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ABSTRACT 

A quadcopter is an Unmanned Aerial Vehicle (UAV) that uses four rotors in a cross 
or plus configuration for lifting and propulsion. Its basic motion is generated by 
varying the speeds of all the four rotors.  It is an under actuated vehicle with unstable 
dynamics since it is a 6 degree of Freedom (DOF) device with only four actuators. 
Moreover, these quadcopters have hardware redundancy limitations thereby calling 
for design of reliable control systems for efficient performance. It is therefore a 
challenge to maintain quadcopter stability when one of the rotors is faulty, this is as a 
result of further under actuation. Previous research in literature assumes the quadcopter 
is equipped with a fault diagnosis, detection and isolation unit, that continuously 
assesses the state of the quadcopter or that the fault has already been detected and 
isolated. Switching is therefore expected between the healthy state controller and a 
faulty state controller. This procedure is complex and therefore prolong the 
stabilization time. Most of the available literature also investigated partial rotor failures 
of up to 20 % only.In this work, an Extended Kalman Filter Fuzzy Proportional, 
Integration and Derivative (PID) controller is applied for control of a quadcopter in 
the presence of 100 % fault on a single rotor. The system does not use a fault diagnosis 
and detection system and only employs a single controller. A fuzzy system is used to 
tune the PID controller gains while the tuning of the fuzzy Membership Functions 
(MF) is performed using an Extended Kalman Filter (EKF). The optimized Fuzzy PID 
controller constrains the system to its set point, returning the system to its stable 
hovering position. This is accomplished by varying simultaneously the velocity of the 
three fault free rotors. By computing the adaptive PID gains in real time, the effects of 
rotor failure are compensated. The controller stabilizes the attitude and altitude of the 
quadcopter and enables it to make a safe landing without causing further damages to 
the quadcopter structure.
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CHAPTER ONE

1 INTRODUCTION 

1.1 Background 

Quadcopter Unmanned Aerial Vehicles (UAVs) consist of four separately controlled 

rotors which work together to provide actuation. The rotors are set up such that two 

rotors assume clockwise rotation and the other two counterclockwise (Rich & Elia, 

2012). 

 

Figure 1.1: A typical quadcopter configuration 

Recently, the use of small UAVs for various civilian and military applications has been 

of a particular interest (Girard et al., 2004). These applications include package 

delivery, aerial imagery, surveillance, and structural inspection; a common aspect is 

that these tasks are either in remotely inaccessible locations and require dangerous 

maneuverability or are in unfriendly environments in case of military operations. 

Several different UAV platforms exist that have the potential to solve these problems 

such as fixed-wing airplanes and multirotor aircrafts. A quadcopter has advantages 

over the fixed wing UAVs in that it has Vertical Take-off and Landing (VTOL) and 

can perform maneuvers. Its advantage over other rotary UAVs, such as a helicopter, is 

that it is mechanically simple; a quadcopter does not need a complex set of mechanical 
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linkages to alter rotor blade angles. Quadcopter UAVs do not require a tail rotor 

allowing it to direct all UAV power to producing thrust. The quadcopter is therefore 

able to support payload capacity in relation to its weight. The recent technological 

advancements in the field of Microelectromechanical Systems (MEMs) sensors have 

allowed for these sensors to become smaller, cheaper, and lighter, with increased 

sensing resolution thereby reducing the cost and complexity of quadcopter UAV 

systems. 

However, a quadcopter, being a 6 DoF device, has only four actuators making it under 

actuated as well as nonlinear and unstable system (Wu & Liu, 2018). Therefore, for 

actuation of lateral and longitudinal motion by the rotor thrusts, the entire vehicle must 

angle in one direction or another. This action however, is potentially disadvantageous 

since it confines the dynamics of the UAV as it cannot move back and forth or side to 

side acceleration and maintain a given orientation at the same time. It might flip over. 

An Extended Kalman Filter (EKF) optimized Fuzzy PID controller is used to stabilize 

the altitude and the attitude of the quadcopter when one rotor fails to enable it land 

safely without further structural damages. 

1.2 Problem Statement 

With autonomous quadcopters, the system gets unstable for a faulty actuator thereby 

crashing the UAV immediately. Military and commercial application quadcopter 

UAVs around the world are costly in terms of construction, a fault recovery controller 

system needs to be installed on these UAVs so that the vehicle executes a landing 

maneuver without further damages (Jihad, 2013). Moreover, when a quadcopter UAV 

under mission crashes in an unfriendly territory, data collected might be compromised 

or even the delivery package lost. 

It is therefore important that a quadcopter fault tolerant flight control system is 

designed to enable the UAV reach a point in space in the event that one of the rotors 

is lost. 

1.3 Justification 

The failure rate of a commercial engine is about 1/105 flight hours while quadcopter 

UAV systems a rotor failure rate of about 1/102  flight hours. These quadcopter UAVs 
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have therefore a rotor failure rate of about 30% (Ballenger, 2013; Clough, 2005; De 

Francesco & De Francesco, 2015; Paggi et al., 2015; Schmidt & Parker, 1995). Today, 

quadcopters are used for surveillance and gathering of information ranging from the 

search and rescue of disaster victims to monitoring the condition of the power lines. A 

fault tolerant quadcopter is capable of crash-free landing thereby preventing further 

damage and repair cost. Quadcopter UAVs can be designed to hold light payloads such 

as medical supplies and lightweight food materials delivering them to remote locations 

unreachable by normal planes. The proposed technique is cheaper and simpler to 

implement. It mitigates the fault effect on the UAV by appropriately adjusting the 

controller gains thereby restoring the system to its hovering position. With this fault 

tolerant controller, a quadcopter will still make a safe landing with the deployed 

package or data collected without loss. 

1.4 Objectives 

1.4.1 Main objective 

To design an Extended Kalman Filter optimized Fuzzy PID Controller for stabilization 

and safe landing of a quadcopter in the event of rotor failure. 

1.4.2 Specific Objectives 

i. Develop a procedure for computation of Roll, Pitch and Yaw angles using 

signal fusion. 

ii. Design an EKF optimized Fuzzy-PID controller for optimal PID gains to 

enable stabilization of the quadcopter. 

iii. Simulate the closed loop system using MATLAB/SIMULINK and compare 

conventional PID, Fuzzy-PID and EKF optimized Fuzzy-PID simulations. 

iv. Implement a prototype of the designed controller into a quadcopter control 

board. 

1.5 Scope 

The research is focused on developing a controller that enables a quadcopter under 

actuator fault to stabilize and perform safe landing using the remaining three healthy 

rotors. To achieve this, orientation sensors are used to give feedback signals which are 

then converted into angles. 
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These angles are then fed into a microcontroller for referencing to obtain tracking 

errors. An EKF algorithm is used to optimize FLC parameters based on the errors 

obtained. The output of the FLC is then used to optimize the PID gains in real time to 

ensure adaptability of the system during maneuvers. 

1.6  Contribution of Thesis 

Most of the research work in literature approach the issue of quadcopter stabilization 

during rotor fault by application of a Fault Diagnosis and Isolation (FDI) system. This 

necessitates the use of more than one controller which then necessitates switching 

between the controllers depending on the rotor’s effectiveness. This prolongs the fault 

recovery time and it is also expensive. (Liu et al., 2016) proposed EKF-FLC system 

that regulates the gains of a designed state-feedback tracking controller for partial loss 

of effectiveness, up to 20 % actuator failure. The controller required a precise 

mathematical model of the quadcopter under actuator fault and did not address the 

issue of noise in practical systems. Figure 1.2, 1.3 and 1.4 show the quadcopter 

recovery duration under only 25% rotor failure. 

 

Figure 1.2: Stabilization time of approximately 11s 
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Figure 1.3: Desired Pitch angle achieved after 10s 

 

Figure 1.4: Desired Roll angle achieved after 10s 

This Thesis presents an EKF optimized FLC that regulates the gains of a PID 

controller, giving it dynamic response under 100 % rotor failure with a minimum fault 

recovery time of about 2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. The PID is easy to implement due to the fact that 

it does not rely on an accurate mathematical model of the system under control. In 

practical applications, motor vibrations introduce noise in accelerometer readings for 

feedback signals as shown in Figure 1.5. In this work, the noise is filtered by fusing 

signals from an accelerometer and gyroscope using Kalman filter. 
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Figure 1.5: Altitude response with noise 

The EKF technique tunes the parameters of the MFs of the fuzzy controller depending 

on the working condition of the system .Then based on the auto tuned MF parameters, 

PID gains are readjusted to properly compensate for the errors incurred due rotor 

failure. A Fuzzy Logic System (FLS) automatically tunes the PID gains, where the 

offset from the target (error) and the rate of change of the tracking error are used in the 

FLS to make the system return to the expected working condition (desired target) in 

the event that one of the rotor fails. In this way, the need for fault identification and 

diagnosis is eliminated. 

1.7 Organization of Thesis 

This thesis is organized into five chapters as follows: Chapter One entails the general 

introduction consisting of background information on what quadcopters are, problem 

statement for the study and justification, research objectives and the scope of work. 

Chapter Two deals with the Literature Review where general discussion of PID, Fuzzy 

and Extended Kalman Filter are covered. Related works are also reviewed in this 

chapter. Chapter Three deals with quadcopter dynamic system modelling and design 

of PID, Fuzzy PID and optimized Fuzzy PID controllers. It also covers the 

implementation of the control algorithms into a developed quadcopter UAV prototype.  

Chapter Four presents the results obtained from simulations and performance of the 

developed prototype. Chapter Five summarizes the research with conclusions and also 

presents recommendations from the problems under study. 
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CHAPTER TWO 

2 LITERATURE REVIEW 

This chapter discusses general quadcopter dynamics and the available control 

techniques. Theory on angle estimation using signal fusion is also described. Summary 

of research gaps is also covered. 

2.1 Quadcopter Motion Overview 

 

mg

Rotor No. 4

Rotor No. 2

Rotor No. 3

Rotor No. 1

T1

T2

T3

T4

y

z

x

 

Figure 2.1: Quadrotor free body diagram. 

Quadcopters UAVs consist of four independently controlled rotors as shown in Figure 

2.1. Rotors   (1, 3) rotate clockwise and the other two (2, 4) counterclockwise. Control 

and stability of the UAV system is attained through differential control of the force 

generated by each rotor (Ivan, 2012).  

 



8 
 

2.1.1 Roll Motion 

The roll axis travels down the center of the quadcopter from the front to the rear. The 

roll motion is accomplished by speeding up the left rotors and at the same time 

lowering the right rotors’ speed, or vice versa (Ivan, 2012). Roll angle 𝜑𝜑, is controlled 

by slowing down motor 4 while speeding up motor 2 or vice versa 

2.1.2 Pitch Motion 

The pitch axis travels in the right to left fashion. This motion is achieved by increasing 

or decreasing the front rotors’ speed and simultaneously decreasing or speeding up the 

back rotors. This results in pitching up or down of the nose due to the differential on 

the pitch axis. Pitch angle,𝜃𝜃, is controlled by speeding up motor 3 while slowing down 

motor 1 or vice versa 

2.1.3 Yaw Motion 

This motion is achieved by speeding up or decreasing the speed of the front-rear rotor 

and simultaneously decreasing or speeding up the left-right rotors. Speeding up or 

decreasing the speed of two opposite motors gives the desired rotation, clockwise or 

anticlockwise. A net torque is always induced on the quadcopter UAV leading to a 

yaw angle change for decreasing the  speed of the clockwise spinning actuators or 

speeding up the counter clockwise actuators. Since the quadcopter does not have a tail 

rotor to control the yaw movement, it becomes an under actuated system. This implies 

that forward/backward and left/right movements are coupled with pitch/roll motions 

respectively and are therefore controlled through them (Razinkova et al., 2014). Yaw 

angle,𝜓𝜓, is controlled by increasing speeds to motors 1,3 while slowing down motors 

2,4 or vice versa. 

2.1.4 Hovering 

This is also the altitude motion and is controlled by simultaneously speeding up or 

decreasing all the rotors’ speed by the same amount resulting in a vertical force. The 

quadcopter UAV is raised or lowered accordingly (Ivan, 2012). When an equal thrust 

is achieved for all actuators, the quadcopter UAV either holds in steady hover or 

increases/decreases altitude depending on actual thrust value. 
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2.2 Quadcopter Kinematics 

The relationship between the vehicle’s position and velocity can be described using 

kinematic equations. The quadcopter UAV has 6 DoF that can be described using into 

two motions (Gibiansky, n.d.): 

• Translational motion which occurs in 𝑥𝑥,𝑦𝑦, and 𝑧𝑧 directions. 

• Rotational motion named as roll (about 𝑥𝑥 axis) (∅), pitch (about 𝑦𝑦 axis) (𝜃𝜃) 

and yaw (about 𝑧𝑧 axis)(𝜑𝜑). 

