
13 Tamarillo

ability of the robot), shape (testing the ability of object detection algorithm to distinguish
different shapes, make accurate detections grasping ability of the robotic arm), and colour
(for the object detection). This was so as to extensively evaluate the performance of the
whole system. The classes of objects chosen have their packaging automated and it was
to show that the over all system was versatile enough for any industry.

The photos of the objects were taken in different lighting conditions (450 lm and 1600 lm),
camera positions (0◦ and 45◦), and occlusions (0% and 50%). A total of three hundred and
forty seven (347) images were taken. The images were taken with one object per image
at first to help the network identify the object, then the number of objects in an image
were increased progressively as shown in Figure 3.2. This helped the network to be able
to distinguish many objects in one image which improves the network’s accuracy. The
images were then rotated through angles of 45◦, 90◦, 180◦ and 270◦ to increase the size
of the training dataset which in the end was one thousand three hundred and eighty eight

29

Figure 3.2: A mixture of single and multiple objects in one image that was used for
training.

(1388) images. 0◦ was the angle the camera took the original images. Training on this
specific network needed images of 640x640 pixels for smooth training. The camera used
(HP 15 mega pixels webcam) to take the 347 images was recording at 4000x3000 pixels
and resizing had to be done without compromising the pixel quality and aspect ratio.

The next step was to annotate all of the images using labelImg software (Tzutalin, 2015).
Bounding boxes were drawn around the objects in every image and an appropriate label
chosen. The labelling had to be consistent so as to avoid confusion of the network during
training. The images were then split into training (80%) and testing (20%) as guided by
literature in (Dobbin & Simon, 2011).

3.4 SSD Resnet-50 Implementation

As mentioned, the original SSD had a VGG16 backbone but Resnet-50 performed better
than it speed and accuracy wise. Figure 3.3 shows a block diagram of the SSD-VGG16
implementation. Conv4_3 represents the VGG16 convolutional layer which needed to be

30

replaced. The fully connected layer (Conv7) was removed to avoid repetition of this layer
in the Resnet50 implementation. The Softmax layer (Conv8_2) which reduced the infor-
mation size in VGG16 was also removed. To implement Resnet-50, three convolutional
layer were added:Conv_3 of dimensions 38×38×128, Conv_4 of dimensions 19×19×256

and Conv_5 of dimensions 10×10×512 as shown in Figure 3.4. These layers represented
the Resnet-50 layer, feature fission layer and a fully connected layer respectively.

Figure 3.3: Block diagram of SSD with VGG16.

Figure 3.4: Block diagram of SSD with Resnet-50.

3.5 Training and Evaluation of the Network

For training and evaluation, a Tensor Processing Unit (TPU) and a virtual machine (VM)
were used. Training and evaluation were done simultaneously to improve efficiency and
reduce processing time.

31

Table 3.2: SSD model training parameters
Parameters
TFRecord files and pre-trained configuration file.
Anchor sizes: min 3, max 7.
Aspect ratios: 1, 2 and 0.5.
Type of activation: RELU.
Type of regularizer: L2 Regularizer.
Kernel size: 3.
Classification loss algorithm: weighted sigmoid focal.
Localisation loss algorithm: weighted smooth L1.
Training batch size: 64.
Training steps: 25,000.

TensorFlow library allows the continuous monitoring of the performance of the system
while training and evaluation is continuing. This was a helpful feature that was used to
evaluate the model’s behaviour and possibly stop the training if parameters like error did
not converge. Once training was done, the model was exported from the cloud to be used
in a local machine. The script allowed one to choose the exactly the training step/epoch
when the model was working as required.

Using a pre-trained network was chosen for this project and the network chosen had been
trained on Microsoft Common Objects in Context (MSCOCO) dataset with 1.5 million
objects (T. Lin et al., 2014). The weights from this Resnet-50 based SSD network was
the starting point in the model (which is called a fine-tune checkpoint) and it cut down the
training time from days to hours.

The training and model tuning configurations were set as per Table 3.2. The Table illus-
trates some of the parameters used to train the network as obtained from the authors of
SSD network.

3.6 Robot Vision

USB (Universal Serial Bus) camera, HP 15 Mega-pixels resolution, was used as a vision
sensor and was placed above the robot work table from a distance of 330 mm in the z axis.
The height was chosen to enable the camera to have enough field of view of the platform
where the objects were placed. Furthermore, this was the maximum height attainable by
the robotic arm as per the forward kinematics. If the camera was placed a distance lower

32

or higher than 330 mm, it would make the images larger or smaller and would need an
aspect ratio correction which would result in distortion of the images and poor detection
accuracy. The distorted images would also pose a challenge for the robotic arm as it will
not correctly identify the size of the object which would compromise grasping of objects.
The camera was used by the neural network for object identification using colour, shape,
and size.

Location information was also obtained from the sensor after the network had identified
the object and x and y coordinate information obtained. The picking height of the objects
was calculated, with 60 mm being an average of all the objects height. The location
of the objects from the camera needed to be mapped before implementation of the inverse
kinematic algorithm. Coordinate (0,0) was at the centre of the robot base and reference for
all the objects’ coordinates in the images. Figure. 3.5 illustrates the rectangular window of

Figure 3.5: Mapping object location to centre of the base of the robotic arm.

an image and the centre of the robot base while Equation. 3.1(Kazemi & Kharrati, 2017)
describes how the angle of the object was determined.

θr = tan−1
(m
l

)
− cos−1

(
k2 + j2 − p2

2jk

)
+ θc (3.1)

where m is offset of the corner point of the image to the robot centre, l is the perpendicular
distance from centre of the robot to the image, k is distance of the corner point of the
image to robot centre, j is distance of the object to the robot centre, p is distance of the
object to the image corner point, θc represents the angle the robot has moved from the X

33

(a) Representation of the IRB1400 robotic
arm by ABB showing the degrees of free-
dom(Belda, 2018).

(b) Actual physical robotic arm used
to run the experiments.

Figure 3.6: Images showing the original size and replica ARB1400 robotic arm used
for the experiments.

axis and θr denotes the angle at which the image is being captured. The quantities m, l and
θc (from the axis 1 servo motor position) are known, while k, j, and p can be determined
using trigonometry. The location of the object with respect to the centre of the robotic arm
can hence be obtained as

(x, y) = (j cos θr, j sin θr) (3.2)

The z coordinate of the object is equal to the height of the camera which is 330 mm and
remained constant throughout the experiments.

3.7 Robot Control

Figure 3.6 shows a 6 DOF model of miniature ABB IRB 1400 robotic arm that was used
in this research. The arm had 6 analog servo motors at the joints giving the robot angular
motion of up to 180 degrees. The gripper had one servo attached to enable closing and
opening of the jaws. All the servo motors were controlled by a serial servo motor controller
which was connected to a micro controller (Arduino mega) using UART protocol. The
servo motors had an inbuilt PID control to ensure the servo reached the desired angle as
fast as possible and accurately.

The flow chart of robot control is shown in Figure 3.7 where the different components of
the system are synergistically combined. The camera took a picture of the platform with

34

Figure 3.7: Flowchart of the steps followed from object detection to picking the ob-
ject.

the object or objects under investigation. The image was processed by the neural network
where detection was done and location information obtained. The location information
was then passed to the inverse kinematic script that generated the joint angles and also
identified the force needed depending on the object detected. The joint angles were then
sent to the Arduino mega micro-controller using UART protocol where the angles were
further assigned to their respective joint and the inbuilt PID controller of the servo motors
ensured the set angles were achieved. The robot attempted grasping the object and with the

35

force sensor in the gripper, it was able to confirm picking and placing. Since the maximum
force needed to pick an object had been pre-determined, a function in the micro-controller
monitored the force from force sensor while picking to ensure the value was not exceeded
which would have damaged the object or the gripper’s servo motor.

3.8 Inverse Kinematics of IRB1400 Replica Robot

Inverse kinematics is the calculation of joint angles of a robotic arm given the coordinate
of the end effector. For the IRB1400 model, the kinematic representation of the joints is
shown in Figure 3.8. The axes were labelled from zero (shoulder) to six (gripper) with
their respective rotation direction indicated along the axis that was allowed to rotate. The
z axis was assigned to axis of rotation for the joint while x axis was freely assigned for
the first joint. Other subsequent x axes pointed away from the previous joint. The y axis
filled the remaining axis. The other important parameters considered included the distance
between one axis to the next d and a being the offset distance from the axes.

Figure 3.8: Kinematic configuration of IRB1400 robot (Markus et al., 2015).

