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ABSTRACT 

 

This study analyses the effect of number of slits on a diverging conical ring insert 

when symmetrically cut out on the curved surface to generate multi longitudinal 

vortices in an incompressible fluid flow on a cylindrical tube. This is a passive 

augmentation technique aimed at achieving heat transfer enhancement. The insert 

disrupts flow creating a mixture between core and near wall fluid into a swirl flow 

with a pressure drop and friction characteristic generating higher heat transfer 

enhancement than that attained by either laminar or turbulent fluid flows achieved 

in a tube of equal diameter using other augmentation techniques. In this research 

work hot water is used as the test fluid in a simulation to establish the pressure drop 

and temperature variation along a tube of inner diameter 0.05 m and 8 m long with 

a diverging conical ring insert placed at a fixed distance from the entrance where 

uniform fluid velocity is attained to avoid the pipe entrance effect. Using a conical 

ring insert with inlet diameter of 0.036 m and an outlet diameter of 0.05 m giving a 

pitch ratio of 0.72, when the fluid flows into the pipe inlet region at a pressure 

P0=110,000 Pa and temperature T0 = 370 K. Analysis of the results shows a 

positive coefficient of heat transfer and thermal performance factor when 

comparing an insert with no slit and those with one, two and three slits. The highest 

rate of heat transfer enhancement is 423.38  attained when two multi – longitudinal 

vortex pairs are formed by a diverging conical ring insert with two slits on opposite 

sides of the curved surface. Comparison is done of simulated multi longitudinal 

vortices generated and analytical vortices that can provide perfect synergy of 

temperature field and the fluid velocity vector to provide maximum heat transfer 

enhancement. Also governing equations of the fluid flow are non- dimensionalized 

then discretized to determine pressure and temperature profiles at various Reynolds 

number with the fluid considered to be a laminar flows. 
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CHAPTER ONE 

INTRODUCTION TO THE STUDY 

1.1 Introduction 

In this chapter the main terms in the research work are defined. An introduction to 

heat transfer enhancement techniques is provided. A background of the research 

study is described to relate it with scientific knowledge necessary to understand the 

research. There after a statement indicating the research problem, the objectives 

and justification of the research work. 

1.2 Fluid 

A fluid is a substance that continuously deforms under a shear force. Fluid 

mechanics is therefore the study of fluid motion and the forces that cause this 

motion. Fluids can be classified into compressible or incompressible fluids. A fluid 

is said to be compressible if its volume changes significantly when subjected to 

change in pressure. While density of compressible fluids varies with temperature 

and pressure. If there are no significant changes in the density of a fluid then the 

fluid is assumed to be incompressible. 

1.3 Vortex 

A vortex is a spinning flow or any spiral motion with closed streamlines, where the 

fluid rotates rapidly around a central axis. It is a flow involving rotation about an 

axis vertical or horizontal with a circular flow that possesses vorticity which is the 

circulation per unit area at a point in the flow field and is a vector quantity whose 

direction is along the axis of the flow.  

In fluid mechanics a distinction is often made between two limiting vortex cases, 

the free (irrotational) vortex and the forced (rotational) vortex. A free (irrotational) 

vortex has a tangential velocity that varies inversely as distance from the centre of 
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rotation and angular momentum is a constant. A forced (rotational) vortex has the 

fluid essentially rotating as a body with no shear force. 

1.4 Multi- longitudinal vortex  

They are multiple vortices with a swirling axis parallel to the main flow direction 

and move downstream swirling around an axis with a velocity component referred 

to as azimuthal, transverse or tangential which results in helical winding of the 

streamlines.  

 

1.5 Heat transfer enhancement  

Is an improvement in performance of a thermal system by change of surface 

geometry to obtain higher energy efficiency, also referred to as heat transfer 

augmentation or intensification. The conventional heat exchangers are improved by 

means of various enhancement techniques with emphasis on augmented surfaces 

that create one or more combinations. The following conditions are favourable for 

an increase in heat transfer rate with an undesirable rise of friction by either 

disruption in the development of boundary layer. Increase in contact surface area 

between fluid and the tube wall provides heat transfer area and generation of 

swirling or secondary flow. The main aim of researchers in this field is to study of 

heat transfer enhancement aiming at reducing the size and cost of heat exchangers.

  

1.6 Convection heat transfer 

Convection is the mechanism of heat transfer by a fluid in the presence of bulk 

fluid motion. Convection is classified as natural or forced depending on how the 

fluid motion is initiated. In natural convection it occurs by natural process such as 

buoyancy effect, i.e. rise of warmer fluid or fall to lower altitude of cooler fluid. In 

forced convection the fluid is forced to flow by external means such as a pump. 
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1.7 Boundary layer  

A boundary layer is a thin fluid region adjacent to the surface of a body or solid 

wall in which viscous forces exist. The fluid particles in contact with the solid body 

surface attain the velocity of the body. The region outside this layer is called free 

stream region where the flow is unaffected by viscous forces. Boundary layer 

thickness theory is important in analyzing fluid flow problems involving 

convective transport. When particles of a real fluid are in contact with a surface 

their velocities are retarded gradually, which in turn acts to retard the motion of 

particles in the next layer. This process continues until the effect becomes 

negligible, in cases of a pipe‟s internal flow. A velocity boundary layer thickness is 

defined as the distance away from a surface where the velocity reaches 0.99 that of 

the free-stream velocity.  

 

1.8 Background of the study 

Conventional sources of energy are being depleted at an alarming rate, which 

makes future sustainable development of energy use very difficult. Heat transfer 

enhancement technology has been developed and widely applied to heat exchanger 

applications over the past decades; for example in refrigeration, automotives, 

process industry and solar water heater technology, because the reduction in overall 

thermal resistance can lead to a smaller heat exchanger. To date there have been a 

large number of attempts to reduce the size and costs of heat exchangers. The 

development of high performance thermal systems has stimulated interest in 

methods to improve heat transfer. The performance of a conventional heat 

exchanger can be substantially improved by a number of enhancement techniques. 