The quadcopter UAV in 6 DoF has location and attitude which are identified using the 

reference frames. For the evaluation of quadcopter equations of motion, there are three 

main frames of reference (Raza & Gueiaeb, 2010): 

i.  The Inertial frame is an earth-fixed coordinate system such as the base 

station where the origin is located on the ground. Conventionally, the 

𝑥𝑥 −axis points towards the north, the 𝑦𝑦 − axis points towards the east, and 

the 𝑧𝑧 −axis points towards the center of the earth as shown in Figure 2.2. 

x

y

z

 

Figure 2.2: Inertial frame of reference 

 

ii. The Body frame has its origin located at the center of gravity of the 

quadcopter UAV with its axes aligned such that the 𝑥𝑥 −axis is along the 

arm with front motor, the 𝑦𝑦 −axis is along the arm with right motor, and 

the 𝑧𝑧 −axis is a cross product of the 𝑥𝑥 −axis vector and 𝑦𝑦 −axis vector. 

iii. The vehicle frame is similar to the inertial frame except that the origin is 

located at the center of gravity of the craft.  
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yaw
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Figure 2.3: Quadcopter relative coordinate system  

From Figure 2.3, the earth fixed inertial reference frame is 𝐸𝐸𝐼𝐼(𝑒𝑒1𝐼𝐼 , 𝑒𝑒2𝐼𝐼 , 𝑒𝑒3𝐼𝐼) and the 

body fixed reference frame is 𝐸𝐸𝐸𝐸(𝑒𝑒1𝐵𝐵 , 𝑒𝑒2𝐵𝐵 , 𝑒𝑒3𝐵𝐵).  𝑋𝑋 = [𝑥𝑥,𝑦𝑦, 𝑧𝑧]𝑇𝑇 and Euler angles 

[∅,𝜃𝜃,𝜓𝜓]𝑇𝑇  which are earth fixed coordinates, describe the positon and rotational 

motion  of the quadcopter UAV respectively. Where,  𝜑𝜑 is the yaw angle, 𝜃𝜃, the pitch 

angle and ∅ the roll angle and 𝑥𝑥,𝑦𝑦, 𝑧𝑧  are the positions in space. 𝑉𝑉 = [𝑢𝑢, 𝑣𝑣,𝑤𝑤]𝑇𝑇 and 

 Ω =  [𝑝𝑝, 𝑞𝑞, 𝑟𝑟]𝑇𝑇 which are body fixed coordinates, describes the linear velocity vector 

and the angular velocity vector of the air frame respectively, where 𝑢𝑢, 𝑣𝑣,𝑤𝑤  and 𝑝𝑝, 𝑞𝑞, 𝑟𝑟 

are the linear and angular velocities respectively. 

Due to the existence of two different coordinate frames, there is need for 

transformation matrix between these two systems. The consequent rotations around 

𝑧𝑧 → 𝑦𝑦 → 𝑥𝑥 axes is described using the rotation matrix (Kivrak, 2006): 
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R            (2.1) 

 For transformations from Earth-fixed coordinates to body fixed coordinates, matrix 𝑅𝑅 

is used. 

 The rate of change of position according to the craft velocity in the body frame is 

given by (Kivrak, 2006). 
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The general description for the rate of change of rotational motion in relation to the 

quadcopter’s rotation in the body frame is given as (Kivrak, 2006): 
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where 
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φθφ
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E  

 

2.3 Dynamics of the Quadcopter UAV System 

2.3.1 Quadcopter Equations of motion 

There are two methods are used to describe the dynamics of the UAV, Newton-Euler 

and Langragian approach. Newton-Euler approach is used since it considers the forces 

of constraints and geometrical nature of the quadcopter system. Consider the general 

dynamics of a rigid body with consideration of external forces and moments in the 

body reference as in  equations (2.4) and (2.5) (P. Wang et al., 2016). 
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Force Equation: 

                                                          FmV
dt

dVm bb
b

=×+ω                                            (2.4) 

Moment Equation:  

                                                           Mi
dt

di bb
b

=++ ωωω
                                          (2.5) 

where 

[ ]Tb wvuV =  is the relative linear velocity of the center of mass of the rigid body 

with respect to an inertial frame, [ ]Tb rqp=ω  the angular velocity in the body 

frame with respect to an inertial frame, i the inertia tensor of the rigid body and M is 

the external sum of all the moments in the body reference frame. 

Expanding equation (2.4) and applying cross product of vectors yields (P. Wang et al., 

2016) 
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               (2.6) 

Assuming the aerodynamic forces, then the external forces acting on the quadcopter’s 

body is the thrust 𝑇𝑇 with the weight force only acting on the 𝑧𝑧 axis.  

Therefore, 0,0 == yx FF , ,TFz −=  and incorporating gravitational force, equation 

(2.6) can be converted  to body fixed frame by multiplying it with the rotation matrix 

R from equation (2.1) (P. Wang et al., 2016). 
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where 
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𝑚𝑚 is mass, θ ,pitch angle and φ roll angle respectively. 

Newton’s second law states that [13],  

τ=
i

b

dt
dh                         (2.8) 

where 

 ℎ =  Angular momentum  

=τ  Applied torque. 

Equation 2.8 implies that the angular momentum will change with application of 

torque. For changes in angular momentum vector direction, total derivative of ℎ 

becomes (P. Wang et al., 2016): 

                                                         τω =×+= h
dt
dh

dt
dh

i
b

bi
                                             (2.9)       

where 𝑖𝑖 and 𝑏𝑏  indicate inertial frame and body fixed reference frames respectively.                                     

Equation (2.8) can be resolved in body coordinates where b

i
b

b Ih ω=  , I  being the 

constant inertia matrix (moment of inertia of the quadcopter) given as [13]: 
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   (2.10) 

Due to quadcopter symmetry about all the three axes, 0=== xzyzxy III , the moment 

of inertia tensor is given as (P. Wang et al., 2016): 
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                                                 (2.11) 

where 
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zyx III ,,  represent the symmetrical moments of inertia of the quadcopter. With ω   as 

the change of rotational motion and I the moment of inertia, the applied torque can 

then be expressed as 

ωωωτ II ×+=
•

                                (2.12a) 

which can then be expanded as (P. Wang et al., 2016): 
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According to (Sidi, 1997), the rate of change of Euler angles and angular rates vector 

in the body reference frame are related as follows: 
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Where ψφθ RRR   are expressed as 
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The moments equation described in equation (2.4) can thus be expressed as follows 

after all matrix multiplication (Sidi, 1997). 
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Euler angle rates can be determined by taking the inverse of the matrix in equation 

(2.12) (Selby, n.d.): 
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From equation (2.1), the translational equation of motion 

[ ]TT wvuRzyx 1][ −
•••

=  can be expressed as (Selby, n.d.): 

                                                   ( )ψφθφψ cos*cos*sinsin*sin +−=
••

m
Fx z      (2.16) 

                                                  ( )ψφφψθ sin*coscos*sin*sin −−=
••

m
Fy z       (2.17) 

                                             ( )φθ cos*cos
m
Fgz z−=

••
                                                     (2.18) 

Equations described in (2.7), (2.10), (2.13), (2.14), (2.15) and (2.16) are used in this 

research to model and simulate the quadcopter dynamics in MATLAB/Simulink 

environment. 

2.3.2 Motor Dynamics 

A quadcopter is controlled by varying the speed of the four rotors independently. These 

motors have their own dynamics. The equations of motion here are similar to the 

equations of motion of DC motor(Bolandi et al., 2013; Jirinec, 2011) since the 

quadcopter rotors are DC motors. The conventional permanent magnet DC motor is 

described using the basic physical principles which can also be applied to the brushless 

DC motor. Equations (2.19) and (2.20) are the Kirchhoff’s Law and Newton’s Second 
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Law respectively. The latter describes the dynamic equation for the motor coupled to 

a load (Selby, n.d.) 

                                                )()()()( tK
dt

tdiLtRitPWM eapp ω++=                         (2.19) 

                                               )()( tKtiK
dt
dJ eω
ω

τ −=                                                      (2.20) 

where  i = motor current,  R = Resistance of the coils and windings,  L = Inductance 

of coils,  R = Resistance of the coils and windings,  J = Moment of inertia of rotor (
2/ mKg ),  eK = EMF constant )  ( radpervolts ,  τK = Armature constant ( m/amp-N

), fK = Motor friction constant s/rad)-m-(N ,  ω = Motor speed (rad/s)  

A transfer function is determined for the purposes of modelling the system dynamics 

of the motor with propeller speed as the output and motor voltage as the input. In 

frequency domain (Selby, n.d.), 

                                              )()()()( sKsIRsLsPWM eapp ω++=                             (2.21a) 

                                                     )()()( sKJssIK f ωτ +=                                             (2.21b) 

fefapp KKKJsRsL
K

sPWM
ssG

+++
==

))(()(
)()( τω           (2.21c) 

  
feff KKRKsRJLKJLs

KsG
++++

=
)(

)( 2
τ                            (2.21d) 

Since inductance can be assumed to be low i.e. 0≈L  and the motor is small thus the 

motor friction constant fK  is very small, it can be assumed that: 

fe

f

RKKK
LKRJ

>>

>>

τ

 

then equation (2.21d) simplifies to (Selby, n.d.): 

                                          
fe KKRJsJLs

KsG
++

= 2)( τ                                                      (2.22) 
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Since the motor is small, inductance can be assumed to be low i.e. 0≈L  reducing the 

transfer function to a first order system: 

                                        
feKKRJs

KsG
+

= τ)(                                (2.23) 

The total upward thrust equals the sum of the rotor angular speeds squared as in 

equation (2.24) (L. Wang & Chen, 2016) 
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2 ωωωω +++= bT                                             (2.24) 

where 𝑏𝑏 is the thrust coefficient of the rotor. Pairwise differences in rotor angular speed 

𝜔𝜔𝑖𝑖 with 𝑖𝑖 =  1;  2;  3;  4, referring to the rotor number, results in the torques 

𝜏𝜏∅;  𝜏𝜏𝜃𝜃 𝑎𝑎𝑎𝑎𝑎𝑎 𝜏𝜏𝛹𝛹 in the body frame and causes the aerial vehicle to rotate about 

the 𝑥𝑥,𝑦𝑦 𝑜𝑜𝑜𝑜 𝑧𝑧 −axis (L. Wang & Chen, 2016). 
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mτ = body torque from motors, ψθφ τττ ,, = torques along the body axes, b = thrust 

coefficient of the rotor, d  = drag torque proportionality constant,  l  = arm length from 

the centre of mass 

 

2.3.3 Control input 

The Electronic Speed Controller (ESC) generates corresponding PWM signal for 

motor speed control (Selby, n.d.) by converting the control constants 

[𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑈𝑈𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ,𝑈𝑈𝑦𝑦𝑦𝑦𝑦𝑦] to motor control signals[𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝑢𝑢4]. A control vector 𝑈𝑈 

defines four inputs as follows (Selby, n.d.): 

                                                          ][ 4321 uuuuU =                                         (2.26) 

where =1u  Total thrust of all motors, =2u  Control input to the roll, =3u  Control 

input to the pitch, =4u  Control input to the pitch. 
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The above inputs are then changed into individual motor speeds. The achieved speeds 

are relayed to the ESCs and finally to the motors. 

Using equations (2.24) and (2.25), the equations for the above inputs to the quadrotor 

UAV system are expressed as (Selby, n.d.): 
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Inverting equation (2.27) gives the desired motor speeds (Selby, n.d.): 
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2.4 Quadcopter System model under actuator faults 

In the presence of actuator fault, the control signal can be written as (Sadeghzadeh et 

al., 2014) 

                                                                )()( tultu ififi =                                                 (2.28) 

where fil is the effectiveness of a particular actuator with fil =1 as a faultless actuator 

and 0=fil  as the complete actuator failure. 

For the quadcopter UAV, the effectiveness of four actuators can be expressed as (Liu 

et al., 2016): 

                                                                )()( tuLtu ff =                                        (2.28) 
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where  

},....,{ 41 fff lldiagL = is the effectiveness factors written in a diagonal matrix, 

T
fff tututu )](),...,([)( 41= is the faulty control input vector and  

Ttututu )](),...,([)( 41=  the control actions on fault free quadcopter UAV. 

Equations (2.7), (2.10), (2.13), (2.14), (2.15), (2.16) and (2.27) can be expressed in 

linearized state space representation (Liu et al., 2016): 

                             
)(

)()()(
tCxy

tButAxtx
=

+=
•

                                (2.29)        

where )(tx
•

 represents the states, A the transition matrix, B  the input matrix, )(tu  the 

input variable and y the system output.      

   

From (Sadeghzadeh et al., 2014), the system with actuator fault is expressed as 

                      
)(

)()()(
tCxy

tuBtAxtx f

=

+=
•

                     (2.30) 

where 𝐵𝐵𝑓𝑓 = 𝐵𝐵𝐿𝐿𝑓𝑓 is the control input matrix after fault, the state vector and control 

input are taken as 
T

zzyyxxtx 



=

••••••

ψψφφθθ)(  and 

[ ]Tz uuuutu ψφθ=)( respectively. 

2.5 General Control Strategy 

In this research, the translational and the lateral movements of the quadcopter are 

measured by the onboard sensors. The values are then compared with the desired 

values. The resulting error is fed into the PID controller. 

2.5.1 Quadcopter Proportional, Integration and Derivative control 

The composition of the PID controller in time domain is given by (Sadeghzadeh et al., 

2014) 
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                                                       )()()()(
0

te
dt
dKdtteKteKtu d

t

ip ++= ∫               (2.31) 

 

where 

𝐾𝐾𝑝𝑝,𝐾𝐾𝑖𝑖, and 𝐾𝐾𝑑𝑑 are the PID gains.  𝑢𝑢(𝑡𝑡) is the control output, 𝑒𝑒(𝑡𝑡) is the error between 

the actual state and the desired state (Kobayashi et al., 1995a). 

The PID controller functions in three parts as shown in Figure 2.3. 

Kp
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Kd

SystemSet Point +

+
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output

 

Figure 2.4: Conventional PID controller 

The PID controller acts on the error creating a rapid response to control output. It also 

acts in proportion to the error integrator eliminating the steady-state error (Kobayashi 

et al., 1995a). 

Some of the algorithms used in various research to tune the PID gains are the Ziegler-

Nichols, Cohen-Coon Method, Tyreus-Luyben and Damped Oscillation Method 

among others (Kobayashi et al., 1995a). In this work, the trial and error is used to 

adjust the parameters based on the experts experience and gain adjustments can be 

done based on observations. 

The PID corrects the errors as follows: 

Proportional, 𝐾𝐾𝑝𝑝 

The farther away the desired position, the harder the controller tries to get it back to 

the desired position. If the quadcopter is supposed to be horizontal but one side is 

slanted downwards, the proportional controller pushes that side back up as quickly as 
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it can. The value of P dictates how hard it tries to get back to the desired position 

(Amoozgar et al., 2012). 