36

Figure 3.8 was only used for referencing purposes but to generate Denavit-Hartenberg
(DH) parameters for the robotic arm model, physical measurements were done and tabu-
lated in Table 3.3. Since three consecutive axes of the arm intersect, Pieper’s solution was
used to compute the inverse kinematics(Serrezuela, Chavarro, Cardozo, Toquica, & Mar-
tinez, 2017). Before solving the inverse kinematics of a 6 DOF, it was assumed that the
first three joints are entirely responsible for positioning the end effector, while any others
are responsible for orientation. This assumption holds for robots with more than 3 DOF
since the geometric method used for 3 or less DOF becomes very complicated to solve
(Serrezuela et al., 2017). With the DH matrix computed, the x, y and z coordinates could
be fed to the robotic arm inverse kinematic algorithm to generate joint angles θ1, θ2, θ3,
θ4, θ5 and θ6. The values of x and y were obtained from the neural network bounding box.
The object detected was wrapped around with a bounding box like shown in Figure 3.9
where two coordinates (x1, y1) and (x2, y2) of the diagonal of the box were picked and the
mean of their length and coordinates of the centre of the length calculated. The height was
held constant at 330 mm fro all objects hence the final coordinate was in three dimensions
(x, y, and z).

3.9 Workspace Analysis

The work envelope of a robot is very important in determining the physical limits of the
robotic arm. For the IRB1400 model, the DH parameters in Table 3.3 were measured
physically on the robot and were used in MATLAB software to generate the workspace
as shown in Figure 3.10. These parameters were used to populate all possible positions
the end effector would reach, taking into consideration the joint angles and link lengths.
The loop started at coordinate (0, 0, 0) and the inverse kinematics checked if the joint
angles were reachable, if true, that point was marked as attainable by the robotic arm. If
a coordinate was not attainable, it was not plotted. The maximum possible coordinates
was attained when all the links were straight and parallel and when rotated, a sphere of

Table 3.3: DH Matrix To IRB-1400 Model Robot
Joint 1 2 3 4 5 6
di 40 mm 0 mm 26 mm 0 mm 0 mm 0 mm
ai 110 mm 127 mm 26 mm 130 mm 0 mm 0 mm
αi 90◦ 0◦ 90◦ -90◦ 90◦ 0◦

θi θ1 θ2 θ3 θ4 θ5 θ6

37

Figure 3.9: The coordinates of the mean length of the object to be picked.

maximum points was plotted. These points were used as the maximum limits and the last
points that could be possibly plotted. The workspace was used to identify the working
limits of the robot in all three axis as x:-0.3 m to 0.3 m, y: -0.2 m to 0.4 m and z: -0.1 m to
0.3 m.

3.10 Tactile Sensing

The robotic arm was designed with the ability to pick and place a wide range of objects
and the amount of force needed to pick the objects was measured by using a Force Sensing
Resistor (FSR) on the inner surface of the robot gripper. The FSR sensor chosen was from
Sparkfun with a round sensing area of diameter 12.7 mm. The circular option was chosen
over the square one so as to increase the sensing area.

Two options were available for sensing force, FSR sensor and a load cell. The FSR was
chosen in place of load cell mainly because of the sensor’s size and ability to be placed on
the inner surface of the gripper. The smallest load cell examined was 8 mm thick as com-
pared to 1 mm of the FSR sensor. The FSR sensor’s resistance is inversely proportional
to the force applied as shown in Figure 3.11 and the data sheet used to extract this plot
is provide in Appendix III. The FSR was first calibrated using standard weights ranging
from 100g to 1kg and there after a polynomial was obtained using polyfit, a MATLAB

38

Figure 3.10: Sample workspace of the model ABB IRB1400 used in this experiment.

software function, that mapped the relationship between force and resistance. The poly-
nomial was then used by Arduino Mega micro-controller to compute the force needed for
grasping. The amount of force needed to grasp the objects for this experiment are depicted
in Table 3.4.

Figure 3.11: a: Graphical relationship between force applied versus resistance. b:
FSR402 sensor.

39

Table 3.4: Maximum grasping force for individual objects.
Object Grasping force (N)
Toothpaste 2.17
Toothbrush 1.97
Onion 1.97
Orange 1.96
Insulating tape 2.35
Phone charger 3.96
Remote control 3.72
Match box 2.60
Flash light 6.80
Tomato 1.99
Plastic toy 7.30
Pen 3.14
Tamarillo 1.96

Figure 3.12: Block diagram of the system designed.

3.11 Experimental Setup

The block diagram of the setup used is shown in Figure 3.12 which includes a laptop
with GTX1080 6GB graphics processor, a robotic arm with a gripper fitted with an FSR
sensor, a microcontroller onto which the inverse kinematic algorithm is executed, a serial
servo motor control to power the servo motors used at joints, a HP 15 Megapixel camera
for object detection and some objects that were used for picking and placing. The actual
setup used is depicted in Figure 3.13 while Figure 3.12 explained the flowchart. The inputs
to the system were the camera, FSR, and power supply while the outputs were the servo
motors in the robotic arm. The trained model was to be evaluated with the objects used
to train it. This was achieved through placing the various objects on the platform and

40

Figure 3.13: Actual experiment setup used.

the camera taking pictures of the objects. The images were then processed by the SSD
network by first being fed through the Resnet-50 network for feature extraction. Feature
extraction generates feature maps that are used to generate anchors of different sizes in
height and width. The anchors are used to detect object of different sizes. The more the
anchors the more detailed the description. The SSD network also generates multiscale
feature blocks from the feature map to predict the class of the object and also draw the
bounding boxes around the objects in the image. The network finally outputs the image,
image class, object location and the detection accuracy in mAP.

To evaluate the accuracy of the neural network in detecting objects under different lighting
conditions, two conditions were considered; using a 450 lm and a 1,600 lm lighting from
a bulb. These bulbs were chosen to represent the minimum and maximum lighting in
a medium scaled factory when artificial lighting and high intensity artificial lighting is
used.

41

The objects were placed on the platform and the 450 lm bulb switched on. The accuracy
of the neural network in detecting the objects was then generated for all objects. The same
procedure was repeated with the 1,600 lm bulb and the values recorded.

To evaluate the accuracy of the network under partial occlusion, the objects were partially
occluded up to 50 % while maintaining the camera above the objects. The images were
then processed using TensorFlow and the detection accuracy was evaluated.

To evaluate the performance of the network under changing camera pose, the setup in-
volved placing the camera directly overhead the platform and the objects placed below it.
The camera then took images of the objects and the network gave out the accuracy in per-
centage form. The camera was then placed at 45◦ from the original position and the above
steps repeated and the output data recorded. The angles between 0◦ and 45◦ were selected
because it enabled the robotic arm to picking the objects without increasing the current
drawn by the servo motors at the joints beyond a level that would damage them.

To evaluate real time speeds, the network was presented with three objects from the class
used and the time it took for the network to correctly identify each object was measured
with respect to the number of frames needed was noted. The value of time and number of
frames was computed, averaged and tabulated in terms of frames per second.

Table 3.5 shows a summary of the experimental data setup. To measure the force needed to

Table 3.5: Experimental data setup
S/N Parameter Lower limit Higher limit
1 Lighting conditions 450 lm 1600 lm
2 Occlusion 0 % 50 %
3 Camera position 0◦ 45◦

grasp the objects, a force sensitive resistor was placed on the gripper’s jaw and connected
to the microcontroller. The servo motor connected to the gripper was closed in order to
attempt grasping and once the object had been grasped, the values from the sensor were
read. This was repeated for all the objects.

The system synergy was then evaluated from detection to placing. Objects were placed
on the test area and the neural network instructed to detect the objects. After detection,
the object location information was handled by the kinematics script that generated joint

42

angles for the robot and also the force needed to grasp the object. These values were passed
to the micro controller through serial communication to execute the picking and finally
placing the object at a designated location. The number of successful grasps, placing, and
time taken were then recorded.

43

CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 SSD Performance Evaluation

The SSD network modelled using Resnet-50 was evaluated on TensorFlow software and
parameters like precision, recall, learning rate, and intersection over union were graphed.

4.2 Precision Evaluation

The precision metric was used to evaluate the performance of the network. Precision
measures the false positive rate or ratio of true object detections to the total number of
objects that the network predicts (G. Wang, Hao, Ma, & Huang, 2010) and it is expressed
as

PR =
TP

TP + FP
(4.1)

where TP is true positive and FP is false positive.

The network was able to achieve greater than 0.98 mAP (98%) precision in detection of
the objects that was trained on as shown in Figure 4.1. This high accuracy is attributed
to the ResNet-50 feature extractor and transfer learning that was done prior to training
the network to the custom dataset. The evaluated network precision in detecting small,
medium and large object sizes are defined as follows

• Small objects: area <1024 square pixels.