A great deal of research effort has been devoted to developing apparatus and 

performing experiments to define the conditions under which an enhancement 

technique will improve heat transfer. The goal of enhanced heat transfer is to 

encourage or accommodate high heat fluxes. This results in reduction of the size of 
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heat exchanger, which leads to lower capital cost. Another advantage is the 

reduction of temperature driving force, which reduces the entropy generation and 

increases efficiency. In addition, the heat transfer enhancement enables heat 

exchangers to operate at a lower velocity, so as to achieve the same or even higher 

heat transfer coefficient. Therefore a reduction of pressure drop corresponds to less 

operating cost, achieved in reduction of pumping energy and strength of pipes used.  

All these advantages have made heat transfer enhancement technology attractive in 

heat exchanger applications with the tube insert technology being one of the most 

effective  heat transfer enhancement technologies, particularly for the retrofit 

situation. With tube insert technology additional exchangers can often be avoided 

and thus significant cost saving becomes possible. Furthermore as a heat exchanger 

becomes older the resistance to heat transfer increases owing to fouling or scaling. 

In this case the heat transfer rate can be improved by introducing a disturbance in 

the fluid flow by different enhancement technologies, breaking the viscous and 

thermal boundary layer. Augmentation techniques are broadly classified into three 

different categories: passive, active and compound techniques. Passive techniques 

are those that do not require any direct input of external power, rather they use it 

from the system itself which ultimately leads to an increase in fluid pressure drop. 

They generally use surface or geometrical modifications to the flow channel by 

incorporating inserts or additional devices. They promote higher heat transfer 

coefficients by disturbing or altering the existing flow behaviour except for 

extended surfaces. Heat transfer augmentation by these techniques can be achieved 

by using different techniques some of which include displacement enhancement 

devices. These include inserts that are used primarily in confined forced convection 

and to improve energy transport indirectly at the heat exchange surface by 

displacing the fluid from the heated or cooled surface of the duct with bulk fluid 

from the core flow. 

 Swirl flow devices produce superimposed swirl flow or secondary recirculation on 

the axial flow in a channel. These include helical strip or coiled screw type tube 
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inserts. Twisted tapes in Figure 1.1 show an isometric view which illustrates swirl 

flow along the tube which is used for single phase and two-phase flows, to provide 

heat transfer enhancement in a cylindrical pipe.  

 

 

Figure 1.1: Double twisted tape inserts generating multi longitudinal vortices, 

                   Source: Hong et al,. (2012).  

Active techniques are those that have external power used to facilitate the desired 

flow modification and improvement in the rate of heat transfer. Augmentation of 

heat transfer by this method can be achieved in different ways such as; Mechanical 

aids: instruments stir the fluid by mechanical means or by rotating the surface. 

These include rotating tube heat exchangers, scrapped surface heat and mass 

exchangers. Other ways include surface vibration, injection and suction.  

Compound techniques occur when any two or more of these techniques are 

employed simultaneously to obtain enhancement in heat transfer that is greater than 

when produced by either of them if used individually. This technique involves 

complex design and hence has limited applications. 

The swirl flow devices can be classified into two, continuous and decaying swirl 

flow. In continuous swirl flow the swirling motion persists over the whole length of 

the tube for example twisted-tape inserts, coiled wires and helical grooves. In 

decaying swirl flow it is generated at the entrance of the tube and decays along the 
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flow path for example the radial guide vane swirl generator and the tangential flow 

injection device.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Relationship of various heat transfer techniques used in cylindrical  

                   tubes. 

 

In decaying swirl flow the heat transfer coefficient and the pressure drop in the pipe 

decreases with axial distance while for continuous swirl flow the heat transfer 

coefficient and the pressure drop are kept constant.  The distinction  between 

different heat transfer augumentation techniques is illustrated in Figure 1.2 below 

indicating the nature of a decay swirl flows, which in this study is achived by 

presence of a diverging conical ring (DCR) insert with slits in symmetrical 

positions to generate multi longitudinal vortices in a cylindrical pipe. 

It is necessary to understand heat transfer potential capacity and dissipation 

function as well as their physical meaning in the overall heat transfer capability and 
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dissipation rate of the heat transfer capacity respectively in a give set up. 

Dissipation function for the heat transfer potential capacity is a payout on heat 

transport, the laminar convection in a tube with constant thermo physical properties 

and without internal heat source. The dissipation of heat transfer potential capacity 

corresponds to the heat transfer performances. Unlike the steady heat conduction, 

convection heat transfer cannot be optimized only by the minimal dissipation of 

heat transfer potential capacity because the velocity field influences the heat 

transfer enormously. The field synergy equation for convective heat transfer is 

similar to but not the usual momentum conservation equation in the Navier–Stokes 

equation because it contains a virtual additional force. Synergy force on the field 

synergy equation is derived by conditional variation calculus based on the least 

flow dissipation of heat transport potential capacity. The numerical simulation of 

laminar convection heat transfer in a straight circular tube shows that multi-

longitudinal vortex flow in a tube is the flow pattern that enhances heat transfer 

enormously. Therefore optimum velocity field indicates basic characteristics of a 

flow pattern that benefit heat transfer most for laminar flow in a tube as between 2 

to 4 multi-longitudinal vortex pairs. The most direct application of the synergy 

equation is to offer guidance when selecting and designing an appropriate 

enhancement technique. The optimum velocity field for laminar convection heat 

transfer in a tube can be obtained through solving the field synergy equation under 

a specific flow and its thermal boundary conditions.  