Signs of P being too high: 

• The quadcopter tries too hard to get back to the desired point and will actually 

overshoot and then try to correct the error again. This results in more overshoot 

and even undershoots. The response goes past the desired point and the error 

has to be fixed in turn. 

• The model oscillates for left to right maneuvers 

Integral, 𝐾𝐾𝑖𝑖 

Provides controls for sustained deviation from the desired orientation. It maintains a 

particular attitude. For instance, if flying forward but the nose is rising all the time, it 

is because the sustained change, which is letting the nose drift up, is not being taken 

care of by the Integral part of the PID loop. The quadcopter should maintain a forward 

attitude for a correct integral value but if it tilts back up, the value of I should be raised 

(Amoozgar et al., 2012). 

Derivative 

It dictates the speed at which 𝐾𝐾𝑝𝑝 and 𝐾𝐾𝑖𝑖 work out. If proportional gain is how hard the 

system tries to get back to where it needs to be and I corrects for sustained differences 

from the desired orientation, then D is how quickly the PID loop is trying to get system 

back to the desired position. 

PID controllers are frequently and widely used in various number of industrial 

applications since they are simple and easy to use (Amoozgar et al., 2012). However, 

one of their main shortcomings is the lack of a systematic way of choosing the 

optimum control parameters that ensure acceptable performance. Structural deviations 

affect the performance of these controllers. It is therefore important to have an 

algorithm hybridized with the PID controller that automatically adjusts the above 

mentioned parameters to compensate for unforeseen structural and environmental 

changes. In this research, a Fuzzy Logic Controller (FLC) is used since it is simple to 
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design and implement and can also provide acceptable control performance under 

structural uncertainties in nonlinear systems. 

2.5.2 Quadcopter Fuzzy PID control 

Fuzzy Logic Control (FLC), developed by Lofti Zadeh in 1965 (Tamilselvan & 

Aarthy, 2017), is an intelligent control method that imitates the logical thinking of 

human. The FLC can compensate for some of the PID shortcomings. 
Rather than fixed reasoning, FLC being multi-valued logic deals with approximate 

reasoning. The variables varies in truth value that ranges between 0 and 1 as opposed 

to conventional binary sets. The FLC comprises of Fuzzification, rule base, inference 

mechanism and defuzzification as shown in Figure 2.4 (Sivanandam et al., 2007). 

Database Rule base

Decision-Making Unit

Fuzification 
Inerface

Defuzzification
Interface

Knowledge base

Fuzzy Inference System

Input (Crisp) Output (Crisp)

(Fuzzy) (Fuzzy)

 

Figure 2.5: Block diagram of Fuzzy logic model 

The input of the fuzzy logic model is crisp value i.e. a precise variable that assigns a 

value of either 0 or 1 to each element of the universe. This is then converted into fuzzy 

linguistic variables through the process of fuzzification using Membership Functions 

(MFs) which can be Triangular, Trapezoidal, Bell, and Gaussian. Fuzzification 

involves conversion of crisp values of the control inputs into values which are 

imprecise rather than exact. The fuzzified output is fed into the Fuzzy Inference 

System (FIS) which initiates the decision making process by using fuzzy set theory or 

fuzzy reasoning to map nonlinear input data set into an output scalar data using rule 

base. Rule base have control rules obtained from an expert knowledge expressed as 

IF-THEN rules and the associated database (Lee, 1990) 
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The commonly used fuzzy inference system are the Mamdani and Takagi Sugeno 

methods. In essence, the operational procedure of Mamdani inference engine is similar 

to that of Takagi Sugeno method except that for the latter, all membership functions 

are designed using singleton spikes or the output of each fuzzy rule is constant (Ofosu 

et al., 2016). They are similar in that the crisp values are mapped onto the MFs 

according to rule evaluation. Mamdani FIS is used in this work because it is easy to 

implement since it follows linguistic fuzzy modelling as opposed to Takagi Sugeno 

which follows precise numerical modelling. 

AND, OR and NOT are used as fuzzy logic operators in rule evaluation of the 

antecedent and consequence MFs of fuzzy IF-THEN rules. Aggregation involves 

summation of all the outputs of fuzzy rules by taking the MFs previously scaled and 

combining them into a single fuzzy set. The outcome of the FIS is transformed to crisp 

values that can be used as a control signal through the defuzzification process.  

In this research, triangular MFs are used for the FLC because of its computational 

efficiency and simplicity (Lee, 1990). It is also commonly used. The error derivative

)(te
•

 and error )(te are taken as two inputs. The degree of membership of a crisp input 

is expressed as:(Ahn & Truong, 2009). 
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 jz  is the 𝑗𝑗𝑡𝑡ℎ input, ijb−  lower half-width, ijc  the centroid and ijb+   the upper half-width 

of the thi  triangle membership function of the thj  input. 𝑁𝑁 is the number of MF 

triangles. 

For the output, the centroids and half widths are denoted by ijγ  and ij
−β , ij

+β  

respectively.  
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The quadcopter altitude and attitude deviation 𝑒𝑒 from the reference are sampled and 

calculated. The fuzzy matrix table which is based on the fuzzy rules and reasoning 

determines ΔKP, ΔKI and ΔKD which are the fuzzy output variables. The initial PID 

values are then adjusted using ΔKP, ΔKI and ΔKD depending on the altitude and 

rotational motion references. The Fuzzy-PID structure is as shown in Figure 2.6 

(Bousbaine et al., 2016). 

 

de/dt
Fuzzy
System

PID Controller Plant

e

e+

-

u(t) outputDesired value

e

 

Figure 2.6: Basic Structure of Fuzzy PID controller with plant  

The proportional, derivative and integral gains 𝐾𝐾𝑝𝑝, 𝐾𝐾𝑑𝑑  𝑎𝑎𝑎𝑎𝑎𝑎  𝐾𝐾𝑖𝑖 respectively, are 

adjusted in the controlled process of the system according to the following different 

scenarios based on expert experience (L.-X. Wang, 2003): 

When the error is large, 𝐾𝐾𝑝𝑝 and 𝐾𝐾𝑖𝑖 should be increased to eliminate the steady state 

error. 𝐾𝐾𝑑𝑑 should also be chosen properly to avoid system response oscillation near the 

set point.  

When the error derivative is small, 𝐾𝐾𝑑𝑑 should be relatively bigger and when the error 

derivative change is large, 𝐾𝐾𝑑𝑑 should be smaller; usually. This necessitates that 𝐾𝐾𝑑𝑑 

should be of middle size i.e., neither big nor small. 

When the error )(te  and error derivative )(te
•

 is of middle size, 𝐾𝐾𝑝𝑝 should be small to 

reduce the overshoot of system response, and assure certain response speed. 
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The Fuzzy PID controllers proposed in (Amoozgar et al., 2012)and (Bousbaine et al., 

2016)are based on experimental design depending on operating conditions of the 

quadcopter. Therefore, the design of fuzzy rules depend on the experience of experts 

since there is no systematic method to design and examine the number of rules and 

membership functions (Ahn et al., 2007; Truong et al., 2007). 

2.6 Extended Kalman filter 

The typical Fuzzy PID controllers cannot adapt for structural and environmental 

variations since the rules and initial MFs are based on expert experience (Ahn et al., 

2008). Therefore, there is need for a control technique that has learning capabilities to 

combine with the Fuzzy PID to overcome such shortcomings. The control technique 

selected should be able to adjust the MF parameters of the Fuzzy controller which in 

turn adjusts the PID gains automatically to minimize the control error.  

Kalman Filter is an efficient mathematical technique for controller training purpose. It 

is also able to estimate sensor measurements from a noisy environment by making an 

approximation of the system states, called the priori estimate (Ahn & Truong, 2009). 

This estimate is used to predict the measurement that is about to arrive. The current 

estimate is recursively conditioned on all of the past measurements, and generally 

converges in a few iterations. 

However, Kalman filter operates efficiently with linear systems while most physical 

systems contain nonlinearities and the noise in the measurements generally do not have 

a Gaussian distribution. This necessitates linearization of processes in real life before 

estimation using Kalman Filter. 

This is where Extended Kalman Filter (EKF) comes since it is able to estimate 

nonlinear functions (Anderson & Moore, 1979). It is a derivative-based method with 

fast convergence (Simon, 2002) suitable for optimization of the MF parameters. 

Triangular MFs are used in this research. An error function is given by (Anderson & 

Moore, 1979): 
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qy is the target value of the fuzzy system, N is the number of training samples and 
~

qy   

is the output of the fuzzy system. 𝐸𝐸 can be optimized by using the partial derivatives 

of 𝐸𝐸 with respect to centroids and halfwidths of the input and output fuzzy MFs 

 

2.7 Attitude Estimation using Sensor fusion 

Attitude here refers to roll, pitch and yaw motions. Quadcopters have a set of sensors 

known as Inertial Measurement Unit (IMU) that provide the information needed by 

the attitude control systems. The IMU of a quadcopter contains an accelerometer, a 

gyroscope and a magnetometer.  

A gyroscope based IMU is not affected by motor vibrations. However, drifting of the 

angles is a problem. With accumulation of errors with time due to gyroscope bias, it is 

practically impossible to rely on gyroscope data alone. In static or slow movement, the 

accelerometer measures roll and pitch by leveling to correct the gyro-unbounded error. 

This is due to the trustworthiness of the gravitational measurement. While the 

accelerometer gives absolute measurement of the quadcopter attitude, the motors on 

the quadcopter produce a lot of vibrations introducing significant noise into the 

accelerometer reading (De Marina et al., 2012). Therefore, a proper fusion of IMU 

data is needed to overcome the shortcomings of each sensor. Fusion involves 

combining different sensor measurements using a suitable filter to achieve better 

estimates, redundancy and drift compensation(Kubelka & Reinstein, 2012). 

 In this work, gyroscope and accelerometer measurements are fused using Kalman 

Filter and Complimentary filter to estimate the orientation.  

2.7.1 Accelerometer 

Accelerometer measures total acceleration relative to free fall, also called specific 

force 𝑓𝑓̅𝑏𝑏 (Jirinec, 2011).  When an accelerometer is part of a system like UAVs and 

robots, it not only measures acceleration due to gravity but also translational and 

rotational accelerations. Therefore, an ideal accelerometer aligned with the body 

measures specific force as shown in equation (2.34). A detailed derivation is given in 

(Kaba et al., 2017). 
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 where, 𝑔̅𝑔𝑏𝑏is gravity in body coordinates, φ  and 𝜃𝜃 represent roll and pitch in radian 

respectively. 

2.7.2 Gyroscope 

Gyroscope sensors measure angular velocity in 𝑥𝑥,𝑦𝑦, 𝑧𝑧 directions although its 

measurements include biases. It is modeled as follows (Kaba et al., 2017): 
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  𝑏𝑏Ω is the gyroscope bias and 𝑛𝑛Ω represent the associated noise. Gyroscope 

measurements and Euler angle rate are related as shown (Kaba et al., 2017): 
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Where 𝜃𝜃 and  ∅ represent pitch and roll respectively and Ω is the propeller angular 

velocity. 

2.7.3 Attitude Estimation using Complimentary Filter 

When measuring the body angle with the accelerometer, it is affected by translation 

and vibrations of the motors, but the errors are not accumulated. When measuring with 

the gyro sensor, the errors are accumulated, but vibrations do not affect its operation. 

These two sensors measure the same physical quantities, and the properties are 

complementary, so the weaknesses of each sensor can be supplemented through 

convergence. 

The complementary filter, Figure 2.7, consists of high pass filter and low pass filter. 

Low pass filter is needed for correction of accelerometer data because as the small 
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forces create disturbance in measurement, long-term measurement is reliable. High 

pass filter is used for gyroscopic data correction since its values start to drift in the 

long term.(Cao et al., 2009; Higgins, 1975).  

Accelerometer data

Gyroscopic Data

Low Pass Filter

Numerical 
Integration High Pass Filter

Angle

Angular Velocity

∑ 

 

Figure 2.7: Block diagram of the composition of the Complimentary filter  

The complimentary filter is a unity filter (Vasconcelos et al., 2009). The weighted 

portions of the gyroscope angle is added to weighted portions of the accelerometer 

angle to give the complimentary filter angle (Vasconcelos et al., 2009).  

                                                )(*)020.0()*(* 1 ddkgk AdtGG ++= −θθ                 (2.37) 

where: kθ  is the complimentary filter angle, gG is the gyroscope gain, 1−kθ  is the 

previous complimentary filter angle, dG  is the gyroscope data, dA is the accelerometer 

data. 

2.8 Review of Quadcopter Control Algorithms 

In this section, applicable algorithms for quadcopter control under rotor fault are 

analyzed highlighting their advantages and disadvantages.  

2.8.1 PID Technique 

PIDs are control loop feedback mechanisms that directly adjust control values with a 

closed-form formula based on derivative, integral, and proportional gains (Numan, 

2017). 

PID formulation is employed in (Numan, 2017), beginning with an open loop system 

to show the advantages of PID control and the closed loop response is as shown in 

Figure 2.8. The scheme then describes the implementation of a PID controller without 
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rotor failure with the gain values set at 𝐾𝐾𝑝𝑝 = 10,𝐾𝐾𝑖𝑖 = 0 and 𝐾𝐾𝑑𝑑 = 11.  The resulting 

overshoot of 0% and settling time of 3.6043 seconds was observed. 

Roll Control PIDDesired Roll

Roll Angle from Quadcopter 
block

Roll Correction Command

 

Figure 2.8: Roll Control PID Block  

Similar arrangement applies to PID Pitch control 

PID control was implemented in design of Quadrotor Controller for stabilization after 

failure of one of the rotors in (Cho et al., 2015). Motor 2 is switched off after 37 

seconds and the simulation results showed that the quadcopter lost stability and 

altitude, crashing right away. 