• Medium objects: 1024 <area <9216 square pixels.

• Large objects: 9216 <area <1,000,000 square pixels.

The network hence had greater than 0.98 mAP (mean average precision) for large and
medium sized objects. As per the figure, the precision for medium and large increased
progressively as the training steps increased. This was as a result of the network learn-
ing distinguishing details about the objects used for training. The two plots of large and
medium also followed each other throughout the training. This could be attributed to the
fully connected layer in SSD-Resnet-50 architecture that allowed for accelerated learn-

44

Figure 4.1: Detection accuracy of some of the objects used in the experiment.

ing of features in these two categories. These results show how good the network were
at precisely identifying the objects in the 20% dataset that was reserved for testing. It
was predicted that the network would achieve accuracies of above 0.9mAP which was
attained. As shown in Figure 4.2, the network did not perform well with small objects
mainly because the images used to train the network did not have small objects. The pic-
tures of the objects were taken at a height of 330mm in the Z axis axis which meant that
all images of the objects had pixels greater than 1024 and hence the category of medium
and large for all pictures. The height was also chosen because it was within a range that
allowed for accurate picking of the objects by the robot. If the camera was placed higher,
issues of aspect ratio and distortion of the image would result in errors in object location
identification.

The robot’s links were present in some of the images and since the links were rectangular
in shape, the network identified them as remote controllers. This resulted in the network

45

Figure 4.2: Precision of the network when detecting objects.

displaying an extra object, remote control, which was undesired. This was rectified by
placing the robotic arm in a home position that was out of range of the field of view of the
camera.

4.3 Intersection Over Union (IOU)

The network was also evaluated with respect to the precision of placing bounding boxes
over the desired object using a method called intersection over union (IOU). The IOU uses
ground truth bounding box that was generated when the images were being annotated and
the predicted bounding box. The two boxes are overlaid over each other and the IOU
generated. A high IOU means the boxes generated are placed exactly where they are
supposed to while a lower IOU doesn’t fit or it overlaps over a small region. The two
parameters used for the network were 50% and 75% IOU since they gave a more detailed

46

evaluation of the network. 50%-IOU showed the ability of the network to draw a bounding
box around an object precisely more than 50% of the time. 75%-IOU showed the same
performance but the precision levels were increased. As shown in Figure 4.2, the network
was able to achieve 100% precision intersections after 25,000 training steps. This high
accuracy can be attributed to the use of SSD with Resnet-50 which as presented earlier
has better accuracy.

4.4 Recall Rate

The recall rate of the network was also analysed. As noted in (G. Wang et al., 2010), recall
rate is defined as a measure of false negative rate or the ratio of true object detection to the
total number of objects in the dataset and is expressed as shown in Equation. 4.2.

RC =
TP

TP + FN
(4.2)

where TP is true positive and FN is false negative.

A value of 1.0 mAP is a likelihood of the network to positively detect all the objects in the
dataset. . As shown in Figure 4.3, the network recall rate was above 0.85 mAP after 6,000
training steps and by the end, 25000, the network could recall 1, 10 and 100 detections
per image with accuracies of above 0.90 mAP except for small objects. This result means
that the network was able to detect 1, 10 or 100 objects in an image with an accuracy of
0.90 mAP if the same dataset was used. This is important because it shows how robust the
network is when handling a large set of objects in a single image. The same challenges
of processing small objects were also exhibited here as the network was completely not
able to recall small objects hence a value of -1 mAP. The number of multiscale blocks
generated for these images were not sufficient to increase accuracy of the network with
small objects.

4.5 Learning Rate

The learning rate is a measure of how fast the weights of the neural network are being
adjusted to achieve learning. The rate is initially very fast at 0.04 but slows down to
almost zero as it tends to a local minimum or the best accuracy for the network. The
curve follows what is expected of learning rate using Gradient Descent training optimising

47

Figure 4.3: Recall rate of the network.

algorithm where as the training starts, the error is large and the algorithm tries to minimize
this error at every iteration. Over time, the error is minimized and the epoch closest to zero
is picked to stop the training.

The network hit peak learning rate at the 4000 step and started dropping off until the
training was halted as depicted in Figure 4.4. The rate rises up first because the rate that
was declared initially was too low and the training process increased it to a level it could
be efficient. The rate peaked because past 0.04, the network wouldn’t be able to detect any
local minima and it would lead to errors in detection. The peak was at the 4000 step since
it followed gradient descent and this was the point at which the total-loss had reduced by
more than 80% from the starting point (at 0 step total-loss was at 2.5 and at 4000 it was
at 0.45). The use of Tensor Processing Units (TPUs) can also be credited with the fast
learning rate because the processor has been optimized to achieve this and it outperforms
graphic processing units (GPUs). The network peaks at

48

Figure 4.4: Learning rate of the network throughout the training steps.

4.6 Network’s Loss

Loss parameters like regularisation, classification, localisation and total loss for a network
during training represent the cost of inaccuracies. These costs should reduce with time and
approach zero for a very accurate training. As depicted in Figure 4.5, the network’s classi-
fication was very accurate in classifying objects in images correctly and it had levelled out
at almost zero by 12500 steps. The localisation error depicted in Figure 4.5, shows how
accurate the network is at locating the objects in images. The loss is close to zero at the
early stages of training meaning the network had learnt the objects and the loss plateaued
at this level until the end of the training; hence, maintaining the learnt accuracies.

Regularisation is a technique used to discourage complexities in the trained network.
These complexities arise when the size of the training parameters increase leading to over-
fitting which is not desirable. To discourage complexities, regularisation penalizes the loss
function as shown in Figure 4.5. The regularisation loss decreases progressively towards
zero with the increase in training steps. By the end of the training, the model can be de-
clared not to be suffering from overfitting. Total loss is the summation of all these losses
and it gives a picture of all the losses with respect to the model’s performance.

49

Figure 4.5: The loss graphs for the network while training.

4.7 SSD Performance under Different Lighting Conditions

The network was also tested on different lighting conditions using bulbs of different lu-
mens and it was still able to achieve above 0.90 mAP under both conditions as shown in
Table 4.1. The Table shows the different set of experiment results ranging from how the
network performed when exposed to different lighting conditions, partially occluded, dif-
ferent camera pose, and number of successful grasps by the robotic arm (the system had
three chances to pick an object under 1600 lm lighting and if it was successful once it was
recorded as 1/3).

The percentage values in Table 4.1 with respect to the objects were obtained as follows,
using an onion as an example: The first experiment was done with a 1600 lm bulb and the
following subsequent experiments done using a 450 lm bulb. The onion was first placed in
the working area and a bulb of 1600 lm was switched on, the object detection python script
was activated and the camera identified the onion. The script then returned the precision
on detection in percentage for the object under 1600 lm lighting. The experiment was

50

repeated with a 450 lm bulb and the results tabulated. The onion was blocked by 50%
using a piece of white paper and the object detection script was again run and the results
noted. The camera angle was then adjusted to 45◦ from the top and the procedure repeated.
Finally, the pick-and-place algorithm was activated and the robot instructed to pick the
onion from the working platform and place it in a designated position. This was done
three times and every attempt was recorded.

These results confirm that the network developed is robust enough to be used in varied
lighting conditions without a huge loss in detection accuracies and overall robotic pick
and place application.

4.8 Occlusion

Occlusion is a challenge for object detection and a well trained network should be able
to distinguish specific objects and provide grasping information for the robotic arm. The
trained network was tested with objects that were occluded by approximately 50% and the
network was able to achieve above 75% accuracy as depicted in Table 4.1. This confirmed
that the network can be used in real life application but with slight improvement to increase
on its accuracies.

Table 4.1: Performance of object detection and pick-and-place system
Object 450 lm

bulb
1600 lm
bulb

50%
occlusion
(450 lm)

45◦ pose
(450 lm)

Successful
grasps
(450 lm)

(%) (%) (%) (%)
Toothpaste 92 99 85 82 2/3
Toothbrush 92 97 83 70 1/3
Onion 90 98 89 83 3/3
Orange 91 96 90 85 3/3
Insulating tape 92 97 75 75 2/3
Phone charger 93 99 89 78 1/3
Remote control 91 98 88 69 1/3
Match box 93 99 87 82 3/3
Flash light 95 100 86 77 2/3
Tomato 93 96 87 89 3/3
Plastic toy 91 100 90 78 1/3
Pen 92 99 88 83 1/3
Tamarillo 91 98 86 88 2/3

51

Table 4.2: Real time speeds versus pixel area
Pixels Developed network speed (fps) Original SSD speed (fps)
300 x 300 - 46
400 x 400 40 -
500 x 500 25 19

4.9 Camera pose

The change in camera pose demonstrates how versatile a network is when viewing the
object from a different angle other than the one that the network was trained on. Table 4.1
illustrates the impact of changing the viewing angle of the network by 45◦ and it follows
that accuracy decreased but to a minimum of 0.69 mAP which was obtained when evaluat-
ing the remote control. This depicted that the network was versatile enough to work other
different camera poses. These results showed that the network could to be incorporated
into a different camera mounting configuration other than the fixed-camera configuration
used while still delivering accuracy of above 0.60 mAP.