1.9 Statement of the problem      

Vortex flows have higher heat transfer enhancement associated with a pressure 

drop and lower friction characteristic compared with both laminar and turbulent 

fluid flow. The interest to study effects caused by number of slits on a diverging 

conical ring insert when cut out in symmetrical positions on the curved surface to 

generate multi- longitudinal vortices in fluid flow was inspired by a need to attain 

field synergy.  To enhance heat transfer on an incompressible fluid flow in a 
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cylindrical tube by designing an enhancement element that can achieve an optimum 

performance on both heat transfer enhancement and flow resistance. 

1.10   Justification of the study 

The convection heat transfer enhancement in cylindrical tubes is an essential 

problem with wide engineering applications as they are commonly used for fluid 

transmission. In addition the swirl flow generator is also used in augmenting heat 

transfer. Swirl flow is extensively used in several industries to enhance the rate of 

heat transfer in equipment such as heat exchangers, fuel combustion and fluid 

mixing tabulators where specific temperature is necessary for optimum results yet 

heat is lost during transportation in pipes and can be regained without using any 

other external energy.  

Conical ring inserts are cheaper than twisted tapes, fins or ribs to manufacture and 

have a lower maintenance cost. When replacing inserts in case of fouling, scaling 

or wearing out you only need to detach the pipes then fix a new conical ring insert 

without replacing the whole piping system. 

 

1.11 Objectives 

1.11.1 General objective:  

To determine the rate of heat transfer enhancement on fluid flowing in a cylindrical 

tube when inserted in a diverging conical ring with symmetrically cut out slits to 

generate multi- longitudinal vortices in the flow which disrupts thermal boundary 

layer. 

1.11.2 Specific objectives: 

i. To generate multi- longitudinal vortex pairs using diverging conical ring 

insert with slit cut out at symmetrical positions on the slant edges. 
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ii. To determine characteristic pressure variations along the flow tube in 

presence of a diverging conical ring insert. 

iii. To investigate the rate of heat transfer in relation to the number of slits on a 

diverging conical ring insert.  

iv. To evaluate the coefficient of skin friction in a tube with a diverging conical 

ring insert.    
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CHAPTER TWO 

LITERATURE REVIEW 

2.1  Introduction 

A review of related literature with emphasis on recent works in the area of heat 

transfer enhancement and other research studies in areas of heat transfer 

enhancement using other different types of inserts to compare the efficiency of 

different passive augmentation techniques. 

 2.2 Literature relevant to the study 

Passive and active methods of heat transfer augmentation techniques have been 

discussed in detail by Webb et al. (2005) and Dewan et al. (2004) who expressed 

that passive techniques, particularly twisted tape and wire coil insert are 

economical heat transfer augmentation tools. Most of the early work concerned 

with the effect of a conical turbulator on turbulent flow conditions was done by 

Yakut and Sahin (2004) who studied the effect of conical-ring turbulators on the 

turbulent heat transfer, pressure drop and flow-induced vibrations. Durmus (2004) 

investigated the effect of cutting out conical turbulators on heat transfer with 

different types of turbulators and different conical-angles of 5
0
, 10

0
, 15

0 
and 20

0
 

establishing that heat transfer rate as well as friction coefficients increased with the 

angles. Chokphoemphun et al. (2015) found that Nusselt number values for all 

cases of using augmentations are higher than that of plain tube case with 115.9% 

for a spacing ratio of 4.2 and 97% for 6.4 this behavior is attributed to the fact that 

using turbulators increase turbulence intensity and reduce thickness of thermal 

boundary layer leading to raise convection heat transfer. Hossain et al. (2015) 

analyzed heat transfer enhancement in circular tube with and without inserts for 

laminar flow in the range of Re 1600 to 2400 by using COMSOL Multi physics to 

perform CFD simulation. A non-isothermal flow model was considered in which 

water was taken in the model and copper was considered as material of circular 
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pipe under constant heat flux of 32.087 KW/h. using governing equation of non-

isothermal flow together with continuity equation the dynamic behavior of the flow 

was described which transport heat. In the simulation four, six and eight inserts 

were used on a pipe of length 800 mm and they got highest output temperature 

319.28 K for four inserts while the output temperature was 307.85 K when there 

was no insert in the tube also noting that not just increasing the number of inserts 

will increase the heat transfer but determining specific distance between the inserts 

need to be considered. These kinds of flow have been studied by many other 

authors; Sadri (1997) studied asymptotic boundary conditions to examine the 

steady two dimensional flow of a viscous fluid in a channel and solved the 

nonlinear equations using numerical techniques. The instability and bifurcation of 

Jeffery- Hamel (JH) flow is studied as flux driven steadily along the channel is 

increased. This stability of flow through a diverging pipe was examined by Sahu et 

al. (2005) and the velocity profiles at threshold instability were obtained using non 

parallel analysis for very small angles less than four degrees. Putkaradze et al. 

(2006) studied experimentally the velocity profile and related instabilities of the 

flow through diverging channels and concluded in a heuristic manner that the 

solution revealed absolute instability. Pradip and Dinesh (2013) described heat 

transfer intensifiers and reviewed surface roughness, perforated baffle and twisted 

tape inserts applications in tubes and established that if area changes the rate of heat 

transfer also changes. Swaminathan et al. (2011) studied the spatially developing 

global linear stability analysis problem to reveal that disturbance modes are not the 

wave like perturbations assumed by local parallel or weakly non parallel analyses 

and question the relation between critical Reynolds number and angle at the vertex. 

The reverse flow with high turbulent flow can improve convection of the tube wall 

by increasing effective axial Reynolds number decreasing the cross-section flow 

area and increasing the mean velocity as well as temperature gradient. Ayhan et al. 

(1999) studied the effect of truncated hollow cone inserts on heat transfer and 

friction in a tube. Eiamsa-ard and Promvonge (2006) reported the effect of V-
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nozzle turbulators on heat transfer and flow friction in a tube. They also studied the 

effect of combined conical-nozzle and snail entrance on heat transfer and friction 

characteristics in a uniform heat flux tube and reported a substantial increase in 

heat transfer obtained from the use of both enhancement devices. Curnia et al. 