In conclusion, the classical PID controller parameter gains are easy to tune, simple to 

design and is robust. However, the quadcopter being under actuated has a nonlinear 

mathematical model. PID linear controller has been found to struggle with aggressive 

maneuvers (Balas, 2007) especially when one of the rotors is faulty. 

Gain Scheduled Proportional Integral Derivative controller (GS-PID) 

GS-PID is applied in (Sadeghzadeh et al., 2014) to control a quadcopter for an 18% 

loss in power for all the motors. The fault was injected at 20s and acceptable tracking 

deviation was obtained as shown in Figure 2.9. 
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Figure 2.9: GS-PID for a faulty condition 

GS-PID is simple to design and implement in MATLAB/ Simulink, however, tuning 

GS-PID controller gains is time consuming and the switching time (more than 1 

second) between the gains could cause the quadcopter to crash for a faulty situation. 

2.8.2 Model reference adaptive controller (MRAC) 

In MRAC, the dynamic response is forced to asymptotically approach a reference 

system even in the presence of faults. In (Zhang, 2011), the flight was tested for both 

hovering control and square trajectory tracking controls with fault injection. The flight 

results from the experiment are shown in Figure 2.9 and 2.10. In Figure 2.10, the 

Quadcopter is fault free and the MRAC tracks the trajectory close to the desired 

trajectory. Two motors (the left and back) are subjected to an 18% power loss at 20 

seconds during flight. Figure 2.10, shows the Quadcopter tracking the desired 

trajectory and performing a safe landing. 
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Figure 2.10: MRAC in fault-free condition 

 

Figure 2.11: MRAC in faulty condition 

The MRAC used in (Sadeghzadeh et al., 2014) proved to be more robust and reliable 

to structural changes.  However, involving mathematical model derivations are needed 

to design and implement the controller. 

2.8.3 Linear Quadratic Regulator 

This method derives the feedback gain for a system. Applying the Linear Quadratic 

(LQ) control requires the quadcopter equations of motion to be linearized. 

In (Castillo et al., 2005), LQR controller was implemented and the controller 

performed satisfactorily during simulation. However, the controller, due to its 

linearity, could not stabilize the system when perturbations were introduced. 

Moreover, the controller could not stabilize the physical model under these conditions. 

Simulation results in literature have shown that LQR controllers applied in fault free 
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quadcopters have performed better than classical PID controllers in terms of transient 

response (Lan et al., 2012) In (Bouabdallah et al., 2004), LQR algorithm and PID 

performance are compared with the PID being applied on a simplified quadcopter 

dynamics and the LQR on the complete model. The performance of LQR was found 

to be superior to that of the PID controller 

2.8.4 Feedback Linearization (FBL) 

In FBL a nonlinear system is transformed into a linear system by designing a suitable 

control law such that the nonlinear term is cancelled to result in a controllable linear 

system. Some of the disadvantages of using FBL is that it needs a Fault Diagnosis and 

Identification system (FDIs) and the loss of precision due to linearization (Zulu & 

John, 2014). 

In (Freddi et al., 2011b), a controller was developed having inner, faster controller 

which regulates the attitude angles and the vehicle attitude. This is because the roll, 

pitch and altitude have the highest priority during flight and therefore the inner 

controller should work much faster than an outer controller. The slower outer 

controller supplies a proper input to the remaining fault free rotors. The outer control 

law ensures the quadcopter reaches a desired position in space by supplying proper 

input to the fault free rotors. When one of the rotor fails in one of the axis, the inner 

controller ensures the velocity of the fault free rotor on the same axis as the faulty rotor 

is modulated until the value of the angle controlled by that axis is zero.  The vehicle 

then spins around the vertical axis while at the same time varying simultaneously the 

rotational velocity of the two rotors of the fault-free axis. This makes it possible to set 

a desired altitude for the vehicle. 

FBL for fault tolerant control is described in (Freddi et al., 2011a) where the 

quadcopter continues to fly with only three functional actuators.  A simulation is done 

with only the inner controller activated. Figure 2.11 shows a smooth profile of angles ∅ 

and 𝜃𝜃 go to zero in less than 15𝑠𝑠 and the altitude z regulated to the desired value of 

10𝑚𝑚  even with the sustained rotor fault. 
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Figure 2.12: Response with only inner controller applied 

A second simulation was performed with the desired attitude and altitude set to 0 and 

10m respectively and both the control laws incorporated. A landing procedure is 

initiated if the quadcopter does not reach the desired lateral and longitudinal position 

as shown in Figure 2.13. FBL was able to stabilize the attitude angles ∅ and 𝜃𝜃, but 

with oscillations due to the presence of the outer controller. 

 

Figure 2.13:  Angle stabilization. 

From the simulation results, it was observed that the outer controller forces attitude 

angles to differ from zero as long as the target position is not reached whereas the inner 
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controller tries to constrain those values to zero. This results in more time needed for 

the target set points to be attained thus the 400s simulation time 

2.8.5 Sliding Mode Controller (SMC) 

A state feedback control law is designed in such a way that the current state is mapped 

to an input 𝑢𝑢 so that the system is stable around the origin i.e. a system started away 

from origin will always return to it. SMC forces the system trajectories into a 

constrained subspace then holds them there so that they slide along with it.   

(Sharifi et al., 2010) described the fault tolerance property of SMC and uses it in a 

Fault Tolerant Controller. The objective of their work was to land the quadcopter for 

conditions (∅ = 0  𝑎𝑎𝑎𝑎𝑎𝑎 𝜃𝜃 = 0) when a rotor fault occurs. 

A faulty condition (partially loses its thrust) was introduced after 7 seconds to rotor 1 

and the performance of the quadcopter was observed without and with the SMC. The 

controller was able to achieve both the desired attitude angles and the height as shown 

in Figure 2.14 and Figure 2.15. 

 

Figure 2.14: Desired quadcopter attitude and altitude 
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Figure 2.15: Quadcopter performance under faulty condition 

However the proposed SMC was not able to perform without the assistance of a state 

estimator i.e. a FDD unit, making the whole unit expensive. The performance of the 

SMC without the FDD is as shown in Figure 2.16. It can be observed that the 

quadcopter could not be stabilized. 
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Figure 2.16: Quadcopter performance without the FDD unit 

Furthermore, experimental results show that sliding mode controller is more robust 

with better tracking performance in the presence of faults but the SMC has not been 

tested for severe actuator failures and the simulation results show that there is 

chattering due to the switching from the normal operation mode and the faulty mode 

(Li et al., 2013). 

2.8.6 Model predictive control (MPC) 

In MPC, the control signal is recalculated at each sampling time with any deviations 

reflected in signal calculation (Maciejowski & Jones, 2003). The drawbacks of MPC 

include:  

(1)An FDD is required as an observer to allow the MPC to consider faults (Izadi et al., 

2011). 
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(2) An explicit model of the quadcopter is needed to calculate a stabilizing control 

signal.  

The problem becomes more critical where the system dynamics is described by a 

nonlinear model (L. Wang & Beumer, 2016). 

An MPC strategy was proposed in (L. Wang & Beumer, 2016), sacrificing the control 

on yaw. According to the simulations, the MPC method is able to get the quadcopter 

UAV in hover position. The presented simulations showed that the roll and pitch 

angles were stabilized at the desired angles. However, the controller cannot be 

implemented on hardware for experimental results since the angular velocities were 

very high and may cause problems therefore there is need to physically validate these 

simulation results.  

2.8.7 Backstepping control 

A higher order nonlinear system is broken down into a number of lower order 

subsystems that are cascaded with each other to form the general closed loop system. 

The stabilization of each subsystem is recursive, i.e. stabilization by a successive lower 

order subsystem generating a control input. The recursive algorithm is used to achieve 

feedback control. This feedback control law is converted, through parameter 

estimation, into dynamic control law to accommodate the dynamic perturbations in 

parameters (Khebbache, 2012). 
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Figure 2.17: Backstepping Control Strategy 

The adopted control strategy in (Khebbache, 2012) describes a control strategy based 

on an internal loop and external loop. The internal loop controls the roll, pitch, yaw 

and altitude. The external loop controls positions 𝑥𝑥 and𝑦𝑦. The external control loop 

generates a desired roll (𝜙𝜙𝑑𝑑) and pitch (𝜃𝜃𝑑𝑑) as follows: 
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The control laws constraining the system to the target trajectory in the event of rotor 

failure is synthesized using a recursive algorithm.           

The simulation results in (Khebbache, 2012) showed acceptable performance towards 

tracking even after the occurrence of actuator faults explaining the efficiency of the 

control strategy developed. However, Backstepping approach is affected by chattering 

effects on the inputs. There is therefore need to include other control strategies for 

elimination the chattering effects on inputs control 4321 ,,, uuuu , while maintaining the 

stability and the performances of this system, with implementation on a real system. 
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Mueller and D’Andrea (Mueller & D’Andrea, 2014) presented solutions for a 

quadcopter experiencing up to three complete rotor failures with the quadcopter UAV 

maintaining a position in space. This was achieved by having the UAV rotate freely 

about an axis, fixed with respect to the body. The UAV was also assumed to already 

have a Fault Detection, Diagnosis and Isolation (FDI) module. The hover stabilized 

after 12s and the UAV lands at 21.5s. 

100% propeller loss for a quadcopter UAV is described in (Freddi et al., 2011a). To 

achieve a horizontal spin using the remaining propellers. This paper successfully 

developed a control law using feedback linearization (FBL) approach for stabilization 

of the quadcopter UAV in event of rotor failure and enable it make a safe landing. This 

scheme assumes that the vehicle is already equipped with an observer to switch 

between the fault free controller and the faulty one. 

Partial failure of a quadcopter actuator is investigated in (Ranjbaran & Khorasani, 

2010). Here, a parameter estimation algorithm which acts as a FDI system is proposed 

to provide an estimate of the severity of the faulty rotor. The behavior of the 

quadcopter system is investigated in case of a more severe loss of effectiveness fault.  

25% and 50% LOE were considered faults in the first actuator for evaluation. 

Multiple partial loss of effectiveness was considered in (Ranjbaran & Khorasani, 

2012). First, a partial fault of 20% in rotor 1 𝑡𝑡 =  20𝑠𝑠𝑠𝑠𝑠𝑠 and a second 35% loss of 

effectiveness in rotor number 4 at t = 35sec are considered. The same control strategy 

as in (Amoozgar et al., 2012)is used but with a Fault detection and diagnosis system 

in place. 

Mohammad et al. (Amoozgar et al., 2012) proposed an FTC using adaptive PID 

controller for a quadcopter UAV in 15% and 20% faults in all the four motors. A FIS 

is used for real-time tuning of the PID gains. Tracking errors and rate of change of 

tracking errors are used to make the system return to desired working conditions in the 

event of rotor failure. The control scheme proposed here was similar to that of 

(Ranjbaran & Khorasani, 2012) in that FPID was employed for control but differed in 

that the designer (Amoozgar et al., 2012) only considers restoring the vehicle to its 

hover position. 
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According to (Lippiello & Ruggiero, 2014), there is an assumption that the loss of a 

propeller has been already detected. The system switches to emergency landing 

modalities with an already planned trajectory. The quadcopter is modelled as a birotor 

by proposing the turning off of the motor on the same quadcopter axis of the broken 

propeller.  

(Sadeghzadeh et al., 2012) implemented a GS-PID with Fault Detection and Diagnosis 

(FDD) system which provided the time, location and magnitude of fault occurrence. 

Here the PID gains are tuned for both the normal and faulty rotor conditions.  

2.9  Summary of Research Gaps 

It can be concluded that most of the research work in literature approach the issue of 

quadcopter stabilization during rotor fault by application of a Fault Diagnosis and 

Isolation system (FDI). This necessitates the use of more than one controller which 

then necessitates switching between the controllers depending on the rotor’s 

effectiveness. This prolongs the fault recovery time and it is also expensive. 

An EKF was used to optimize a Takagi Sugeno FIS for PID base controller in (Gautam 

& Ha, 2013) for rotational motion and position control a quadcopter. The proposed 

controller showed good performance against wind disturbances bringing the 

quadcopter back to stability quickly because of smart selection technique and tuning 

of active fuzzy MF parameters. The proposed controller was however not tested for a 

quadcopter under rotor failure. 

(Liu et al., 2016) used EKF to optimize a Mamdani FIS for a state feedback base 

controller for a quadcopter subjected to 20% rotor failure. Performance in vertical 

direction and angular action was investigated for 20% loss of effectiveness of the rotor. 

A fault recovery time of about 6 seconds for vertical motion and altitude loss of 0.2m 

were recorded. 9 seconds of recovery time for angular control was also recorded. 

Motivated by the work done in (Liu et al., 2016) and (Gautam & Ha, 2013) and also 

by the need to reduce the system fault recovery time and the loss of altitude from hover 

position, an Extended Kalman filter optimized Fuzzy PID system is proposed for 

rotational motion and altitude control of a quadcopter UAV system subjected to 100% 

rotor fault. 
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CHAPTER THREE 

3 METHODOLOGY 

3.1 General design overview 

In this chapter, a fault tolerant controller is designed and implemented on a quadcopter 

flight control board as follows: 

i. Raw data is obtained from two orientation sensors, accelerometer and 

gyroscope.  The Kalman Filter is used fuse data from these two sensors to 

cancel out errors from each. The noise free data obtained is then used to 

calculate the orientation tracking error. Raw data and filtered data will be 

graphically compared to show the effectiveness of the fusing the two sensor 

signals. 

ii. Determination of optimal PID gains to serve as reference gains for the 

generation of PWM control signals. The PWM signals properly adjusts the 

thrust of motors to compensate for the actuator faults with less time delay. 