4.10 Real Time Speed Evaluation

The SSD with a Resnet-50 backbone was able to achieve real time speeds of 40 fps when
the input image was restricted to 400×400 pixels. When the pixels was increased to
500×500 pixels, the speed dropped to 25 fps. These values are slightly better than the
original work done by the developers of SSD (Liu et al., 2016) who got a speed of 46fps
for 300×300 pixels and 19 fps for 500×500 pixels as depicted in Table 4.2.

4.11 Grasping

The force needed to grasp the objects was very crucial to achieve successful picking and
placing. Table 3.4 shows the force sensor readings needed to grasp each object. With the
force sensor values, the final experiment was conducted. The robot made three attempts to
detect, pick and place each object and the results were tabulated in Table 4.1. The picking
and placing took 15-30 seconds depending on the object being picked. The majority of
this time was spent on moving the arm from home position towards the object, picking
the object, taking the object a designated location, placing and finally going back to home
position. Each servo motor was moving at 0.16 sec per degree at 6V for every joint.
Objects that performed well were those once with symmetrical bodies and also those ones

52

made from shapes like spheres and rectangles as can be seen by objects like tamarillo,
tomato, match box, orange, and onion.

53

CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

In this work, a problem of using a pick and place robotic arm in conditions of uncertainty
like varying lighting, change in camera pose, and partial occlusion while attaining real
time speeds was tackled SSD Resnet-50 Convolutional Neural Network was chosen for
the task.

Attaining real time speeds was a major point in this work because it had a direct relation
to how fast a pick and place robotic arm could perform. The uncertainties mimic real
world conditions experienced in the industry. The system developed was able to achieve
real time object object detection at speeds of 40 fps with accuracies of over 75% under
conditions of uncertain lighting, change in camera pose and partial occlusion. The overall
system robust enough to pick objects with satisfactory grasping accuracies meeting the
objectives set out.

It was determined that introducing a backbone network in pre-existing CNN networks can
improve the performance of an object detection network. With proper application of the
network, other improvements can be achieved like increasing the efficiency of a pick and
place robotic arm. From the experiments, it was proven that the fixed camera configuration
can be replaced with a more versatile and efficient eye-in-hand configuration. This con-
figuration allows the camera to be placed in the gripper and since the network is still able
to detect objects at other angles, manoeuvrability of the robotic arm could be increased.
This increase means that robot can pick objects more faster than the existing fixed camera
configuration.

This was proof that the system developed could be used in industry and could compete
with existing systems. Also, this work shows how powerful and flexible Convolution
Neural Networks have become in solving real world problems especially in the field of
robotics.

54

5.2 Recommendations for Future Work

The workspace of the robotic arm was greatly limited because of the 180◦ servo motors
used at the joints. The 360◦ motors that were available all had plastic gearing which were
not strong enough to supply the torque demands of the joints since they kept wearing
out. The metallic version of the same motors were expensive and did not meet the budget
requirements. This meant some positions calculated by the inverse kinematic algorithm
couldn’t be attained and accuracy was compromised. The use of RGB camera was effec-
tive in object detection but it was not able to detect the distance between the object and
the end effector. This limited the system to using a fixed camera configuration as opposed
to camera in hand configuration which is more accurate. Fixed camera configuration has a
large field of view but the robot’s links appear in the images captured which is factored as
noise. For real time robots, such noises reduce accuracy and eye-in-hand configuration is
hence preferred. Introduce a distance camera and installing 360◦ servo motors to the arm
will improve the performance of the pick and place robot since distance can be obtained
very fast with little effort.

55

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., . . . Zheng, X. (2016).
Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th

usenix conference on operating systems design and implementation (pp. 265–283).
Berkeley, CA: USENIX Association.

Akogo, D. A., & Palmer, X.-L. (2019). Scaffoldnet: Detecting and classifying biomedical
polymer-based scaffolds via a convolutional neural network. In Future of informa-

tion and communication conference (pp. 152–161). San Francisco.
Arbeláez, P., Pont-Tuset, J., Barron, J. T., Marques, F., & Malik, J. (2014). Multiscale

combinatorial grouping. In Proceedings of the ieee conference on computer vision

and pattern recognition (pp. 328–335). Columbus, Ohio.
Belda, K. (2018). Nonlinear design of model predictive control adapted for industrial

articulated robots. In Icinco (2) (pp. 81–90). Porto, Portugal.
Bell, S., Lawrence Zitnick, C., Bala, K., & Girshick, R. (2016). Inside-outside net:

Detecting objects in context with skip pooling and recurrent neural networks. In
Proceedings of the ieee conference on computer vision and pattern recognition (pp.
2874–2883). Las Vegas, Nevada.

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In
Proceedings of international conference on computational statistics (compstat) (pp.
177–186). Paris, France.

Brachmann, E., Krull, A., Michel, F., Gumhold, S., Shotton, J., & Rother, C. (2014).
Learning 6d object pose estimation using 3d object coordinates. In European con-

ference on computer vision (pp. 536–551). Zurich, Switzerland.
Chen, S., Liu, J., Niu, W., Han, Y., Xiao, Y., Xue, Y., & Ye, X. (2019). Research on the de-

tection method for insulation piercing connectors and bolts on the transmission line
based on ssd algorithm. In 2019 ieee 4th advanced information technology, elec-

tronic and automation control conference (iaeac) (Vol. 1, pp. 960–964). Chengdu,
China.

Chen, W., Qu, T., Zhou, Y., Weng, K., Wang, G., & Fu, G. (2014). Door recognition
and deep learning algorithm for visual based robot navigation. In 2014 ieee interna-

tional conference on robotics and biomimetics (robio 2014) (pp. 1793–1798). Bali,
Indonesia.

Ciaburro, G., Ayyadevara, V. K., & Perrier, A. (2018). Hands-on machine learning on

56

google cloud platform: Implementing smart and efficient analytics using cloud ml

engine. Packt Publishing.
Cilimkovic, M. (2015). Neural networks and back propagation algorithm. Institute of

Technology Blanchardstown, Blanchardstown Road North Dublin, 15.
Dai, J., Li, Y., He, K., & Sun, J. (2016). R-fcn: Object detection via region-based fully

convolutional networks. In Advances in neural information processing systems (pp.
379–387).

De Magistris, G., Munawar, A., & Vinayavekhin, P. (2016, December). Teaching a robot
pick and place task using recurrent neural network. In ViEW2016. Yokohama,
Japan.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2010). Imagenet: A large-
scale hierarchical image database. In 2010 ieee conference on computer vision and

pattern recognition (pp. 248–255). Miami Beach, FL.
DeTone, D., Malisiewicz, T., & Rabinovich, A. (2018). Superpoint: Self-supervised

interest point detection and description. In Proceedings of the ieee conference on

computer vision and pattern recognition workshops (pp. 224–236). Salt lake city,
Utah.

Dobbin, K. K., & Simon, R. M. (2011). Optimally splitting cases for training and testing
high dimensional classifiers. BMC medical genomics, 4(1), 31.

Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J., Torii, A., & Sattler, T. (2019).
D2-net: A trainable cnn for joint description and detection of local features. In
Proceedings of the ieee/cvf conference on computer vision and pattern recognition

(pp. 8092–8101). Seoul, Korea.
Erhan, D., Szegedy, C., Toshev, A., & Anguelov, D. (2014). Scalable object detection

using deep neural networks. In Proceedings of the ieee conference on computer

vision and pattern recognition (pp. 2147–2154). Columbus, Ohio.
et al, A. Z. (2017). Robotic pick-and-place of novel objects in clutter with multi-affordance

grasping and cross-domain image matching. Computing Research Repository

(CoRR), abs/1710.01330.
Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2011).