(2012) carried out a parametric study of laminar flow and heat transfer 

characteristics of coils made of tubes of different cross- section area with an aim to 

determine geometrical effect on heat transfer performance. Nagarajan et al. (2015) 

found in double pipe heat exchanger of diameter 0.015 m and length of 2.5 m with 

variable twisted type insert in ANSYS fluent that a trend of increase in heat transfer 

with the provision of insert on the heat exchanger. The heat transfer was found to 

increase as the Reynolds number was varied over the range. The result shows that 

effect of insert on the enhancement of heat transfer depends on both the pattern of 

insert and Re of the flow.  Promvonge (2007) conducted experiments by inserting 

several conical rings as turbulators over a test tube as shown in Figure 1.3. Conical 

rings with three different diameter ratios of the ring to diameter (d/D = 0.5, 0.6, 

0.7) were introduced in the tests and for each ratio the rings were placed with three 

different arrangements: converging conical ring, diverging conical ring, diverging 

converging conical ring in which cold air at ambient temperature was passed 

through the tube. 
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Figure 2.1: Conical ring inserts (a) diverging, (b) converging, (c) diverging-  

                   converging. Source: Promvonge (2007) 

 

Yakut and Sahin (2004) used conical-ring turbulators placed inside a tube to 

produce reverse flow or turbulent flow for each module of the conical rings in 

which heat transfer was improved along the tube wall. In their experimental study 

the level of reverse flow (re-circulation flow) was generated from separation and 

reattachment of a boundary layer from different pitch lengths between the modules. 

Fan et al. (2011) numerically investigated turbulent flow and heat transfer in a 

circular tube fitted with conical strip inserts using k-ε turbulence model. The role of 

conical rings in heat transfer enhancement (HTE) and pressure drop change on a 

pipe with constant heat flux boundary condition was investigated by Anvari et al. 

(2011) using water as a working fluid and they found that insertion of turbulators 

has significant effect on the enhancement of heat especially for diverging ring 
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arrangement. These turbulators can be used in pipes where the compact size is more 

significant than pumping power. Shivalingaswamy and Narahari (2014) studied 

HTE in a tube fitted with circular ring turbulator as passive heat transfer 

augmentation techniques for different diameter ratios d/D at 0.5, 0.6 and 0.7 with 

Reynolds number ranging from 4,000 to 20,000. They found HTE of 57% up to 

195% compared with a plain tube. 

Muhammad et al. (2015) investigated the effects of porous twisted plate as 

insert to enhance heat transfer rate and flow characteristic for a single fitted tube. 

The porous twisted plate was designed with 3 different numbers of holes; 1, 2 and 3 

with 4mm diameter on each segment. The tube was used with plain and porous 

twisted plates inserted. These results compared with the plain tube which showed 

that creation of holes changed the flow profile by generating secondary flow and 

caused turbulence flow. With velocity of the flow was increased and allowing more 

fluid mixing inside the tube it provide more heat transfer across the tube. Therefore 

porous twisted plate with larger numbers of holes enhance better heat transfer rate 

compared to plain tube and plain twisted plate. Eiasma-ard et al. (2008) 

experimentally investigated the heat transfer and friction factor characteristics in a 

double pipe heat exchanger fitted with full length tape and spaced twisted tape in 

forward and backward arrangement of louvered strips, helical screw tape with and 

without core rod to develop the correlations for practical applications. Mohammed 

et al. (2014) conducted experiments in enhancement of forced convection heat 

transfer by means of passive techniques for turbulent air flow through an aluminum 

tube with Reynolds number ranging from 6000 to 13500 on boundary conditions of 

constant heat flux. This showed that divergent nozzle turbulators without 

perforation provide a heat transfer rate of 317% and a friction factor 17 times over 

a plain tube.  Kongkaitpaiboon et al. (2010) studied perforated conical–rings with 

different pitch ratios and different numbers of perforated holes, found that it leads 

to a heat transfer rate up to 137% over that of a plain tube. The perforated conical-

rings enhanced heat transfer more than typical conical-rings on the basis of thermal 
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performance factor of around 0.92 at the same pumping power which was found at 

the smallest pitch ratio and maximum number of holes. 

 Bankar and Pathare (2010) examined V-nozzle inserts with pitch ratio 5.0 in a 

circular tube with length to diameter ratio 28D
L  and Reynolds number ranged 

from 21500 to 48500 and found that heat transfer rate increased by 140% over the 

plain tube with a maximum gain of enhancement efficiency of 1.19. Karakaya and 

Durmus (2013) devised the conical spring turbulators for three different cone 

angles 30
o
, 45

o
 and 60

o 
with Reynolds number ranging from 10000 to 34000 and 

they found that the best results in terms of direction of flow are diverging, 

converging – diverging and converging respectively while the turbulator as best 

results when cone angle is 30
o
, 45

o
 and 60

o
 respectively. Heat transfer 

characteristics studies by Naphon (2006) for a twisted tape insert by varying the 

mass flow rate and inlet temperature of hot water. Wang and Sunden (2002) found 

that twisted tape is more efficient than wire coil insert if no pressure drop penalty is 

considered. Chang et al. (2007) experimentally compared the heat transfer and 

friction factor characteristics of smooth twisted tape with broken and separated 

twisted tape inserts. Promvonge and Eiamsa-ard (2007) reported the effect of 

combined conical-ring and twisted tape insert fitted in a tube on heat transfer 

enhancement and flow friction. Bilen et al. (2009) studied the effect of heat transfer 

and friction characteristics of a fully developed turbulent air flow in different 

grooved tubes compared with plain tube. Sivashanmugam and Suresh (2006) also 

studied the laminar heat transfer and friction factor characteristics in a circular tube 

fitted with full-length helical screw tapes with different twist ratios. Hasim et al. 