For Conventional PID controllers, fixed gains are used. This does not give 

a better performance for an unpredictable and wide range of operating 

conditions. In this scheme, FLC is used to tune the gains of the base 

controller. However, designing and examining the number of rules and 

Membership Functions (MFs) depends on expert experience. There is no 

systematic method. Moreover, for systems that are nonlinear with large 

uncertainties, the Fuzzy Inference System (FIS) has no learning and 

adaptive capabilities. Hence, the MFs and fuzzy rules are initially designed 

and then updated in real time using EKF technique. The EKF is used to 

adjust the MF parameters depending on the operating condition of the 

quadcopter UAV to minimize the incurred errors.  

iii. The closed loop system is simulated using MATLAB/SIMULINK. For 

purposes of performance comparison, a conventional PID, Fuzzy-PID and 

EKF optimized Fuzzy-PID will be simulated. 

iv. Finally, the prototype of the designed controller was implemented into a 

quadcopter control board. 
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Figure 3.1: General control strategy 

3.2 Determination of Attitude angles 

To determine the attitude angles, the Inertial Measurement Unit (IMU) is used. It is 

composed of gyroscope and accelerometer. Whereas an accelerometer gives absolute 

measurement of the quadcopter attitude, the motors on the quadcopter produce a lot of 

vibrations introducing significant noise into the accelerometer reading. The gyroscope 

is much less affected by the vibrations but its readings are prone to drifting over time 

from the actual angle. Kalman filter is therefore proposed to merge the two sensor 

measurements to achieve better estimates, redundancy and drift compensation. 

The sensor used in this research for determination of these angles is MPU6050 IMU 

sensor in Figure 3.2 (Sanjeev, 2018). 
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Figure 3.2: MPU 6050 Pinout on a GY-521 board  

The MPU6050 chip is powered by 3.3V supply but a voltage regulator on the GY-521 

board allows up to 5V supply.  

The gyroscope and accelerometer are both embedded inside the MPU6050.  Six values 

are obtained as output i.e.  Three from the gyroscope and three from the accelerometer. 

MPU6050 uses I2C (inter-integrated circuit) protocol for communication with the 

Arduino microcontroller (Sanjeev, 2018). 

3.2.1 Interfacing the MPU 6050 and the Arduino Uno 

The Arduino and the MPU 6050 communicates through the I2C (inter-integrated 

circuit) protocol. This protocol has to be added in the Arduino library to establish 

communication between the two devices.  Pin connection between the MPU 6050 and 

Arduino is as shown in Figure 3.3 (Sanjeev, 2018). 
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Figure 3.3: Arduino board and MPU6050 connection diagram  

 

 Setting up the I2C line involves connecting Arduino pins 4 and 5 to pins SDA and 

SCL of the MPU6050 respectively.  

3.2.2 Conversion of signals to degrees 

While the accelerometer measures acceleration (g's) in three dimensions, the 

gyroscope measures degrees per second both giving analog signals as output 

measurements. 

3.2.2.1 The gyroscope 

Here, the bits are translated into angles using the MPU6050 data sheet. 
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Equations (3.1) to (3.8) are derived based on work done in (Sparkfun, n.d.) and (Haoyu 

Electronics, n.d.). The sensitivity is given as 3.33mV/deg/s, but for a 10 bit resolution, 

the sensitivity has to be scaled between 0-1023 as shown: 

              scaled sensitivity=  (datasheet sensitivity)/1023 supply voltage                          (3.1) 

Given the data sheet sensitivity was 3.33mV/deg/s (Sparkfun, n.d.), then the scaled 

sensitivity was obtained as 1.023. 

So the resultant degrees per second becomes 

                                                      / ( ) / sensitivitys G Gzr                        (3.2) 

where, 𝐺𝐺𝑟𝑟 are the read values from the sensor, 𝐺𝐺𝑧𝑧 is the value when it is stationary.  

                                                        023.1/)(/ zr GGs −=θ                        (3.3) 

The results are in degrees per second and are therefore converted to degrees in code 

by gyroAngle += gyroRate*dtime/1000 where gyroRate = (gyroAdc-

gyroZero)/sensitivity. 

The gyroscope readings however, drift overtime (Haoyu Electronics, n.d.). There is 

therefore need to fuse these readings with those of the accelerometer. 

3.2.2.2 The Accelerometer 

The accelerometer data does not have any drift but is unfortunately affected by motor 

vibrations and are therefore not reliable for a short period. The analog readings from 

the accelerometer are converted into degrees by: 

                                                      0( ) / sensitivityx aa x y                          (3.4) 

           Where   𝑎𝑎𝑥𝑥  is the 𝑔𝑔 read by the accelerometer, 𝑥𝑥𝑎𝑎the analogue reading and 𝑦𝑦0 

the value when the reading is 0𝑔𝑔 i.e. when it is horizontal and during calibration. 

Sensitivity is obtained from the datasheet (Sparkfun, n.d.).  

From the datasheet (Sparkfun, n.d.), the zero value can also be obtained. The zero 

voltage at 0𝑔𝑔 is approximately 1.5𝑉𝑉. This can be translated into bits by:  

scaled sensitivity=  zeroVoltage/3.3 1023                       (3.5) 
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Similarly, with sensitivity converted to bits as was done earlier with the gyro, the final 

equation for accelerometer becomes:  

 0( ) / 465x aa x y   (3.6)   

These accelerometer readings are now in 𝑔𝑔’𝑠𝑠  defining the inertial force vector and 

therefore have to be converted to degrees by using the  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 () function. 

The accelerometer angle calculations in three dimension are computed as follows: 

 





= R
aaccXangle xarccos  

                                                        







= R
aaccYangle yarccos  

                                                                    






= R

aaccZangle zarccos          

  (3.7) 

R is the force vector derived in (Starlino, n.d.) and in this context implemented as: 

 ( )222
zyx aaaR ++=             (3.8) 

The output is in radians and can be transformed into degrees by multiplying the result 

with 180
𝜋𝜋

. 

3.2.3 Signal fusion using Kalman and Complimentary filter 

The Kalman filter is a two-step process: the system acts as a Predictor; i.e. it uses the 

model of the system, the current state and the input vector to predict the future state 

considering the covariance error. In application, the filter takes the gyroscope 

measurements and calculates attitude estimations based on the gyroscope rates, and 

makes a prediction estimate of the error covariance (Boutayeb et al., 1997). 

The measurement update phase, which is the second phase, corrects the predicted state 

and the estimated covariance error according to the measurements and its noise 

covariance. These are then used to calculate the Kalman gain. The accelerometer data 

is incorporated to aid the gyroscope measurement. These two values are multiplied by 

the Kalman gain taking a percentage of each measurement based on their noise 
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characteristics. The process is described as follows (Boutayeb et al., 1997; Kobayashi 

et al., 1995b): 

System state 

Equations (3.9) through (3.20) are based on literature derived from (Boutayeb et al., 

1997; Kobayashi et al., 1995b): 

The state of the system is given by:  

 kkkk uxx ω++= − BF 1             (3.9) 

In this case,  equation (2.43) can be written as: 

     kkkk xx ωθ ++=
•

− BF 1    (3.10) 

where  

• 1−kx  is the previous state  

• 







= •

b
kx

θ
θ is the state matrix showing that the output of the filter will be the 

angle θ  and the bias b

•

θ . The bias is the amount the gyroscope has drifted. The 

true gyroRate is therefore calculated by subtracting the bias from the gyroscope 

measurements. 

• 






 ∆−
=

10
1 t

F  is the transition model. 

• ku is the control input which is also known as the rate 
•

θ and here it represents 

the gyroscope measurement in degrees per second. 

• 






∆
=

0
t

B  is the control input model 

• ),0(~ kk QNω is the process noise. It is a Gaussian distribution with a zero 

mean and process noise covariance matrix kQ . kQ  is considered here as the 

covariance matrix of the state estimate of the accelerometer and bias as shown: 

                                                           

 
tQ

Q

b

k ∆











=

•
θ

θ

0
0

Q    (3.11) 

Since kQ  depends on current time 𝑘𝑘, the accelerometer variance θQ and the variance 
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of the bias 
b

Q•
θ

is multiplied by the delta time t∆ . The constants are set based on trial 

and error i.e. if the estimated angle starts to drift, 
b

Q•
θ

has to be increased and if the 

estimate tends to be slow, the value of θQ has to be decreased to make it more 

responsive. 

 

The measurement kz  is determined as:    

 kkk vxz += H         (3.12) 

   

[ ]01=H  is the observation model and maps the state space into observed space. 

Measurement is the accelerometer data. 

),0(~ RNvk  is the measurement noise of Gaussian distribution with a zero mean and 

𝑅𝑅 as the covariance. The measurement noise is equal to the variance of measurement 

since the covariance of the same variable is equal to the variance. 

     

 )var( kvR =            (3.13) 

The noise measurement variance )var( kv  is also determined by trial and error i.e. if too 

high, the filter responds slowly as it trusts new measurements less and if too small, the 

accelerometer measurements are trusted too much which might result in overshoot and 

noisy measurements. 

As a predictor, the filter tries to estimate the current state based on all the previous 

states and the gyroscope measurements. 

 •

−−− += kkkkk xx θBF 111


             (3.14) 

The a priori error covariance matrix 1−kkP  can be estimated based on the previous error 

covariance matrix 1−kkP as: 

                   

  k
T

kkkk QFFPP += −−− 111    (3.15) 

This matrix estimates how much the current values of the estimated state can be 

trusted. The smaller it is, the more the current estimated state is trusted.   
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In the measurement update phase, a priori state 1−kkx  is the estimate of the state matrix 

at the current time 𝑘𝑘 based on the previous state of the system and the estimates before 

it. Therefore, the innovation is determined by the difference between the measurement 

𝑧𝑧𝑘𝑘 and the a priori state as: 

 
 1

~

−−= kkk xz Hyk    (3.16) 

H maps the a priori state 1−kkx  into the observed measurements i.e. the measurement 

from the accelerometer. The innovation covariance is given by: 

  RHHPS T += −1kkk        (3.17) 

kS  predicts how much the measurement based on the a priori error covariance matrix 

1−kkP and the measurement covariance R should be trusted. If the value of the 

measurement noise is bigger, then the value of S  becomes larger, meaning that the 

incoming measurements cannot be trusted that much. This concept is much understood 

with introduction of the Kalman gain. 

The Kalman gain is calculated as: 

     1
1

−
−= k

T
kkk SHPK    (3.18) 

Equation (3.18) indicates that for a small Kalman gain, 𝑆𝑆 will be high meaning that the 

innovation is not trusted that much. This also means that the estimate of the state is 

trusted with the error covariance matrix 𝑷𝑷 being small.  

The a posteriori estimate (the estimate of the state at time 𝑘𝑘 given observations up to 

and including at time 𝑘𝑘) of the current state can be updated by: 

 
      kkkkkk xx

~

1 yK+= −


      (3.19) 

Equation (3.19) means that the estimate of the a priori state (calculated using previous 

state and the gyroscope measurements) is corrected with the accelerometer 

measurement. The a posteriori error covariance matrix is updated as follows:  

       1)( −−= kkkkk PHKIP            (3.20) 

where I is an Identity matrix. 

The implementation of equation (3.9) to (3.20) for Kalman filtering is done in C code 

in Arduino IDE as detailed in the appendix.  
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 The complimentary filter is easy to implement since it has just one equation expressed 

as [68]: 

       

)(*)020.0()*(* 1 ddkgk AdtGG ++= −θθ            
  (3.21) 

where kθ  is the complimentary filter angle, gG is the gyroscope gain, 1−kθ  is the 

previous complimentary filter angle, dG  is the gyroscope data, dA is the accelerometer 

data 

It sums weighted fractions of the accelerometer and the gyro angles creating more 

accurate orientation angles. 

3.2.4 Implementation  

Equations (3.1) to (3.21) are coded in Arduino IDE and uploaded into Arduino board 

in the set-up of Figure 3.4. The serial monitor is opened up with the baud rate set at 

115200. The roll, pitch and yaw attitude angles should start streaming in from the IMU 

sensor. The test was performed as follows: 

-First the IMU GY-521breakoutboard was tilted smoothly. 

-Next, the board was then continually tilted with some vibrations, i.e. by tapping and 

shaking the board quickly. 

The data was received on the Arduino platform serial monitor as in Figure 3.4: 
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Figure 3.4: Generation of orientation angles 

From Figure 3.4, the data from the orientation sensors was received in the Arduino 

serial monitor and then analyzed in MATLAB. The data was filtered and the 

performance of Kalman filter and the complimentary filter compared. 

3.3 Controller Design 

The equations used for modelling the quadcopter dynamics are listed in this section.  

3.3.1 Summary of the necessary Equations needed for the Modelling of 

Quadcopter Dynamics in MATLAB/SIMULINK 

a) Inertia tensor moment matrix J: 
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  (3.22) 

zzyyxx III ,,  are the symmetrical Moments of Inertia of the quadcopter. The off-diagonal 

elements are zero because the quadcopter is symmetrical. 

Pairwise differences in rotor angular speed 𝜔𝜔𝑖𝑖 with 𝑖𝑖 =  1;  2;  3;  4, referring to the 

rotor number, results in the torques 𝜏𝜏∅;  𝜏𝜏𝜃𝜃 𝑎𝑎𝑎𝑎𝑎𝑎 𝜏𝜏𝛹𝛹 in the body frame and causes the 

aerial vehicle to rotate about the 𝑥𝑥,𝑦𝑦 𝑜𝑜𝑜𝑜 𝑧𝑧 − axis. The body torque from motors mτ  is 

given by: 
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where mτ = body torque from motors, ψθφ τττ ,, = torque along the body axes 𝑥𝑥,𝑦𝑦, 𝑧𝑧, b

= thrust coefficient, d  = drag proportionality consonant, l  = arm length from the center 

mass 

b) The control input vector 

            



















=







































−−
−

−
=



















4

3

2

1

2
4

2
3

2
2

2
1

00
00

u
u
u
u

dddd
lblb

lblb
bbbbT

ω
ω
ω
ω

τ
τ
τ

ψ

θ

φ
      

  (3.24) 

where 𝑇𝑇 is the total thrust.  
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c) Angular accelerations comprising of Roll, Pitch and Yaw rates 
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  (3.25) 

where rJ  is the Rotor’s inertial and rΩ  is the rotor’s relative speed i.e. 