The pascal visual object classes (voc) challenge. International journal of computer

vision, 88(2), 303–338.
Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D. (2011). Object

detection with discriminatively trained part-based models. IEEE transactions on

57

pattern analysis and machine intelligence, 32(9), 1627–1645.
Ferdinando, H., Wicaksono, H., & Wibowo, R. (2017). The implementation of pid con-

troller in the pick and place robot. Dept. of Electrical Engineering, Petra Christian

University, Indonesia.
Freund, Y., & Schapire, R. E. (2015). A desicion-theoretic generalization of on-line

learning and an application to boosting. In European conference on computational

learning theory (pp. 23–37). Barcelona, Spain.
Fu, C.-Y., Liu, W., Ranga, A., Tyagi, A., & Berg, A. C. (2017). Dssd: Deconvolutional

single shot detector. arXiv preprint arXiv:1701.06659.
Girshick, R. (2015). Fast r-cnn. In Proceedings of the ieee international conference on

computer vision (pp. 1440–1448). Las Condes, Chile.
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for

accurate object detection and semantic segmentation. In Proceedings of the ieee

conference on computer vision and pattern recognition (pp. 580–587). Columbus,
Ohio.

Gonzalez, A., Villalonga, G., Ros, G., Vázquez, D., & López, A. M. (2015). 3d-guided
multiscale sliding window for pedestrian detection. In Iberian conference on pattern

recognition and image analysis (pp. 560–568). Santiago de Compostela, Spain.
Gu, W., Xiong, Z., & Wan, W. (2013). Autonomous seam acquisition and tracking sys-

tem for multi-pass welding based on vision sensor. The international journal of

advanced manufacturing technology, 69(1-4), 451–460.
Gupta, S., Girshick, R., Arbeláez, P., & Malik, J. (2014). Learning rich features from

rgb-d images for object detection and segmentation. In European conference on

computer vision (pp. 345–360). Zurich, Switzerland.
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pooling in deep convolu-

tional networks for visual recognition. IEEE transactions on pattern analysis and

machine intelligence, 37(9), 1904–1916.
Hinton, G. E., Krizhevsky, A., & Wang, S. D. (2011). Transforming auto-encoders. In

International conference on artificial neural networks (pp. 44–51). Espoo, Finland.
Hossain, D., & Capi, G. (2016, March). Application of deep belief neural network for

robot object recognition and grasping. In The 2nd ieej international workshop on

sensing, actuation, and motion control (samcon 2016). Tokyo, Japan.
Houska, B., Li, J. C., & Chachuat, B. (2018). Towards rigorous robust optimal control

via generalized high-order moment expansion. Optimal Control Applications and

58

Methods, 39(2), 489–502.
Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., . . . others (2017).

Speed/accuracy trade-offs for modern convolutional object detectors. In Proceed-

ings of the ieee conference on computer vision and pattern recognition (pp. 7310–
7311). Honolulu, Hawaii.

Huang, P.-C., & Mok, A. K. (2018). A case study of cyber-physical system design:
Autonomous pick-and-place robot. In 2018 ieee 24th international conference on

embedded and real-time computing systems and applications (rtcsa) (pp. 22–31).
Hakodate, Japan.

Javadi, M. H. M., Dolatabadi, H. R., Nourbakhsh, M., Poursaeedi, A., & Asadollahi, A. R.
(2012). An analysis of factors affecting on online shopping behavior of consumers.
International Journal of Marketing Studies, 4(5), 81.

Juang, C.-F., & Chen, G.-C. (2011). A ts fuzzy system learned through a support vector
machine in principal component space for real-time object detection. IEEE Trans-

actions on Industrial Electronics, 59(8), 3309–3320.
Karabegović, I., Karabegović, E., Mahmić, M., & Husak, E. (2015). The application

of service robots for logistics in manufacturing processes. Advances in Production

Engineering & Management, 10(4).
Kazemi, S., & Kharrati, H. (2017, Mar 01). Visual processing and classification of items

on moving conveyor with pick and place robot using plc. Intelligent Industrial

Systems, 3(1), 15–21. Retrieved from https://doi.org/10.1007/s40903

-017-0071-3 doi: 10.1007/s40903-017-0071-3
Kondo, N. (2010). Automation on fruit and vegetable grading system and food traceability.

Trends in Food Science & Technology, 21(3), 145–152.
Konrad Ahlin, A. H., Benjamin Joffe, & McMurray, G. (2016). Autonomous leaf pick-

ing using deep learning and visual-servoing. International Federation of Automatic

Control, 49-16, 177-183.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with

deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, &
K. Q. Weinberger (Eds.), Advances in neural information processing systems 25

(pp. 1097–1105). Curran Associates, Inc.
Kucuk, S., & Bingul, Z. (2011). Robot kinematics: Forward and inverse kinematics. In

Industrial robotics: Theory, modelling and control. IntechOpen.
Kuipers, J. B., et al. (2009). Quaternions and rotation sequences (Vol. 66). Princeton

59

https://doi.org/10.1007/s40903-017-0071-3
https://doi.org/10.1007/s40903-017-0071-3

university press Princeton.
Kumar, R., Lal, S., Kumar, S., & Chand, P. (2014). Object detection and recognition

for a pick and place robot. In Asia-pacific world congress on computer science and

engineering (p. 1-7). Nadi, Fiji. doi: 10.1109/APWCCSE.2014.7053853
Kuo, W., Hariharan, B., & Malik, J. (2015). Deepbox: Learning objectness with convo-

lutional networks. In Proceedings of the ieee international conference on computer

vision (pp. 2479–2487). Santiago, Chile.
Lazebnik, S., Schmid, C., & Ponce, J. (2010). Beyond bags of features: Spatial pyramid

matching for recognizing natural scene categories. In 2010 ieee computer society

conference on computer vision and pattern recognition (cvpr’10) (Vol. 2, pp. 2169–
2178). New York, USA.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436–444.
Lee, C., Kim, H. J., & Oh, K. W. (2016). Comparison of faster r-cnn models for object

detection. In 2016 16th international conference on control, automation and systems

(iccas) (pp. 107–110). Gyeongju, Korea.
Lenz, I., Lee, H., & Saxena, A. (2015). Deep learning for detecting robotic grasps. The

International Journal of Robotics Research, 34(4-5), 705–724.
Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., & Quillen, D. (2018). Learning hand-eye

coordination for robotic grasping with deep learning and large-scale data collection.
The International Journal of Robotics Research, 37(4-5), 421–436.

Li, Y., & Yuan, Y. (2017). Convergence analysis of two-layer neural networks with relu
activation. arXiv preprint arXiv:1705.09886.

Lin, H. I., Chen, Y. Y., & Chen, Y. Y. (2015, May). Robot vision to recognize both object
and rotation for robot pick-and-place operation. In 2015 international conference

on advanced robotics and intelligent systems (aris) (p. 1-6). Taipei, Taiwan. doi:
10.1109/ARIS.2015.7158364

Lin, T., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick, R. B., Hays, J., . . . Zitnick,
C. L. (2014). Microsoft COCO: common objects in context. Computing Research

Repository (CoRR), abs/1405.0312.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016).

Ssd: Single shot multibox detector. In European conference on computer vision (pp.
21–37). Amsterdam, The Netherlands.

Mariolis, I., Peleka, G., Kargakos, A., & Malassiotis, S. (2015). Pose and category
recognition of highly deformable objects using deep learning. In 2015 international

60

conference on advanced robotics (icar) (pp. 655–662). Istanbul, Turkey.
Markus, E., Agee, J., Jimoh, A.-G., & Hamam, Y. (2015). Coordinated control of

multiple robotic manipulators based on differential flatness (Doctoral dissertation,
TSHWANE UNIVERSITY OF TECHNOLOGY). doi: 10.13140/RG.2.2.16137
.95842

Neverova, N., Wolf, C., Taylor, G. W., & Nebout, F. (2014). Multi-scale deep learning for
gesture detection and localization. In European conference on computer vision (pp.
474–490). Zurich, Switzerland.

Ono, Y., Trulls, E., Fua, P., & Yi, K. M. (2018). Lf-net: Learning local features from
images. arXiv preprint arXiv:1805.09662.

Oquab, M., Bottou, L., Laptev, I., & Sivic, J. (2014). Learning and transferring mid-
level image representations using convolutional neural networks. In Proceedings of

the ieee conference on computer vision and pattern recognition (pp. 1717–1724).
Columbus, Ohio.

Patin, F. (2013). An introduction to digital image processing. online]: http://www. pro-

grammersheaven. com/articles/patin/ImageProc. pdf .
Perronnin, F., Sánchez, J., & Mensink, T. (2010). Improving the fisher kernel for large-

scale image classification. In European conference on computer vision (pp. 143–
156). Heraklion, Crete, Greece.

Pierson, H. A., & Gashler, M. S. (2017). Deep learning in robotics: a review of recent
research. Advanced Robotics, 31(16), 821–835.