(2003) used compound enhancement i.e. twisted tape with helically ribbed tube for 

heat transfer enhancement based on non-dimensional clearance. Al-Fahed et al. 

(1999) experimentally compared the heat transfer and pressure drop characteristics 

for plain tube, micro fin and twisted tape insert tubes. Chou et al. (2012) worked 

with square cut circular ring insert in tube to promote turbulence which enhances 

convective heat transfer. Abdullah (2012) studied the heat transfer and pressure 
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drop characteristics in an eccentric converging – diverging tube with twisted tape 

inserts, the Nusselt number for eccentric converging diverging conical ring was 

found to range from 15% to 45% higher than that of the plain tube and when 

combined with a twisted tape insert it was found to range from 52% to 280% higher 

and a pressure drop 6.8 times that of the plain tube. Yongsiri et al. (2006) studied 

augmentation of heat transfer using nozzle turbulators and swirl generator in 

uniform heat flux tube as the conventional passive enhancement method with a 

pitch ratio of 2, 4 and 7, the Nusselt number being 374%, 342% and 309% 

respectively in comparison with the plain tube. Rashid et al. (2014) focused on 

experimental as well as numerical investigation in a horizontal circular tube by the 

effect of conical ring wire insert on turbulent flow heat transfer.   

The swirl flow devices have been investigated by many researchers and 

methods of generating swirl have been classified into three main categories as done 

by Gupta et al. (1984). The first is tangential flow injection in which the idea is to 

introduce a tangential flow and then induce a swirling fluid motion down the tube. 

The second is guide vanes swirl generators which Yilmaz et al. (2002) grouped in 

two types: radial guide vanes and axial guide vanes. Another swirl generator type is 

direct rotation of the tube. Swirling flow in burners are common because of the 

stabilization of lean flames with minimum head losses, ultra low emissions and fuel 

saving as indicated by Parra et al. (2013). This issue has important environment 

implications since the fuel slip due to incomplete combustion is a harmful 

greenhouse gas. Guo et al. (2015) carried out a theoretical study about the effect of 

a secondary flow on the laminar convection heat transfer, while Saqr and Wahid 

(2014) proposed an empirical correlation for predicting the entropy augmentation 

as a function of the swirl number. Nuntadusit et al. (2012) studied the effect on 

Nusselt number for different set ups of multiple swirling jets. As for the design of 

swirl generators Zohir et al. (2013) evaluated the increase of heat transfer rate when 

modifying the location and pitch angle of the swirl generator upwind the test 

chamber. A heat transfer enhancement concept in which swirl was introduced in the 
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flow was proposed by Kreith and Margolis (1959) while Gambill and Bundy 

(1963) claimed that twisted-tapes are also effective in high Prandtl number fluids 

because such fluids provide high heat transfer rate with less pressure drop 

compared with other inserts. Zozulya and Shkuratov (1974) reported that a smooth 

decrease in pitch of a twisted-tape results in an improved heat transfer rate. Van 

Rooyen and Kroeger (1978) found that for laminar swirl flow heat transfer in a 

smooth tube subjected to axially constant tube wall temperature, the heat transfer 

rate increases considerably for a moderate increase in pressure drop. Bergles et al. 

(1985) considered all these effects and developed laminar flow correlations for the 

friction factor and Nusselt number including the swirl parameter which defines the 

interaction between viscous, convective inertia and centrifugal forces. Dewan et al. 

(2015) showed that heat transfer enhancement can be enhanced by use of passive 

techniques by modifying a pipe‟s geometrical shape or insertion of twisted tapes, 

inclined or porous baffle, corrugated duct, discontinuous crossed ribs and grooves 

but at a cost of increase in pressure drop. Saha and Dutta (2001) observed that on 

the basis of constant pumping power and constant heat flux boundary condition 

short length twisted-tapes are found to perform better than full-length twisted tapes 

for tighter twists. Al-Fahed and Chakroun (1996) found that there is an optimum 

tape width depending on the twist ratio and Reynolds number for the best thermo-

hydraulic characteristics and the tight-fit tape yields a better performance over the 

loose-fit one. Suresh et al. (2004) presented the thermo-hydraulic performance of 

twisted-tape inserts in a large hydraulic diameter annulus. Manglik and Bergles 

(1994) investigated numerically the laminar convection heat transfer in circular-

segment, uniform wall temperature ducts with a straight tape insert. Holit and 

Ozceyhan (2012) studied flow friction and heat transfer behavior of a twisted tape 

swirl generator inserted in a tube considered in the range of Reynolds number 

5,132 to 24,989 noting that HTE tends to decrease with an increase of Reynolds 

number to be nearly constant at Re greater than 15,000 for twist ratios lower than 

three. Wisam (2012) conducted an experimental study on the effect of vortex 
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generators in circular and square tubes on the flow and heat transfer at variable 

locations ahead of a heat exchanger with Reynolds number ranging from 62000 < 

Re < 125000 and heat flux from 3000 to 8000W/m
2
. The results showed that there 

is an effect when using vortex generators on heat transfer and the circular tube was 

found to be best shape for enhancing heat transfer. Mirzaei et al. (2013) 

numerically studied the augmentation of heat transfer by using vortex generators on 

flat and round tube heat exchangers, simulations performed with the steady three 

dimensional incompressible conditions and a renormalization group (RNG) k-ε 

turbulence model used. The Reynolds number based on bulk velocity and height of 

the channel, comparing the effectiveness of vortex generator on a round and flat 

tube for tube fin heat exchanger investigating the average Nusselt number, friction 

factor and performance factor found that the flat tube has a better thermal 

performance than a round tube at lower Reynolds number. Vijay et al. (2014) found 

in an experiment carried out for three heater input and different flow rates of air, 