( )4321 ωωωω +−+−  

d) Linear Accelerations obtained as: 

            

( )ψθφψφ cossincossinsin1 +−=
••

m
Ux                                      

                                                              

( )ψφψθφ sincossinsincos1 −−=
••

m
Uy                                          

                                                               

( )θφ coscos1

m
Ugz −=

••
      

  (3.26) 

3.3.2 PID Control 

To stabilize the nonlinear quadcopter system, a base PID controller was first designed. 

Desired angles (input angles) are taken as setpoints and are then compared with 

feedback angles from the fused accelerometer and gyroscope measurements for the 

generation of the control error. 

The controller regulates the angular velocity by computing the difference between the 

target rates and the rates read by the gyroscope. The three moment control inputs, 

ψθφ τττ ,,  are then determined using the obtained error and are then combined with the 
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lift control input as in equation (3.24) from the altitude controller. By converting these 

values to desired motor speeds, commands to the rotors are obtained and sent through 

the electronic speed controllers.  

In this work, trial and error, as shown in Figure 3.5, is used to adjust the PID parameters 

based on the experts experience and gain adjustments can be done based on 

observations. An initial value of  𝐾𝐾𝑝𝑝 which is less than 1 is chosen and increased guided 

by observation of the output.  𝐾𝐾𝑖𝑖, and 𝐾𝐾𝑑𝑑 are initially set at zero and then adjusted 

appropriately depending on the overshoot and transient state. 

start

Choose a value for            with      and        set to zero

Increase            until there is an oscillation

Correct any drift by increasing         

 is increased to reduce the overshoot

Adjust the values until the desired responses are achieved

End
 

Figure 3.5: Flowchart for tuning PID gains. 

The procedure described in Figure 3.5 is applied separately for Roll, Pitch, Yaw and 

altitude controllers. The composition of the PID controller in time domain is as shown 

in Figure 3.6 where 𝐾𝐾𝑝𝑝,𝐾𝐾𝑖𝑖, and 𝐾𝐾𝑑𝑑 are the PID gains.  𝑢𝑢(𝑡𝑡) is the control output, 𝑒𝑒(𝑡𝑡) 

is the error between the actual state and the desired state. The PID controller acts on 
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the error creating a rapid response to control output. It also acts in proportion to the 

error integrator eliminating the steady-state error (Kobayashi et al., 1995b). 

Kp

Ki

Kd

QuadcopterSet Point +

+

-

output

 

Figure 3.6: Block diagram of PID controller arrangement  

Figure 3.7 is the MATLAB model for Figure 3.6. A step input was used  with the 

feedback represented as In 1 and out 1 as the control signal. By regulating the gains, 

the desired output roll, pitch, yaw and altitude are obtained.  

 

Figure 3.7: Altitude PID controller 

Equations (3.22) to (3.26) were modeled in MATLAB/Simulink for the overall system 

control using PID strategy. Figure 3.8 shows the overall quadcopter PID control. This 

layout is used to construct the MATLAB model in Figure 3.9 of the equations 
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described in Equations (3.22) to (3.26). 𝑈𝑈 is the control input to the quadcopter plant 

after comparison of the feedback information and the set point Roll, Yaw or Altitude. 
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Figure 3.8: Block diagram of the overall Quadcopter PID control 

Figure 3.9 is the MATLAB model of Figure 3.8 designed using Equations (3.22) to 

(3.26). The overall outputs are exported to workspace for plotting of the data for 

comparisons of PID performance with FuzzyPID and EKF-FuzzyPID. 
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Figure 3.9: Quadcopter Simulink diagram 

3.3.3 Fuzzy Membership Function (MF) Design 

The triangular MFs are chosen for this work with the initial rule base constructed based 

on trial and error. The rule matrix is as shown in Tables 3.1 to 3.3.  The inputs to the 

fuzzy system are the error e  and the derivative of error,
•

e . PID values are the single 

output. The output is the  𝐾𝐾𝑝𝑝,𝐾𝐾𝑖𝑖 and 𝐾𝐾𝑑𝑑 crisp value. The error is the reference angle or 

altitude minus their measured values. 

Table 3-1: Fuzzy Matrix for 𝑲𝑲𝒑𝒑 

e  
•

e  NB NM NS Z PS PM PB 

NB M S VS VVS VS S M 
NM B M S VS S M B 
NS VB B M S M B VB 
Z VVB VB B M B VB VVB 
PS VB B M S M B VB 

PM B M S VS S M B 

PB M S VS VVS VS S M 
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For the rule matrix: VVB = Very Very big, Z = Zero, PB = Positive Big, NB =

Negative Big, PM Positive Medium, VVS = Very Very Small, NM =

Negative Medium, PS = Positive Small, NS = Negative Small 

Table 3-2: Fuzzy Matrix for 𝑲𝑲𝒊𝒊 

e  

•

e  NB NM NS Z PS PM PB 

NB M S VS VVS VS S M 

NM B M S VS S M B 

NS VB B M S M B VB 

Z VVB VB B M B VB VVB 

PS VB B M S M B VB 

PM B M S VS S M B 

PB M S VS VVS VS S M 

 

Table 3-3: Fuzzy matrix table for 𝑲𝑲𝒅𝒅 

e  

•

e  NB NM NS Z PS PM PB 

NB M B VB VVB VB B M 

NM S M B VB B M S 

NS VS S M B M S VS 

Z VVS VS S M S VS VVS 

PS VS S M B M S VS 

PM S M B VB B M S 

PB M B VB VVB VB B M 

 

The IF THEN rules are implemented as follows: “If the 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is Positive Small (PS), 

and the 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is Zero (Z), then 𝐾𝐾𝑝𝑝 value is changed by Small (S) amount” 

as shown in Figure 3.10.  
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3.4 Extended Kalman Filter (EKF) Model for the Fuzzy System 

Application of EKF to a general nonlinear system has been discussed in Chapter 2 

Section 2.6.1. To apply the EKF for the fuzzy parameter tuning, firstly, the MF 

parameters are taken to form the state vector as follows: 

output for the setsfuzzy   3.
input second for the setsfuzzy   2.

inputfirst  for the setsfuzzy  .1

κ
ν
µ

 

In this work,𝜇𝜇,ν and κ  are totaling to 63 parameter values as   

 

Figure 3.10: Fuzzy Rule base implementation in Matlab. 

Figure 3.11 shows 7 triangular MFs each for both fuzzy inputs and the outputs. The 

error and error derivative,de are the inputs while the regulating value K_p is the 

fuzzy output. These MFs were constructed based on expert knowledge and 

experience. 
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Figure 3.11: Membership function parameters 

The state of the nonlinear system, derived from the MF parameters, can therefore be 

denoted as a column vector: 

 

T
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The parameters defined in equation (3.27) form the state of the nonlinear system 

resulting in a form of MF optimization problem suitable for Kalman Filtering. The 

desired output of the fuzzy system is kz  and the actual output is denoted as )( kxh  then 

(Anderson & Moore, 1979; Grewal & Andrews, 1993):  

 kkk wxfx +=+ )()1(  

                                                                     

kkk vxhz += )(         

  (3.28) 

),0(~ kk QNw is random variable for process noise, ),0(~ kk RNv the measurement 

noise, kx  is the state of the system at time 𝑘𝑘, 𝑧𝑧𝑘𝑘 is the measurement vector, 𝑅𝑅𝑘𝑘 and 𝑄𝑄𝑘𝑘 is 

the measurement noise and process noise covariance respectively, 𝑓𝑓 (. ) and ℎ(. ) are 

nonlinear vector functions of the state.  The tuning parameters, 𝑄𝑄 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅 are the 

covariance matrices of the artificial noise process kk v and ω .  

The problem addressed by the extended Kalman filter is to find an estimate   

kk xx  of )1( +
 . The nonlinearities in (3.28) then can be expanded around the state estimate 

x̂  using Taylor series to obtain (Simon, 2002): 

s,order termhigher  )ˆ()ˆ()( +−×+= kkkkk xxFxfxf                  

s,order termhigher  )ˆ()ˆ()( +−×+= kk
T
kkk xxHxhxh                                    

(3.29)                          

Where 
^

)(

kxx
k x

xfF
=∂

∂
= and    

^

)(

kxx

T
k x

xhH
=∂

∂
=  

Neglecting the higher order terms, the system in equation (3.28) can be approximated 

as (Simon, 2002). 

 kkkkk wxFx φ++=+1                                                                               (3.29) 

 
kkk

T
kk vxHz ϕ++=                                                                                (3.30) 

 

where 
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    kkkk xFxf ˆ)ˆ( −=φ  and   k
T

kkk xHxh ˆ)ˆ( −=ϕ  

The desired estimate can be obtained by the recursion (Simon, 2002): 

    )]([)( )1()1( −− −+= kkkkk xhzKxfx   

1)( −+= kk
T
kkkkk HPHRHPK  

k
T

kk
T
kkkkk QFPHKPFP +−= −−+ )( )1()1()1(  

  (3.31) 

where 𝑃𝑃𝑘𝑘 and 𝐾𝐾𝑘𝑘 is the state estimation error covariance matrix and the Kalman gain 

respectively. 

3.5  Quadcopter System Implementation 

Remote Transmitter

Receiver

Flight controller Board 
(Pixhawk)

Electronic Speed Controller
(30A)

Batter Power Supply 
(LiPo)

Brushless DC 
motors

Propellers

5V
Mechanical 
Coupling

11.1V

2.4 GHz Remote Link

 

Figure 3.12: Block diagram of Quadcopter Hardware connection 

A physical quadcopter was implemented using locally available components as shown 

in Figure 3.12.  

3.5.1 Battery (LiPo) 

The LiPo battery powers the quadcopter motors and sensors are all powered by using 

a battery pack. It should provide input voltage as per the microcontroller requirement 

providing enough power for a flight time of at least 20 minutes. For this project, there 

is need for a battery that is low cost, lightweight and rechargeable. The three main 

types of rechargeable batteries are the Lithium Polymer (LiPo) batteries, Nickel-

Cadmium (NiCad) and Nickel-Metal Hydride (NiMH). These batteries have a low 

internal resistance allowing for high-power output and can operate at a large 



63 
 

temperature range. The NiCad battery suffers from decrease of the overall capacity 

over time. However, NiMH batteries can hold 30% more capacity compared to NiCad, 

but are affected by larger memory loss where the term memory refers to the amount of 

capacity the battery can store after each discharge (Pure Energy Solutions Inc., 2008). 

LiPo batteries can also hold 30% more capacity but are much lighter than a NiMH 

battery. They are commonly used for powering remote controlled UAVs because of 

their longer flight time, lightweight, energy density and rechargeability.  

A 2200mAh LiPo battery was selected with specifications shown in Figure 3.13(Pure 

Energy Solutions Inc., 2008): 

 

 

Figure 3.13: A 2200mAh LiPo battery  

LiPo batteries are specified in terms of their voltage, miliamperes-hour (mAh) and 

discharge rate. The battery used has the following specifications; 

• Amp. Hour  – 2200mAh 

• Discharge rate – 25C 

• Voltage – 11.1V 

The current supplied by a LiPo battery is calculated as (Starlino, n.d.);  
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    𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=𝐴𝐴ℎ 

(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑜𝑜𝑜𝑜𝑜𝑜)∗C 

(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)   

  (3.32) 

            

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐=2200/1000∗25=55 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎    

  (3.33) 

The motors draw currents equally. Therefore, the current going to each ESC and motor 

is:  

    𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚=55/4= 15 𝐴𝐴. 
  (3.34) 

This current is suitable as it can be handled by the 30A ESC and 15-25A motors. 

3.5.2  DC Brushless Motors 

DC brushless motors form the main component of the quadcopter rotor. The motors 

should be reliable with fast response for stabilization and control the vehicle. 

Moreover, the motors should be powerful enough to lift the quadcopter UAV and its 

payload. They should also be able to perform various maneuvers. A typical DJI 

2212/920 motor used in this work is as shown in Figure 3.14 (Numan, 2017). 

 

Figure 3.14: BLDC motor from DJI 2 4  
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Readytosky 2212 920KV brushless motors are used. The 2212 refers to the motor size 

that supports a frame size of up to 450 𝑚𝑚𝑚𝑚. The KV is theoretical increment in rotor’s 

revolution per minute when the voltage would increase by 1V without any load. 

Therefore for a battery of 11.1V tends to revolve at 10212rpm without any load. 

The BLDC motor model 2212 has a total weight of 38g with dimensions of 

28(diameter)*22mm (long) and shaft size of 3.17(diameter)*33mm (long). The RPM/v 

is 920 KV and a maximum power of 102W. It works with a 2S – 3S Li-Po battery. 

The motors chosen provide a maximum thrust of 1200g each, with 4 motors providing 

a total a total of 4800 𝑔𝑔 thrust.A quadcopter should be able to carry half of the thrust 

provided by the motors. In this case 1/2 ∗ 4800𝑔𝑔 = 2400𝑔𝑔 

In this work, the quadcopter weighs 2200 𝑔𝑔 which is just below the maximum 

payload.The propellers are symmetrically pitched propellers as shown in Figure 3.16. 

A propeller generates aerodynamic lift force. A pair of clockwise and anticlockwise 

rotating propellers nullify the gyroscopic effect of each individual motor. With light 

propellers (commonly carbon fiber), the quadcopter is able to perform lift and hover 

at less than 50 percent motor rating. 

3.5.3 Sizing of Propellers 

Sizing of propeller was done based on Thrust-RPM mathematical model discussed in 

(Jirinec, 2011). The propeller variations based on quadcopter frame size and motor 

characteristics are as shown in Table 3.4.  