Pinaya, W. H. L., Vieira, S., Garcia-Dias, R., & Mechelli, A. (2020). Convolutional neural
networks. In Machine learning (pp. 173–191). Elsevier.

Pinheiro, P. O., Lin, T.-Y., Collobert, R., & Dollár, P. (2016). Learning to refine object
segments. In European conference on computer vision (pp. 75–91). Amsterdam,
The Netherlands.

Punjani, A., & Abbeel, P. (2015). Deep learning helicopter dynamics models. In 2015

ieee international conference on robotics and automation (icra) (pp. 3223–3230).
Seattle, Washington.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016, Jun). You only look once:
Unified, real-time object detection. Las Vegas, Nevada. doi: 10.1109/cvpr.2016.91

Redmon, J., & Farhadi, A. (2017). Yolo9000: better, faster, stronger. In Proceedings of

the ieee conference on computer vision and pattern recognition (pp. 7263–7271).
Honolulu, Hawaii.

61

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks. In Advances in neural information

processing systems (pp. 91–99).
Ren, X., & Ramanan, D. (2013). Histograms of sparse codes for object detection. In

Proceedings of the ieee conference on computer vision and pattern recognition (pp.
3246–3253). Portland, Oregon.

Rothe, R., Guillaumin, M., & Van Gool, L. (2014). Non-maximum suppression for object
detection by passing messages between windows. In Asian conference on computer

vision (pp. 290–306). Singapore.
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2013).

Overfeat: Integrated recognition, localization and detection using convolutional net-
works. arXiv preprint arXiv:1312.6229.

Serrezuela, R. R., Chavarro, A. F. C., Cardozo, M. A. T., Toquica, A. L., & Martinez,
L. F. O. (2017). Kinematic modelling of a robotic arm manipulator using matlab.
ARPN Journal of Engineering and Applied Sciences, 12(7), 2037–2045.

Shah, S., Saha, S. K., & Dutt, J. K. (2009). Denavit-hartenberg parameters of euler-angle-
joints for order (n) recursive forward dynamics. In Asme 2009 international design

engineering technical conferences and computers and information in engineering

conference (pp. 115–120). San Diego, California.
Shen, Z., Liu, Z., Li, J., Jiang, Y.-G., Chen, Y., & Xue, X. (2017). Dsod: Learning deeply

supervised object detectors from scratch. In Proceedings of the ieee international

conference on computer vision (pp. 1919–1927). Venice, Italy.
Smirnov, E. A., Timoshenko, D. M., & Andrianov, S. N. (2014). Comparison of regu-

larization methods for imagenet classification with deep convolutional neural net-
works. 2nd AASRI Conference on Computational Intelligence and Bioinformatics,
6(Supplement C), 89 - 94.

Taylor, G. W., Spiro, I., Bregler, C., & Fergus, R. (2011). Learning invariance through
imitation. In Conference on computer vision and pattern recogition 2011 (pp. 2729–
2736). Colorado, USA.

Tzutalin. (2015). Labelimg. Free Software: MIT License. Retrieved from https://

github.com/tzutalin/labelImg

Uijlings, J. R., Van De Sande, K. E., Gevers, T., & Smeulders, A. W. (2013). Selective
search for object recognition. International journal of computer vision, 104(2),
154–171.

62

https://github.com/tzutalin/labelImg
https://github.com/tzutalin/labelImg

Viola, P., & Jones, M. (2011). Rapid object detection using a boosted cascade of simple
features. In Proceedings of the 2011 ieee computer society conference on computer

vision and pattern recognition. cvpr 2011 (Vol. 1, p. I-511). Kauai, Hawaii. doi:
10.1109/CVPR.2001.990517

Wang, G., Hao, J., Ma, J., & Huang, L. (2010). A new approach to intrusion detection us-
ing artificial neural networks and fuzzy clustering. Expert systems with applications,
37(9), 6225–6232.

Wang, X., Qin, Y., Wang, Y., Xiang, S., & Chen, H. (2019). Reltanh: An activation
function with vanishing gradient resistance for sae-based dnns and its application to
rotating machinery fault diagnosis. Neurocomputing, 363, 88–98.

Wei, G., Li, G., Zhao, J., & He, A. (2019). Development of a lenet-5 gas identification
cnn structure for electronic noses. Sensors, 19(1), 217.

Xiong, Z., Yao, Z., Ma, Y., & Wu, X. (2019). Vikingdet: A real-time person and face
detector for surveillance cameras. In 2019 16th ieee international conference on

advanced video and signal based surveillance (avss) (pp. 1–7). Taipei, Taiwan.
Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical evaluation of rectified activations

in convolutional network. arXiv preprint arXiv:1505.00853.
Xue, J., Li, J., & Gong, Y. (2013). Restructuring of deep neural network acoustic models

with singular value decomposition. In Interspeech (pp. 2365–2369).
Yang, Y., Li, Y., Fermuller, C., & Aloimonos, Y. (2015). Robot learning manipula-

tion action plans by" watching" unconstrained videos from the world wide web. In
Twenty-ninth aaai conference on artificial intelligence. Austin, Texas.

Yoo, H.-J. (2015). Deep convolution neural networks in computer vision: a review. IEIE

Transactions on Smart Processing & Computing, 4(1), 35–43.
Zhang, Y., Sohn, K., Villegas, R., Pan, G., & Lee, H. (2015). Improving object de-

tection with deep convolutional networks via bayesian optimization and structured
prediction. In Proceedings of the ieee conference on computer vision and pattern

recognition (pp. 249–258). Boston, Massachusetts.
Zhao, Z.-Q., Zheng, P., Xu, S.-t., & Wu, X. (2019). Object detection with deep learning:

A review. IEEE transactions on neural networks and learning systems, 30(11),
3212–3232.

Zitnick, C. L., & Dollár, P. (2014). Edge boxes: Locating object proposals from edges. In
European conference on computer vision (pp. 391–405). Zurich, Switzerland.

63

APPENDIX I

SOFTWARE

I.1 Object Detection Python Code

import numpy as np

import os

import s i x . moves . u r l l i b a s u r l l i b

import s y s

import t a r f i l e

import t e n s o r f l o w as t f

import z i p f i l e

from c o l l e c t i o n s import d e f a u l t d i c t

from i o import S t r i n g I O

from m a t p l o t l i b import p y p l o t a s p l t

from PIL import Image

64

from u t i l s import l a b e l _ m a p _ u t i l

from u t i l s import v i s u a l i z a t i o n _ u t i l s a s v i s _ u t i l

What model t o download .

MODEL_NAME = ’ o u t p u t _ 1 ’

#MODEL_FILE = MODEL_NAME + ’ . t a r . gz ’

#DOWNLOAD_BASE =

’ h t t p : / / download . t e n s o r f l o w . org / models / o b j e c t _ d e t e c t i o n / ’

Path t o f r o z e n d e t e c t i o n graph . T h i s i s t h e a c t u a l model

t h a t i s used f o r t h e o b j e c t d e t e c t i o n .

PATH_TO_CKPT = MODEL_NAME + ’ / f r o z e n _ i n f e r e n c e _ g r a p h . pb ’

L i s t o f t h e s t r i n g s t h a t i s used t o add c o r r e c t

l a b e l f o r each box .
PATH_TO_LABELS = os . p a t h . j o i n (’ d a t a ’ , ’ l a b e l−map . p b t x t ’)

NUM_CLASSES = 13

Download Model

i f n o t os . pa th . e x i s t s (MODEL_NAME + ’ / f r o z e n _ i n f e r e n c e _ g r a p h . pb ’) :

p r i n t (’ Downloading t h e model ’)

opener = u r l l i b . r e q u e s t . URLopener ()

opener . r e t r i e v e (DOWNLOAD_BASE + MODEL_FILE , MODEL_FILE)

t a r _ f i l e = t a r f i l e . open (MODEL_FILE)

65

f o r f i l e i n t a r _ f i l e . ge tmembers () :

f i l e _ n a m e = os . pa th . basename (f i l e . name)

i f ’ f r o z e n _ i n f e r e n c e _ g r a p h . pb ’ i n f i l e _ n a m e :

t a r _ f i l e . e x t r a c t (f i l e , os . ge tcwd ())

p r i n t (’ Download c o m p l e t e ’)

e l s e :

p r i n t (’ Model a l r e a d y e x i s t s ’)

Load a (f r o z e n) T e n s o r f l o w model i n t o memory .

d e t e c t i o n _ g r a p h = t f . Graph ()
w i th d e t e c t i o n _ g r a p h . a s _ d e f a u l t () :
o d _ g r a p h _ d e f = t f . GraphDef ()
w i th t f . g f i l e . GFi l e (PATH_TO_CKPT , ’ rb ’) a s f i d :
s e r i a l i z e d _ g r a p h = f i d . r e a d ()
o d _ g r a p h _ d e f . P a r s e F r o m S t r i n g (s e r i a l i z e d _ g r a p h)
t f . i m p o r t _ g r a p h _ d e f (od_graph_def , name= ’ ’)