the effect on heat flow rate and outlet temperature observed respectively in a 

threaded pipe and compared to a plain pipe. The threads increased swirl flow 

formation which improves the contact surface of air with the heated pipe resulting 

in heat transfer enhancement. Nakate et al (2015) performed experiments for heat 

exchanger by inserting twisted tape turbulators with baffle for same twist ratio 

comparing with baffled reduced width twisted tape with holes. Baffled reduced 

width twisted tape shows higher heat transfer coefficient and friction factor 

increase because of higher degree of turbulence created it also gives higher heat 

transfer coefficient than the reduced width twisted tapes. Experimental 

examinations were expressed by Changzhong (2016) to display the influences of a 

rotation of counter-clock wise and clockwise twisted tape compared to normal 

twisted tape inserted in the internal tube, where the maximum value of performance 

valuation criteria of 1.42 was found with the utilization of full length and counter-

clockwise twisted tape embed at Reynolds number of 3800 while the Nusselt 

number intensification was 2.42 times of that of the heated tube. Avinash (2015) 
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studied numerically the effect of twisted tape inserts in a heated tube on heat 

transfer mixing and found that in the case of a tube embedded with twisted tape 

alongside longitudinal movement there was movement of fluid particles in 

transversal direction because of the helical rotational fluid flow. Liu et al. (2012) 

explained physical quantity synergy principle from field synergy by reflecting the 

physical mechanism of convective heat transfer in the laminar and turbulence flows 

and explained physical essentials on reducing flow resistance by revealing how 

heat transfer performance is influenced by physical quantity synergy relation on 

temperature, velocity and pressure. Chen et al. (2013) proposed the entransy 

dissipation based thermal resistance method for heat exchanger performance design 

and optimization.  Jia et al. (2014) used computational fluid dynamics software 

ANSYS Fluent 6.3 to solve coupled governing equations and the SIMPLEC 

algorithm used for coupling pressure and velocity fields. The QUICK discrete 

scheme is applied in the momentum and energy equations to solve the constraint 

scalars and a user defined function in the ANSYS Fluent software was used. 

Different values of Reynolds number and power consumption on a straight circular 

tube 1.7 m long and a diameter 0.02 m model with an inlet temperature of 300 K 

and tube wall temperature 310 K in an optimization section at 1.35m were analyzed 

to determine the temperature and flow field in the cross section as indicated in 

figures 2.2: a and b to show a relation between the temperature and velocity 

vectors. 

By setting entransy dissipation as an optimization objective and viscous dissipation 

as a constraint condition, the optimization flow field equation for convective heat 

transfer is expressed by Meng et al. (2005). The entransy dissipation can be 

regarded as an expression of the irreversibility of heat transfer process, which is 

similar to the entropy generation like that of a thermodynamic process. Entransy 

always decreases in heat transfer process, while entropy always increases. The 

smaller the entransy dissipation the smaller the temperature difference in the fluid 

is and thereby the smaller the irreversibility of heat transfer process. 
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Figure 2.2: a and b, Temperature field and flow velocity vector with three  

                   multi- longitudinal vortex pairs.  Source; Liu et al (2012). 

 

The field synergy principle of boundary layer flow has been systematically 

expounded to show that convective heat transfer not only depends on thermal 

physics properties like temperature difference and fluid flow velocity but also 

depends on the angle between velocity vector and temperature gradient. Li et al. 

(2014) studied the flow and heat transfer characteristics of spiral corrugated tube by 

numerical simulation. Sivakumar et al. (2015) an experimental investigation was 

carried out to measure heat transfer, Reynolds number and friction factor fitted in 

concentric tube with twisted tape inserts. The different twist ratios are 2.52, 3.00 

and 3.20 were studied for the laminar flow using computational fluid dynamics 

software. A copper twisted tape of different twist ratio was inserted and the plain 

tube data were compared with twisted tape inserts. The result shows that twisted 

tape access high heat transfer with increase in friction factor. The exit temperature 

of hot fluid decreases with increase of mass flow rate and high temperatures were 
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obtained in the twisted tape insert. The mean temperature of twisted tube increased 

from 2% to 4% compared to plain tube. It was observed that increase in heat 

transfer rate by 7% to 10% with twisted inserts fitted in the concentric circular tube. 

Aghayari et al. (2016) studied the performance of water - iron oxide nano fluid in a 

double pipe heat exchanger with perforated twisted tapes was investigated under 

turbulent flow regime. Iron oxide nano particles with diameter of 15 nm are used as 

nano fluid with concentration range from 0.12% to 0.2% by volume. The result 

shows that addition of nano particles increases the heat transfer and Nusselt 

number. Also reducing the twist ratio of perforated twisted tape and using the nano 

fluid with concentration of 0.2% v/v increase this value by 130%. Maximum 

increase in Nusselt number is achieved for the 0.2% v/v Iron oxide nanofluid and 

twist ratio of 2.5. This increase occurs in Reynolds number of 2500 which is 

132.2% compared to the experiment performed with water and without the twisted 

tape inserts. Bhuiya et al. (2016) determined that inserting turbulators with 

different spacing ratio of 11, 6.4 and 4.2 gives enhancement efficiency with rate 

more than unity. This indicates that enhancing heat transfer is more than the effect 

of increasing friction loss with the maximum heat transfer enhancement achieved at 

4.2 with a rate of 9.8 %. 
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CHAPTER THREE 

EQUATIONS GOVERNING THE FLUID FLOW 

3.1 Introduction 

This chapter discusses how to generate multi- longitudinal vortices and state 

assumptions made in the flow problem to obtain governing equations of the fluid 

flow in cylindrical coordinates. Governing equations of the flow past a diverging 

conical ring insert are expressed using the renormalized group κ-ε turbulence 

model but flow in the inner core is best estimated by the Navier -Stokes equations 

for an incompressible flow in a cylindrical pipe. The governing equations are then 

non dimensionalised and physical interpretation of non dimensional numbers is 

described. Describing the relation between continuity equation and vorticity which 

is defined as an axial component for the curl of velocity vector.  