Table 3.4: Propeller Sizing and Selection 

Frame size Prop Size Motor size KV 
150mm 3” 1105-1306 or smaller 3000KV or higher 
180mm 4” 1806 2600KV-3000KV 
210mm 5” 2204-2208,2306 2300KV-2600KV 
250mm 6” 2204-2208,2306 2000KV-2300KV 
350mm 7” 2208 1600KV 
450mm 8”,9”,10” 2212 or larger 1000KV or Lower 



66 
 

A large propeller of  8 × 3.5  with 8 inches in diameter and 3.5 inches in pitch was 

chosen as they are the most suitable for motors with low KV ratings. The large 

diameter and a lower pitch generates more torque (less turbulence) for lifting. The 

pitch is the travel distance of a single propeller’s rotation. 

3.5.4 Testing of Propeller symmetry 

The propellers used were tested for symmetry as shown in Figures 3.15. A propeller 

with a broken tip was mounted on a symmetry tester allowed to settle. The 

unsymmetrical propellers are not able to maintain a horizontal orientation on the 

symmetry tester as shown in Figure 3.16. It is worth checking for symmetry of 

propellers (even for unbroken tips) since unsymmetrical propellers will not provide 

the desired thrust. 

 

Figure 3.15: Unsymmetrical propeller due to broken tip 

A suitable propeller should maintain an orientation shown in Figure 3.17. 
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Figure 3.16: A symmetrically pitched Propeller 

3.5.5 Electronic Speed Controllers (ESCs)  

The motor speeds are varied using an electronic circuit known as Electronic Speed 

Controllers (ESCs) (Wil Selby, n.d.). Apart from providing for dynamic braking for 

the motors, the ESCs also convert the supplied battery DC voltage into 3 phased PWM. 

The ESC selected for this work has the following features: 

 Low-voltage protection compatible with 2S – 4S LiPO battery,  

 Over-heat protection 

 Throttle signal loss protection  

 Current rating of 30 A and 40A burst current 

 Dimensions: 52*26*7 millimetres with a weight of 28 grams 

3.5.6 PixHawk Controller Board 

The quadcopter requires a microcontroller for flight controller. There are several fight 

controllers like Arducopter,APM, APM, APM 2.8 or HobbyKing KK2.1. A PixHawk 

flight controller is used in this scheme because it is highly recommended for general 

use. In addition to being cheap, it is easy to integrate with a series of analog and digital 

sensors that provide feedback states. The board uses a 168MHz Cortex M$F CPU 
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(256KB RAM). It runs a Real Time Operating System (RTOS) with 14 PWM outputs 

and other connectivity options for additional peripherals (Herrera, 2017). 

 

Figure 3.17: PixHawk Board 

Special features: Compatible with a PPM receiver, dimensions: 81.5 mm x 50 mm x 

15.5 mm with a weight of 49 grams pounds, allows for automatic and manual mode 

and has micro SD slot for image storages. 

The Pixhawk flight controller gives out signals to the ESC in PWM form. The ESC 

converts the PWM signal to the equivalent level of electrical power then feeds it to the 

motor.  
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CHAPTER FOUR 

4  RESULTS AND DISCUSSION 

This chapter presents analysis and discussion of the results obtained from the study. 

The developed EKF-FuzzyPID has been tested by simulation in MATLAB-

SIMULINK and also in experiments. The EKF-FPID as well as the PID controller 

were separately applied to a physical quadcopter. The FLC-PID performance was 

tested in MATLAB/SIMULINK only. The performance of the quadcopter under PID, 

FuzzyPID and EKF-PID were compared to validate the effectiveness of the developed 

controller. 

 

4.1 Roll and Pitch Estimation 

A section of experimental values in the determination of attitude angles is as shown in 

Table 4.1. This set of data was obtained directly from the physical quadcopter setup 

while mimicking its maneuvers during flight. The significance of this experiment was 

to show that the actual feedback signals were noise free and that there was no bias. 

The columns Acc_r, Com_r, Kal_r and Gyr_r are the roll angles determined by 

accelerometer, complimentary filter, Kalman filter and Gyroscope respectively 

whereas Acc_p, Com_p, Kal_p and Gyr_p are the pitch angles. The data from the 

accelerometer are combined using estimation techniques Kalman filter and 

Complimentary filter. 
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Table 4-1: Attitude angles in degrees 

A section of Feedback values obtained from orientation sensors in degrees 

Time(s) Acc_r Com_r Kal_r Gyr_r   Acc_p Com_p Kal_p Gyr_p 

1 -16.63 13.19 15.19 -39.84  
 

-4.72 -6.96 -9.03 33.34 

2 -16.85 11.3 14.61 -39.62  -6.61 -8.16 -10.27 32.03 

3 -16.44 9.53 14 -39.44   -14.23 -9.7 -11.55 30.82 

4 -12.8 8.04 13.4 -39.36   -26.14 -11.76 -12.88 29.85 

5 -0.6 7.44 13.04 -39.35   -35.71 -14.05 -14.12 29.19 

6 4.66 7.18 12.75 -39.42   -41.26 -16.32 -15.21 28.8 

7 3.42 6.72 12.29 -39.64   -41.56 -18.2 -16.03 28.67 

8 -4.79 5.73 11.65 -39.83   -37.64 -19.5 -16.54 28.74 

9 -16.35 4.06 10.8 -39.96   -31.77 -20.13 -16.72 28.98 

10 -24.38 1.96 9.77 -40.08   -24.78 -20.07 -16.55 29.4 

11 -25.93 -0.07 8.75 -40.16   -16.98 -19.28 -16.01 30.01 

12 -23.87 -1.8 7.82 -40.23   -12.76 -18.14 -15.24 30.76 

13 -20.27 -3.18 6.98 -40.32   -9.34 -16.78 -14.36 31.55 

14 -16.35 -4.18 6.26 -40.41   -8.27 -15.51 -13.53 32.28 

15 -12.16 -4.79 5.68 -40.47   -8.37 -14.48 -12.88 32.85 

16 -8.96 -5.11 5.23 -40.49   -8.95 -13.75 -12.46 33.22 

17 -5.54 -5.16 4.87 -40.52   -9.31 -13.34 -12.31 33.32 

18 -3.25 -5.01 4.62 -40.5  

 

-10.91 -13.29 -12.44 33.19 

19 -1.98 -4.77 4.42 -40.47  -13.09 -13.56 -12.78 32.89 

20 0.29 -4.4 4.27 -40.45  -15.14 -14.02 -13.24 32.51 

21 1.58 -3.93 4.19 -40.4   -16.49 -14.54 -13.73 32.14 

22 -0.35 -3.59 4.1 -40.3   -19.22 -15.15 -14.2 31.83 

23 -4.13 -3.56 3.9 -40.23   -21.16 -15.75 -14.59 31.65 

 

Signal fusion is accomplished through Kalman and the Complimentary filtering. The 

values in Table 4.1 are plotted in MATLAB as in Figure 4.1 and 4.2. 
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Figure 4.1: Pitch angle determination using different methods 

Here, the reference point is zero. From Figure 4.1 and 4.2, it can be observed that the 

gyroscope data has drifted from zero and even continues to drift from its initial value. 

This sensor therefore needs recalibration every time it is used to determine the 

feedback angles. For longer period of use, it would be very inaccurate. The 

accelerometer gives very accurate feedback angles with time. It therefore performs 

better than the gyroscope for longer periods. However, its performance is affected by 

vibrations, from motors in this case, and the feedback signal is therefore very noisy as 

can be observed. The two sensor values can be complimented to combine their 

advantages and eliminate their shortcomings using the Complimentary filter and the 

Kalman filter. The two filters are able to eliminate the drifting and the noise through 

signal fusion. Complimentary filter is simple and easy to implement as compared to 

Kalman filter. It can however be observed that Kalman slightly performs better than 

the complimentary filter when filtering the vibration noise. 
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Figure 4.2: Pitch angle determination using different methods 

4.2 PID control 

Here, the PID gains used are initially guessed and then subsequently tuned depending 

on the observed system performance. The controller was simulated for a faultless 

system and faulty system with complete rotor failure introduced at 12th second for rotor 

number 1. The PID gains used and as a result the overshoot sustained are as shown in 

Table 4.2. 

Table 4-2: PID values for Pitch Angle 

 
Pitch angle without 

fault 

Pitch angle with fault 

at 12th second 

𝐾𝐾𝑃𝑃 1 1 

𝐾𝐾𝐼𝐼 0.05 0.05 

𝐾𝐾𝐷𝐷 1 1 

% Overshoot 9% 12 
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Figure 4.3 shows pitch response for PID control. It can be observed that the angle 

completely deviates further from the set point 0 when a complete loss of rotor 1 occurs 

at 𝑡𝑡 = 12 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. The PID controller is unable to return the quadcopter to its setpoint 

orientation as far as the pitch is concerned. 

 

Figure 4.3: Pitch Response with PID control only 

 

Table 4-3: PID values for Roll control 

 Roll angle without 
fault 

Roll angle with fault 
at 12th second 

𝐾𝐾𝑃𝑃 1 1 
𝐾𝐾𝐼𝐼 0.05 0.05 
𝐾𝐾𝐷𝐷 1 1 

% Overshoot 35% 40% 
% Undershoot 8% 9% 
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Figure 4.4: Roll Response with PID control only 

Figure 4.4 shows that the complete loss of rotor 1 at 12th second does not affect the 

roll orientation, the quadcopter is able to maintain the set point roll angle.  

Table 4-4: PID values for Yaw control 

 Yaw angle without 

fault 

Yaw angle with fault 

at 12th second 

𝐾𝐾𝑃𝑃 1 1 

𝐾𝐾𝐼𝐼 0 0 

𝐾𝐾𝐷𝐷 0.25 0.25 

% Overshoot 6.5 6.5 
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Figure 4.5: Yaw Response with PID control only 

Figure 4.5 shows that the complete loss of rotor 1 at 12th second does not affect the 

yaw orientation, the quadcopter is able to maintain the set point angle (of 10𝜋𝜋/180 as 

set during the simulation).  

Table 4-5: PID values for Angle control 

 Altitude without fault Altitude with fault at 

12th second 

𝐾𝐾𝑃𝑃 1.6 1.5 

𝐾𝐾𝐼𝐼 1.1 1 

𝐾𝐾𝐷𝐷 1.5 1.8 

% Overshoot 23 23 

Settling time 12s 20s 
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Figure 4.6: Altitude Response with PID control only 

With an overshoot of 23%, the PID system is able to constrain the system around the 

set point height of 10𝑚𝑚 as depicted in Figure 4.6. The system is subjected to a complete 

failure of rotor 1 at 12th second and a loss in height is observed for 8 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. The 

quadcopter therefore becomes unstable for  8 𝑠𝑠𝑠𝑠𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  and then control is regained. 

4.3 Fuzzy PID control 

The inputs to Fuzzy system are the error and the derivative of error from the 

quadcopter’s altitude and attitude parameters. The fuzzy rules are used to adjust the 

PID gains automatically. The fuzzy output variables ∆𝐾𝐾𝑝𝑝,∆𝐾𝐾𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 ∆𝐾𝐾𝑑𝑑 are extracted 

from the fuzzy matrix table discussed in section 3.3.2. The PID control parameters are 

adjusted using ∆𝐾𝐾𝑝𝑝,∆𝐾𝐾𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 ∆𝐾𝐾𝑑𝑑 for real time attitude and altitude control. Figure 4.7 

is the 3D representation of 𝐾𝐾𝑝𝑝 as function of error, 𝑒𝑒 and error derivative,𝑑𝑑𝑑𝑑
 𝑑𝑑𝑑𝑑

. It shows 

how smooth or rough the system transitions as the gains are regulated. 
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Figure 4.7: Variation of 𝑲𝑲𝒑𝒑 

Figure 4.8 shows Pitch response when a rotor failure occurs at 12th second. It is evident 

that after the fault, the pitch response has shifted to 0.12 from the desired set point of 

0. Here, the error is not corrected even after a period of time. The Fuzzy PID controller 

was able to return the quadcopter to the target set point even after the error is corrected. 

The time taken to return the system to desired set point angle is 5 seconds as can be 

observed from the figure. 

 

Figure 4.8: Pitch Response under actuator fault 
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Figure 4.9: Roll Response under actuator fault 

Figure 4.9 shows that whereas PID controller has an overshoot of 3%, the Fuzzy PID 

was able to completely eliminate the overshoot.  

 

Figure 4.10: Altitude Response under actuator fault 
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The set point height in Figure 4.10 is 10𝑚𝑚 and the PID controller attains this height in 

11 seconds according to Figure 4.6 with an overshoot of 28% while Fuzzy PID attains 

the target height in 5 seconds with an overshoot of  25%. A complete rotor failure is 

introduced in 12th second and it can be observed that PID controller registers a loss in 

height of 1𝑚𝑚 with a recovery time of  8 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 after the fault. The Fuzzy PID 

controller registers a slight loss in height of about 0.05𝑚𝑚 with a recovery time of 

2.5 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 after the fault as captured in Table 4.5. 

Table 4 6 shows the comparison between fuzzy PID and PID performance. Fault 

recovery is defined in this work as the time taken for the quadcopter system to come 

back to the desired hover height and maintain the desired orientation angles. FuzzyPID 

performed better than the PID controller as presented in Table 4.6 

Table 4-6: Comparison between fuzzy PID and PID performance 

 Fuzzy PID PID 

Overshoot 25% 28% 

Settling time 5seconds 12 seconds 

Fault Recovery time 2.5seconds 9 seconds 

 

4.4 EKF Optimized Fuzzy PID controller 

The membership function parameters used as EKF state vector were extracted from 

the initially designed membership functions. These are then adjusted according to 

section 3.4. 

In this work, there are two fuzzy inputs and one output totaling to three variables with 

each variable having seven membership functions. This fuzzy system is therefore made 

of 21 membership functions. Each triangular MF used has a modal point and two half-

widths totaling up to 3 parameters. 