Loading l a b e l map

Labe l maps map i n d i c e s t o c a t e g o r y names ,

so t h a t when our c o n v o l u t i o n ne twork

p r e d i c t s ‘5 ‘ , we know t h a t t h i s c o r r e s p o n d s

t o ‘ a i r p l a n e ‘ . Here we use i n t e r n a l u t i l i t y

f u n c t i o n s , b u t a n y t h i n g t h a t r e t u r n s a

d i c t i o n a r y mapping i n t e g e r s t o a p p r o p r i a t e

s t r i n g l a b e l s would be f i n e

66

l abe l_map = l a b e l _ m a p _ u t i l . l o a d _ l a b e l m a p (PATH_TO_LABELS)
c a t e g o r i e s = l a b e l _ m a p _ u t i l . c o n v e r t _ l a b e l _ m a p _ t o _ c a t e g o r i e s

(labe l_map , max_num_classes =NUM_CLASSES, u s e _ d i s p l a y _ n a m e =True)
c a t e g o r y _ i n d e x = l a b e l _ m a p _ u t i l . c r e a t e _ c a t e g o r y _ i n d e x (c a t e g o r i e s)

i n t i a l i z i n g t h e web camera d e v i c e

import cv2
cap = cv2 . VideoCap tu re (0)

Running t h e t e n s o r f l o w s e s s i o n

wi th d e t e c t i o n _ g r a p h . a s _ d e f a u l t () :
w i th t f . S e s s i o n (g raph = d e t e c t i o n _ g r a p h) as s e s s :
r e t = True
whi le (r e t) :
r e t , image_np = cap . r e a d ()
Expand d i m e n s i o n s s i n c e t h e model e x p e c t s

images t o have shape :
[1 , None , None , 3]
image_np_expanded = np . expand_dims (image_np , a x i s =0)

i m a g e _ t e n s o r = d e t e c t i o n _ g r a p h . g e t _ t e n s o r _ b y _ n a m e (’ i m a g e _ t e n s o r : 0 ’)
Each box r e p r e s e n t s a p a r t o f t h e image

where a p a r t i c u l a r o b j e c t was d e t e c t e d .
boxes = d e t e c t i o n _ g r a p h . g e t _ t e n s o r _ b y _ n a m e (’ d e t e c t i o n _ b o x e s : 0 ’)
Each s c o r e r e p r e s e n t how l e v e l o f

c o n f i d e n c e f o r each of t h e o b j e c t s .
Score i s shown on t h e r e s u l t image , t o g e t h e r w i t h t h e

c l a s s l a b e l .

67

s c o r e s = d e t e c t i o n _ g r a p h . g e t _ t e n s o r _ b y _ n a m e

(’ d e t e c t i o n _ s c o r e s : 0 ’)
c l a s s e s = d e t e c t i o n _ g r a p h . g e t _ t e n s o r _ b y _ n a m e

(’ d e t e c t i o n _ c l a s s e s : 0 ’)
n u m _ d e t e c t i o n s = d e t e c t i o n _ g r a p h . g e t _ t e n s o r _ b y _ n a m e

(’ n u m _ d e t e c t i o n s : 0 ’)
A c t u a l d e t e c t i o n .

(boxes , s c o r e s , c l a s s e s , n u m _ d e t e c t i o n s) = s e s s . run (
[boxes , s c o r e s , c l a s s e s , n u m _ d e t e c t i o n s] ,
f e e d _ d i c t ={ i m a g e _ t e n s o r : image_np_expanded })
V i s u a l i z a t i o n o f t h e r e s u l t s o f a d e t e c t i o n .

v i s _ u t i l . v i s u a l i z e _ b o x e s _ a n d _ l a b e l s _ o n _ i m a g e _ a r r a y (
image_np ,
np . s q u e e z e (boxes) ,
np . s q u e e z e (c l a s s e s) . a s t y p e (np . i n t 3 2) ,
np . s q u e e z e (s c o r e s) ,
c a t e g o r y _ i n d e x ,
u s e _ n o r m a l i z e d _ c o o r d i n a t e s =True ,
l i n e _ t h i c k n e s s =8)
p l t . f i g u r e (f i g s i z e =IMAGE_SIZE)

p l t . imshow (image_np)

cv2 . imshow (’ image ’ , cv2 . r e s i z e (image_np , (1 2 8 0 , 9 6 0)))
i f cv2 . wai tKey (2 5) & 0xFF == ord (’ q ’) :
cv2 . des t royAl lWindows ()
cap . r e l e a s e ()
break

I.2 Arduino Six Axis Robotic Arm Code

i n t de layT = 350 ;

68

void Home () / / C a l l t h i s f u c n t i o n when u want t o s e t arm

i n home p o s i t i o n
{

MyServo0 . w r i t e (v a l G r i p p e r) ; / / Gr ipper

d e l a y (1 5) ;
MyServo . w r i t e (v a l B a s e) ; / / base

d e l a y (3 0) ;
MyServo2 . w r i t e (v a l S h o u l d e r) ; / / s h o u l d e r

d e l a y (3 0) ;
MyServo3 . w r i t e (valElbow) ; / / e lbow

d e l a y (de layT) ;
}

void Pick () / / T h i s i s f i x e d p i c k p l a c e .

{
MyServo . w r i t e (4) ; / / base

d e l a y (de layT) ;

MyServo3 . w r i t e (1 2 5) ; / / e lbow

MyServo2 . w r i t e (9 5) ; / / s h o u l d e r

d e l a y (de layT) ;

MyServo0 . w r i t e (5 0) ; / / Gr ipper open wide

d e l a y (de layT) ;

MyServo0 . w r i t e (2) ; / / Gr ipper c l o s e

d e l a y (de layT) ;

MyServo2 . w r i t e (6 0) ; / / s h o u l d e r up l i t t l e

MyServo3 . w r i t e (8 0) ; / / e lbow up l i t t l e

d e l a y (de layT) ;

S e r i a l . p r i n t l n (" O b j e c t P i c k e d e d ") ;
}

69

void Drop () / / T h i s i s f i x e d Drop p l a c e .

{
MyServo . w r i t e (1 4 5) ; / / base

d e l a y (de layT) ;

MyServo2 . w r i t e (8 0) ; / / s h o u l d e r

d e l a y (1 5) ;

MyServo3 . w r i t e (1 1 5) ; / / e lbow

d e l a y (de layT) ;

MyServo0 . w r i t e (4 0) ; / / Gr ipper open wide

d e l a y (de layT) ;

MyServo3 . w r i t e (9 0) ; / / e lbow up l i t t l e

d e l a y (de layT) ;

S e r i a l . p r i n t l n (F (" O b j e c t Dropped ")) ;
}

void P l a y b a c k ()
{

/ / h t t p s : / / a r d u i n o . s t a c k e x c h a n g e . com / q u e s t i o n s

/ 1 0 1 3 / how−do−i−s p l i t −an−incoming−s t r i n g
/ / i n p u t MUST be a r r a y (s e r v o I d

: P o s i t i o n & s e r v o I d : P o s i t i o n & s e r v o I d : P o s i t i o n)

/ / S t r i n g ph ra se ;

/ / ph ra se = S t r i n g (ph ra se + B y t e R e c e i v e d) ;

70

/ / c o n v e r t t h e char i n p u t t o s t i r n g can be s p l i t

/ / Read each command p a i r

char∗ command = s t r t o k (ByteRece ived , "&") ;
whi le (command != 0)
{

/ / S p l i t t h e command i n two v a l u e s

char∗ s e p a r a t o r = s t r c h r (command , ’ : ’) ;
i f (s e p a r a t o r != 0)
{

/ / A c t u a l l y s p l i t t h e s t r i n g i n 2 :

r e p l a c e ’ : ’ w i th 0
∗ s e p a r a t o r = 0 ;
i n t s e r v o I d = a t o i (command) ;
++ s e p a r a t o r ;
i n t a n g l e = a t o i (s e p a r a t o r) ;

/ / Do s o m e t h i n g w i t h s e r v o I d and a n g l e

i f (s e r v o I d = 1)
{

MyServo . w r i t e (a n g l e) ;
d e l a y (de layT) ;

}
e l s e i f (s e r v o I d = 2)
{

MyServo2 . w r i t e (a n g l e) ;
d e l a y (de layT) ;

}
e l s e i f (s e r v o I d = 3)
{

MyServo3 . w r i t e (a n g l e) ;
d e l a y (de layT) ;

71

}

}
/ / Find t h e n e x t command i n i n p u t s t r i n g

command = s t r t o k (0 , "&") ;
}

}

72

APPENDIX II

INVERSE KINEMATIC

II.1 Geometric Approach

Analysing Figure 3.6 and Figure 3.8, the first 3 links of the robot were projected on a
Cartesian graph shown in Figure II.1. To calculate θ1, the coordinate (Pxtip, Pytip) and
the geometric equation II.1 was used; two values of θ1 were generated, equation II.2.