3.2  Designing a diverging conical ring insert with slits 

To obtain conical ring insert a circular is cut out of a circle designed as shown in 

Figure 3.1 below.  

 

 

 

 

  

                                        S1                                                  S2 

 

                P       B             B
/
                                              P

/    

Figure 3.1: Plate design for a diverging conical ring with two slits.
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By folding it such that points PP
/
 coincide on the tube‟s inner circumference and 

BB
/
 becomes the inlet circumference at the vertex. The slits S1 and S2 provide 

pathway for the injected fluid in axial direction that generate multi-longitudinal 

vortex flow. They are cut out on the slant surface of a conical insert, while the 

vertex is cut out to obtain the insert inlet circumference  BB 
/
 to maintain a laminar 

flow along the centre line of the cylindrical tube with a steady stream of fluid. The 

conical insert is fixed at the end of an inlet piece of pipe with length of the exit 

piece set at a determined distance to ensure it provides properties of both 

displacement enhancement and a swirl flow device. The ratio of the inserts inlet to 

outlet diameter provides the pitch ratio given by 
D

d . Setting a conical insert with 

a divergence half angle of 7.5
0
 then an inlet diameter of 0.036 m and outlet 

diameter of 0.05 m provides a pitch ratio of 0.72 with a horizontal distance of 0.07 

m between the inlet and outlet. 

The choice of these dimensions is in agreement with existing research on a 

divergent diffuser that provides a relationship of diffuser performance against the 

angle of divergence as shown in Figure 4.2 which establishes that maximum output 

is obtained at an angle of 7
0
 on the vertex. For internal flows the fluid is completely 

encompassed in a duct or any other carrier with its cross sectional filled by the 

fluid. In a situation involving cylindrical pipes where the fluid flow fills the tube, 

forces are virtually identical in all radial directions therefore it is best analyzed 

using cylindrical coordinates. Since fluid motion is under pressure then the effects 

of gravity are negligible.  

 

3.3 Conditions for the fluid flow 

In this research hot water is used as the test fluid entering the diverging conical ring 

(DCR) insert placed in a cylindrical tube with the fluid in laminar flow. When 

using water to simulate a case of heat transfer in the fluid, note that if pressurized 
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water heats up to 374
0
C at 22 MPa but at normal atmospheric pressure, it can only 

be in liquid state in the range between 0
0 

C and 100
0 

C. Water has good thermal 

conductivity, a large thermal capacity and low viscosity. 

The cut out vertex provides an inlet diameter while the slant edges diverge 

at a half angle of α
0
. The slits are placed in symmetrical positions to subdivide the 

pipe‟s cross section into equal parts so that fluid passing through the slits generates 

multi-longitudinal vortex pairs. The conical ring insert intersection of the walls at 

the vertex has a solid angle 02  which is illustrated in Figure 3.2 used to 

determine the inserts divergence. 

 

 

   

 

 

 

Figure 3.2: Angle of inclination at the vertex of a diverging conical ring insert 

The conical ring insert is a divergent pipe and the Reynolds number (Re) is highest 

when an angle of divergence is zero. The Re is a decreasing function of the stream 

wise axial direction along the z coordinate and the flow non – parallelism is larger 

for a given divergence in which case two sets of approach are used. Mathematical 

investigations of incompressible viscous fluid flow through convergent or divergent 

channels were pioneered by Jeffery (1915) and Hamel (1916) as a special case of 

two dimensional flow through a channel with inclined plane walls tending to meet 

at a point and with a source or sink at the vertex.  For the mean flow an 

axisymmetric Jeffery Hamel (JH) equation is derived, which is valid at small 
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divergence angles. At larger divergence angles greater than 2
0
, the Navier -Stokes 

equation is solved directly in the axisymmetric geometry with a divergent portion 

of finite values. It is also known that at small divergence angles and high Re above 

1000 a parallel flow stability analysis is conducted on the axisymmetric JH profile, 

while at lower Re the partial differential equations for non parallel stability are 

solved as an extended Eigen value problem. 

3.4 Assumptions in the study 

In this study the following assumptions are made: 

i) The fluid flow is steady and in axial direction.  

ii) The fluid is Newtonian, implying stress is proportional to the rate of shear 

force. 

iii) The no-slip condition is satisfied, implying on the surface of a solid wall the 

velocity of the fluid layer adjacent to it moves at the speed of the wall. 

iv) The fluid is considered incompressible. 

v) The body forces are negligible. 

3.5 Navier - Stokes equations governing an incompressible fluid flow in a          

             cylindrical pipe 

Using the gradient operator i j k
x y z
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cylindrical coordinates  



zzrr

lululuU


 the continuity equation for an 

unsteady flow is 0











 

U
t




   hence     

     0











 

U
t




                                                  (3.1)  



26 

 

Where 
z

uu

rr

ru

r
U zr



















1)(1

 the cylindrical polar coordinates, of the 

velocity vector gives 

  0
)()(1)(1





















z

uu

rr

ur

rt
zr





                                                           (3.2) 

The continuity equation in cylindrical polar coordinates best describes flows 

involving rotational or radial motion.  A point in the flow with coordinates 

P  zr ,,  has velocity components in the respective directions as uur, and ,zu  

where transformation between Cartesian and polar systems is obtained by the 

relations, 

          
2 2 2r x y z  

,
1tan y

x
and z z  

.                                                (3.3) 

The governing equations for a Newtonian incompressible three dimensional 

axisymmetric laminar flow in a pipe are:  

a) The continuity equation   
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b) The momentum equations: 

i) In radial direction is  
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ii) In axial direction  
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iii)  In tangential direction  
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c) The energy equation is 
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where  is the dissipation function. 