Tables 4.7, 4.8 and 4.9 are used to present the data set for the Membership Function 

parameters of the Fuzzy inputs. Table 4.10 presents the MF parameters of the Fuzzy 

output. These values were used as the initial estimates of the Extended Kalman Filter 

recursion algorithm for tuning of the initial Fuzzy Inference system. The values were 
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obtained from the left half widths, right half widths and the centroids of the triangular 

membership functions. 

Table 4.7 shows the data for the MF parameters from the first input, 𝑒𝑒, here,  

𝑏𝑏−, 𝑏𝑏+    are the left and right half widths and 𝑐𝑐 is the centroid of the triangular MFs 

Table 4-7: Membership function Parameters: left, right half widths and the 

centroid 

𝑲𝑲𝑷𝑷 Error MF 
Parameters 

𝒃𝒃− 𝒃𝒃+ c 

1 -0.1667 0 0.1667 
2 0 0.1667 0.3333 
3 0.1667 0.3333 0.5 
4 0.3333 0.5 0.6667 
5 0.5 0.6667 0.8333 
6 0.6667 0.8333 1 
7 0.8333 1 1.167 

 

Table 4.8 shows the data for the MF parameters from the second input error derivative, 

𝑑𝑑𝑑𝑑. These values are derived from the centroid and half widths of the triangular 

membership functions used.  

Table 4-8: Membership function Parameters: left, right half widths and the 

centroid 

𝑲𝑲𝑷𝑷 Error dot MF 
Parameters 

𝒃𝒃− 𝒃𝒃+ c 

1 -0.1667 0 0.1667 
2 0 0.1667 0.3333 
3 0.1667 0.3333 0.5 
4 0.3333 0.5 0.6667 
5 0.5 0.6667 0.8333 
6 0.6667 0.8333 1 
7 0.8333 1 1.167 

 

Table 4.9 shows the data for the MF parameters from the output MFs, 𝐾𝐾𝑝𝑝 while Table 

4.10 shows the data set obtained from the MF parameters of the outputs 𝐾𝐾𝑑𝑑 𝑎𝑎𝑎𝑎𝑎𝑎 𝐾𝐾𝑖𝑖. 
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Where,  

𝑏𝑏−, 𝑏𝑏+    are the left and right half widths and 𝑐𝑐 is the centroid. 

Table 4-9: Membership function Parameters: left, right half widths and the 

centroid 

𝑲𝑲𝑷𝑷 Output MF 
Parameters 

𝒃𝒃− 𝒃𝒃+ c 

1 -0.1667 0 0.1667 
2 0 0.1667 0.3333 
3 0.1746 0.3412 0.5079 
4 0.3333 0.5 0.6667 
5 0.5 0.6667 0.8333 
6 0.6667 0.8333 1 
7 0.8333 1 1.167 

 

Table 4-10: Membership function Parameters: left, right half widths and the 

centroid 

𝑲𝑲𝑰𝑰 𝒂𝒂𝒂𝒂𝒂𝒂 𝑲𝑲𝑫𝑫 
Output MF 
Parameters 

𝒃𝒃− 𝒃𝒃+ c 

1 -0.1667 0 0.1667 
2 0 0.1667 0.3333 
3 0.1667 0.3333 0.5 
4 0.3333 0.5 0.6667 
5 0.5 0.6667 0.8333 
6 0.6667 0.8333 1 
7 0.8333 1 1.167 

 

The reference altitude was set at 10m so the goal of the controller is to maintain a 10m 

height even after a sudden complete loss of one rotor. 

For 10 iterations, Figure 4.11 depicts the progress of training with Kalman filter 

indicating that its converging to better solutions. 
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Figure 4.11: Training Progress 

Altitude response under EKF optimized Fuzzy PID is as shown in Figure 4.12. There 

is no loss in height even after rotor failure is introduced at 12th second. The response 

takes 5 seconds to reach the target height as compared to 6 and 9 seconds for Fuzzy 

PID controller and PID controller respectively. The overshoot is compared in Table 

4.11. 

Table 4-11: Overshoot comparison 

 EKF optimized 
FPID 

Fuzzy 
PID 

PID 

Overshoot 18% 27% 30% 

Fault Recovery 
time 

1 seconds 2.5seconds 9 seconds 
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Figure 4.12: Performance of different controllers for the altitude 

From Figure 4.12, the developed controller registered a negligible loss of altitude after 

rotor failure as compared to FuzzyPID which registered an approximate loss of about 

0.05m. Table 4.11 shows the system recovered quickly from the effects of rotor failure 

for the developed controller as compared to FPID and PID controllers. 

The Pitch response due to the various controllers is depicted in Table 4.12. FPID is 

used here as the tracking controller and from the overshoot values and fault recovery 

time, the optimized registered a quicker correction back to the desired set point 

orientation. 

Table 4-12: Overshoot and recovery time comparison for Pitch Response 

 EKF optimized 

FPID 

Fuzzy PID 

Overshoot 4% 9% 

Recovery time after fault 4 seconds 10 seconds 
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Figure 4.13: Pitch response 

From Figure 4.13, the EKF FPID controller has an overshoot of 4 % compared to 9% 

for FPID. The rotor failure is introduced at 12th second with EKF FPID having an 

offset from the target by 0.01 and a recovery time of 4 seconds as compared to 0.03 

offset and 10 seconds recovery time for FPID. The EKF FPID performs better than the 

FPID. 

 

Figure 4.14: Roll response 
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The roll angle is not affected by the introduction of complete failure on rotor 1 at 12th 

second 

4.5 The Implemented Quadcopter and its Performance Analysis 

 The complete design and fabricated quadcopter UAV is as shown in Figure 4.15 

 

Figure 4-15: The designed Quadcopter 
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4.5.1 Quadcopter Flight Test Results with PID control 

 

 

Figure 4.15: Quadcopter UAV flight with PID control algorithm 
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The quadcopter UAV was able to attain a height of approximately 10 meters above the 

ground without fault as shown in Figure 4.15. Rotor fault was introduced midflight 

and the quadcopter UAV lost angular control and crashed against the wall shown in 

Figure 4.16 

The quadcopter UAV crashed after fault occurrence since the control gains are fixed 

and could not adjust to sustain the structural changes. From simulations in Figure 4.6 

and 4.8, it can be deduced that the quadcopter becomes uncontrollable in angular 

control although maintains the hover position after fault. The experimental quadcopter 

crashes against the wall because of loss control of orientation angles. 

 

 

Figure 4.16: Crashed quadcopter UAV with PID control algorithm  
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4.5.2 Quadcopter Flight Test Results with the EKF-FPID controller 

It should be noted that experimental tests for FuzzyPID were not done due extra cost 

of losing another quadcopter prototype. Figure 4.17 shows quadcopter UAV with the 

EKF-FuzzyPID controller performance without fault. It attained an altitude of about 4 

meters for test flight without rotor fault as can be observed from Figure 4.17.  

 

 

Figure 4.17: Quadcopter UAV flight with the EKF-FPID control algorithm 

without fault 

A fault was introduced at 2meters (for observation purposes since a barometer was not 

used for altitude measurement. This is due to additional costs and interference of the 

desired payload. Additional components also overloads the battery which means 
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reduced flight time for better experimental tests) and the quadcopter UAV maintained 

that hover position (of about 1.99 meters from observation and recovered immediately 

in less than 2 seconds) from the ground as shown in Figure 4.18. 

 

Figure 4.18: Flight hover under rotor fault with the proposed control algorithm 

The controller was able to automatically regulate the gains thereby compensating for 

the structural changes. The quadcopter was able to execute a safe landing despite the 

rotor loss. 

4.6 Discussion and Validation of Results 

It should be noted that Fault recovery time is defined in this work as the time taken for 

the quadcopter system to come back to the desired altitude and maintain the desired 

orientation angles after a rotor fault is introduced. 
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The Experimental and Simulation results comparison was made as in Table 4.13. The 

Simulated system is the work presented in this thesis with 100% loss of effectiveness 

on rotor 1. A fault recovery time of 1second back to the desired height of a step input 

of 10m was recorded as compared to one of the best works in (Liu et al., 2016). The 

performance of the quadcopter prototype with the developed controller subjected to 

rotor failure is also compared with the simulated version. The performance of Kalman 

filter in estimation and filtering of orientation angles was validated by comparing its 

performance with that of the commonly used complimentary filter for the same set of 

accelerometer and gyroscopic data. 

Table 4.13: Comparison of Performance for the developed controller in 

MATLAB/SIMULINK and in a physical quadcopter prototype 

 Simulated system 

(100% LOE) 

Existing simulations in 

literature (20% LOE) 

Quadcopter 

prototype 

Fault Recovery 

time 

1 second 5 seconds 2 seconds 

Lost altitude from 

setpoint 

0.01 meters 0.08 meters 0.02 meters 

 

PID, FPID and EKF-FuzzyPID controller performances were compared in 

MATLAB/SIMULINK whereas experimental tests were only performed for PID and 

EKF-FuzzyPID due high costs of losing another quadcopter and components in 

general. The experimental tests for PID was performed at approximately 10m (Similar 

to simulations) since it was so obvious it would crash. PID controller operated the 

quadcopter back to the desired height in simulation but angle control was lost, similarly 

PID control in experiments could not bring the quadcopter back to the desired 

orientation thereby crashing on a wall although at the desired altitude. 

The performance of the EKF-FPID controller in simulation was done at 10m whereas 

experimentally it was done at 2m for timing and observation. Physically it is 

impossible to observe the behavior of the quadcopter at an altitude of 10m. The 

quadcopter was not fitted with a barometer for measurement of height variations due 

to avoidance of extra costs and limitations on payload and battery usage. The variations 



91 
 

in simulation and experimental results can be explained taking into consideration that 

the simulation were done under the following assumptions: 

• Environmental disturbances such wind variations are ignored for 

MATLAB/SIMULINK simulations 

• Aerodynamic, gyroscopic and Coriolis effects are neglected in Matlab 

Simulations 

• The components used for the quadcopter implementation were chosen based 

on industrial standards and available literature since designing and sizing of 

individual components is beyond the scope of this work 

• Smaller angles are used for simulations  

However, the variations between simulations and experimental tests for the EKF-

FuzzyPID controller were very minimal as shown in Table 4.13 above. 
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CHAPTER FIVE 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions  

The objective of this thesis was to design an optimized Fuzzy PID Controller using 

extended Kalman filter for stabilization and safe landing of a prototype quadcopter in 

the event that rotor failure occured. This was verified through simulated output 

responses of the system to step input signals. Moreover, the experimental results 

observed from the quadcopter prototype showed that the developed controller and its 

algorithms worked. 

Noise free and bias free signals for angle estimations were obtained successfully by 

combining the benefits of accelerometer and gyroscope through Kalman filter and 

validating the results by comparing the performance of the used filter and the 

Complimentary filter 

From simulations, PID, FPID and EKF-FuzzyPID can operate the quadcopter back to 

the desired height, the performance of the EKF-FPID controller is significantly 

superior than that of the baseline controller after fault occurrence with PID having a 

recovery time of 9s whereas the EKF optimized FPID having a recovery time of 1s.The 

quadcopter dynamic system with PID control algorithm was simulated in 

MATLAB/Simulink for rotor loss at 𝑡𝑡 = 12 seconds. PID controller guarantees 

quadcopter stability in absence of any structural disturbance. When a rotor failure is 

introduced, 27% of overshoot were distinctly observable in altitude response and even 

shifts from target angle in attitude control. Loss of height of about 1 meter was also 

observed when actuator fault occurred at 12th second with a fault recovery time of 8 

seconds. The overall settling time after fault simulation is 20% 

To reduce the error, Fuzzy PID was used and the fault recovery time significantly 

improved to 2.5 seconds with altitude loss of 0.02 meters. Conclusively, the fuzzy PID 

controller showed better performance as compared to the conventional PID controller 

because of the fixed PID gains. Fuzzy controller was able to automatically adjust the 
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gains. Similarly, to further reduce the error, the quadcopter dynamic system was 

simulated in MATLAB/ Simulink with the EKF optimized fuzzy PID. For a rotor fault 

at 𝑡𝑡 = 12 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, there was a significant improvement in overall settling time of 14 

seconds for EKF optimized fuzzy PID from 20seconds for the PID controller and 

overshoot from 27% to 18%. The fault recovery time was recorded at 1 second with 

an insignificant loss of altitude.  

The designed control algorithm was also tested on a physical flight controller. A rotor 

fault resulted in negligible loss of altitude from 2 meters to a hover position of about 

1.98 meters above the ground. The quadcopter UAV was able to execute a safe landing 

thereafter. The proposed objectives were therefore successfully achieved. 

5.2 Recommendations 

a) Future research in this area may focus on the optimization of the fuzzy systems 

using non-triangular membership functions. 

b) The quadcopter performance should also be investigated for loss of rotor 2, 3 

or 4. 

c) Moreover, performance of a quadcopter UAV should be investigated for loss 

of 2 rotors. 

d) In this work, test flights on the quadcopter UAV were done without any safety 

cage around it. This led to breakages of parts and loss of components whenever 

a crash was encountered. This increased the cost of implementation. It is 

therefore necessary that in any future work, a safety cage is designed around 

the quadcopter UAV to guarantee safety of components and parts.   
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APPENDICES 

Appendix I: Implementation of the Kalman Filter 

The equations in 3.2.3 was implemented into a simple C code as follows: 
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In C, this is written as: 
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These equations are implemented into C as: 
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Which is implemented in C as: 

S; / P[1]P[0]K[1]
S; / P[0]P[0]K[0]

=
=

 

  

Step 6: 

kkkkkk yKxx ~ˆˆ 1 += −  



106 
 

kkkb

k
kkbkkb

yK
yK

y
K
K









+








=









+








=









−

•

−

••

~
~

            

~

1

0

1

1

0

1

θ
θ

θ
θ

θ
θ

 

Implemented as: 
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This is implemented as: 

P01_temp;*K[1]-   P[1][1]
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From literature, the following variances work well with most Inertial Measurement 

Units. 
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