Figure II.1: Projection of links two and three onto the X-Y plane.

θ1 = arctan2(Pytip, Pxtip) (II.1)

θ11 = π + θ1 (II.2)

θ3 was next solved using cosine rule as per equation II.3.

h2 = (L2)
2 + (L3)

2 − 2.L2.L3. cos(180− ζ) (II.3)

73

From Figure 3.8 we notice that:
L3 = d4 + d6 (II.4)

L2 = a2 (II.5)

h2 = s2 + r2 (II.6)

cos(180− ζ) = − cos(ζ) (II.7)

Replacing equations II.4, II.5, II.6 and II.7 into II.3.

s2 + r2 = a22 + (d4 + d6)
2 + s.a2.(d4 + d6). cos(ζ) (II.8)

cos(ζ) =
(s2 + r2 − a22 − (d4 + d6)

2)

2a2.(d4 + d6)
(II.9)

Converting the values of s and r in equation II.9 into Pxtip, Pytip, Pztip and θ1

s = Pztip − d1 (II.10)

r = ±
√

(Pxtip − a1. cos(θ1))2 + (Pytip − a1. sin(θ1))2 (II.11)

Substituting equation II.10 and II.11 into II.9.

cos(ζ) =
(Pztip − d1)2 + (Pxtip − a1. cos(θ1))

2

2a2.(d4 + d6)

+

(Pytip − a1. sin(θ1))
2 − a22 − (d4 + d6)

2

2a2.(d4 + d6)

(II.12)

But from geometry identities:

sin(ζ) = ±
√

1− cos 2(ζ) (II.13)

ζ = atan2(sin(ζ), cos(ζ)) (II.14)

Therefore:
θ3 = −(90 + ζ) (II.15)

The negative sign indicates that the rotation occurred in opposite direction of the Z axis.

74

The same procedures were followed to get θ2.

θ2 = Ω− λ (II.16)

Ω = atan2(s, r) (II.17)

λ = atan2((d4 + d6). sin(ζ), (d4 + d6). cos(ζ)) (II.18)

Replacing equation II.17 and II.18 into II.16:

θ2 = atan2(s, r)− atan2((d4 + d6). sin(ζ), (d4 + d6). cos(ζ)) (II.19)

Replacing the values of s and r from equations II.10 and II.11 into II.19:

θ2 = atan2(Pztip − d1,

±
√

(Pxtip − a1. cos(θ1))2 + (Pytip − a1. sin(θ1))2)

− atan2((d4 + d6). sin(ζ), (d4 + d6). cos(ζ))

(II.20)

Finally:
θ2 = −((Ω− λ)− 90) (II.21)

There exists multiple solutions for θ1, θ2 and θ3 due to the solutions of the geometric
identities meaning several positions can be achieved with many orientations.

II.2 Analytic Approach

After solving the first sub-problem, the next step was to solve the orientation problem and
get the remaining angles. This step was solved by using Z-Y-X Euler’s rotation formula
(Kuipers et al., 2009) which is shown in Figure II.2. This formula is used to describe any
rotation about a linear independent axes and was used to solve the second part of the 6 dof
robotic arm.

The consecutive rotations in Figure II.2 can be explained by the following matrices:

0
6R = Rz′y′x′ = Rz(α)Ry(β)Rx(γ) (II.22)

75

Figure II.2: Z-Y-X Euler’s rotation method.

0
6R = Rz(α)Ry(β)Rx(γ) (II.23)

0
6R =

cα −sα 0

sα cα 0

0 0 1


 cβ 0 sβ

0 1 0

−sβ 0 cβ


1 0 0

0 cγ −sγ
0 sγ cγ

 (II.24)

0
6R =

cαcβ cαsβcγ − sαcγ cαsβcγ + sαsγ

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ

 (II.25)

From forward kinematicsKucuk and Bingul (2011):

0
3R =

c1c23 −c1s23 −s1s1c23 −s1s23 c1

−s23 −c23 0

 (II.26)

3
6R = (03R)T (06R) (II.27)

76

3
6R =

 c1c23 s1c23 −s23
−c1s23 −s1s23 −c23
−s1 c1 0


cαcβ cαsβcγ − sαcγ cαsβcγ + sαsγ

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ


(II.28)

3
6R =

g11 g12 g13

g21 g22 g23

g31 g32 g33

 (II.29)

However, it can be concluded that the last three intersected joints form a set of ZYZ Euler
angles with respect to frame 3(Shah, Saha, & Dutt, 2009). Therefore, these rotations can
be expressed as:

3
6R = Rz(α)Ry(β)Rz(γ) (II.30)

3
6R =

cα −sα 0

sα cα 0

0 0 1


 cβ 0 sβ

0 1 0

−sβ 0 cβ


cγ −sγ 0

sγ cγ 0

0 0 1

 (II.31)

3
6R =

cαcβcγ − sαsγ −cαcβsγ − sαcγ cαsβ

sαcβcγ + cαcγ −sαcβsγ + cαcγ sαsβ

−sβcγ sβsγ cβ



=

g11 g12 g13

g21 g22 g23

g31 g32 g33


(II.32)

Now, using Euler’s ZYZ angle formula, the angles θ4, θ5 and θ6 were determined[]:

θ4 = α = atan2(
g32

sβ
,
−g31
sβ

) (II.33)

θ5 = β = atan2(±
√
g231 + g232, g33) (II.34)

θ6 = γ = atan2(
g23

sβ
,
−g13
sβ

) (II.35)

77

It was determined that θ1, θ2 and θ3 had eight possible solutions while θ4, θ5 and θ6 each
had two solutions. These values once generated were fed to fed to a script that ensured the
angles were between -90 ◦ and + 90 ◦ (180◦ servo motor limit) so that no servo motor was
not overloaded and burnt out.

78

APPENDIX III

FSR 402 DATA SHEET

The datasheet provided below was used to calculate the amount of force that was needed
to grasp every one of the thirteen objects used in the experiment.

79

 www.interlinkelectronics.com

FSR 402 Data Sheet

Figure 1 - Force CurveIndustry Segments

Game controllers•	

Musical instruments•	

Medical device controls•	

Remote controls•	

Navigation Electronics•	

Industrial HMI•	

Automotive Panels•	

Consumer Electronics•	

Interlink Electronics - Sensor Technologies

FSR 400 Series Round Force Sensing Resistor

Description

Interlink Electronics FSRTM 400
series is part of the single zone
Force Sensing ResistorTM family.
Force Sensing Resistors, or FSRs,
are robust polymer thick film (PTF)
devices that exhibit a decrease in
resistance with increase in force
applied to the surface of the sensor.
This force sensitivity is optimized
for use in human touch control of
electronic devices such as automotive
electronics, medical systems, and in
industrial and robotics applications.

The standard 402 sensor is a round
sensor 18.28 mm in diameter.
Custom sensors can be manufactured
in sizes ranging from 5mm to over
600mm. Female connector and short
tail versions can also be ordered.

Figure 2 - Schematic

Features and Benefits

Actuation Force as low as 0.1N •	
and sensitivity range to 10N.

Easily customizable to a wide •	
range of sizes

Highly Repeatable Force Reading; •	
As low as 2% of initial reading
with repeatable actuation system

Cost effective•	

Ultra thin; 0.45mm•	

Robust; up to 10M actuations•	

Simple and easy to integrate•	

80

	DECLARATION
	DEDICATION
	ACKNOWLEDGMENT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF APPENDICES
	LIST OF ABBREVIATIONS
	LIST OF SYMBOLS
	ABSTRACT
	CHAPTER ONE
	INTRODUCTION
	CHAPTER TWO
	LITERATURE REVIEW
	CHAPTER THREE
	EXPERIMENTAL DESIGN AND METHODOLOGY
	CHAPTER FOUR
	RESULTS AND DISCUSSION
	CHAPTER FIVE
	CONCLUSIONS AND RECOMMENDATIONS
	REFERENCES
	APPENDICES
	Appendix SOFTWARE
	Appendix INVERSE KINEMATIC
	Appendix FSR 402 DATA SHEET