The governing equations are used to describe the flow of a fluid past an 

axisymmetric diverging conical ring. The internal flow occurs when the fluid is 

completely encompassed by a pipe or a duct as the fluid carrier. In a situation 

involving a round pipe or a tube it is best analyzed using the cylindrical coordinates 

because the flow is virtually identical in all radial directions when the pipe is full, 

then the effects of gravity can be ignored. 
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3.6 Flow of a viscous fluid through a DCR insert with slits 

When fluid flows through a circular diverging ring with slits, at the vertex of a 

DCR insert the flow is well defined by an axisymmetric divergent pipe flow 

problem of an incompressible viscous fluid. The cut out slits generate a swirl flow 

that decays downstream. The term swirling flow indicates a loosely defined class of 

flow, whose main characteristic is that the flow has both axial and radial velocity 

component. As shown in Figure 3.3 an insert provides an obstruction to the smooth 

fluid flow motion, causing a swirl flow with a pressure drop and a rise in friction 

factor to enhance heat transfer in the system. 

 

Figure 3.3: Schematic view of fluid flow past a diverging conical ring insert 

 

Swirling fluid flow in a confined pipe and free flows unify a number of 

complexities which occur in other turbulent flows like, streamline curvature and 

rotation in three dimensional flow. 

This research work is a case of swirl decay flow where rotation dies downstream 

due to friction. Whether a flow is turbulent or laminar depends on characteristics of 

both the fluid (viscosity) and flow velocity in a length scale. 

The general properties of a turbulent flow are such that: 

i) Turbulent flows are irregular or chaotic in space and time. 
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ii) Turbulent flows are diffusive; heat, momentum and mass are mixed then 

transported efficiently, which in many applications is a desirable feature of 

turbulence. 

iii) Turbulence is essentially rotational and three dimensional; where rotating 

patches of a fluid i.e. eddies, have length scales ranging from size of flow 

domain and down to the smallest visible fluid motion. 

Turbulence occurs in flows from a specific value of the Reynolds number, beyond 

4000 in water at which point the non linear terms in the governing equations 

dominate over the linear viscous terms. 

iv) Turbulent flows are dissipative and kinetic energy of velocity fluctuations 

produced at the largest scales is dissipated at the smallest scales into heat 

through viscous diffusion. 

To analyze a swirl flow the two most common techniques are Renormalization 

Group (RNG) κ-ε model and Reynolds- stress model methods which are derived 

from an application of a statistical derivation to the instantaneous Navier- Stokes 

equations similar in form to the standard k-ε equations but includes; additional term 

in ε equation for interaction between turbulence dissipation and mean shear. Effects 

of swirl on turbulence and a differential formula for effective viscosity, which gives 

an improved prediction for high streamline curvature and strain rate. These features 

make RNG k-ε and Reynolds- stress models more accurate and reliable for a wide 

class of fully enclosed flows. The equations of motion and energy for a Newtonian 

incompressible flow are given in cylindrical coordinates  zr ,, . The instantaneous 

velocity components are 


uanduu
rz

,  respectively in axial, radial and azimuthal 

directions respectively. Temporal mean velocities are 


uanduu
rz

,  and their 

corresponding fluctuating components of velocities are
/// ,


uanduu
rz

. Using 

Reynolds decomposition in the governing equations the mean and fluctuation part 

are:  
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 Axial component (z):  

/
_

zz
z uuu  ,                                                       (3.9) 

 Radial component (r):  

/
_

rr
r uuu  ,           (3.10) 

Tangential component (θ): 
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_


 uuu  ,                       (3.11) 

Temperature:  

         /
_

TTT  ,                       (3.12)  

and Pressure:  
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ppp
m
 .                      (3.13) 

Where 
/

T and 
/

p are fluctuating temperature and pressure
m

p , is the local pressure 

minus hydrostatic pressure. If flow is assumed to be steady, the time variation 

terms are omitted and the following equations are obtained: Continuity equation   
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Momentum equation in axial direction obtained from equation (3.6) since 

0


u and the flow is steady obtaining  
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Also the momentum equation in radial and tangential direction exists. The 

assumption of constant viscosity is practical for swirling flow equations therefore 
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these terms change to
_

2 U . In natural convection equations the viscosity term 

should be kept inside the divergence since  varies with temperature. Substituting 

these terms into the momentum equations the RNG k-ε equations are obtained. The 

general two equations model for κ and ε together with the eddy – viscosity and 

stress – strain relationship constitute the κ-ε turbulence model where ε is the 

dissipation rate of k. The Reynolds stress model (RSM) also called second order 

closure model copes with more complex flows by taking into account anisotropic 

features of turbulence. The Reynolds stresses are expressed in terms of known 

mean flow quantities such as convective and diffusive nature of turbulence to solve 

the fluid governing equations in turbulence models. The equations are then 

combined with the Navier – Stokes equations in order to solve the flow problem in 

a closed set of seven partial differential equations. In turbulent flow there are both 

time averaged quantity and instantaneous fluctuation. The general turbulent flow 

equations are also valid for laminar flow when considering fluctuations to be 

negligible. The different models of solving turbulent flow can be selected upon use 

of computational fluid dynamics software to improve on accuracy of the solution.  

In this research work simulation done of the flow past a DCR insert showed 

that the turbulence effects are not dominate and the swirl flow decay as the fluid 

exists the insert. Therefore the general Navier –stokes equations provide an 

acceptable prediction of the fluid flow being investigated. 

 

3.7 Navier- Stokes equations for fluid flow in the DCR insert 

An incompressible viscous fluid flows through a conical diffuser tube with slits 

generating longitudinal vortex pairs and experiences a flow condition that can be 

determined by the Navier – Stokes governing equations where a no slip condition at 

the interface between fluid and the walls is fundamental.  The fluid element in 

motion has translation, linear deformation, rotation and angular deformation (also 

called rate of shearing strain). The rate of angular deformation is related to a 
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corresponding shearing stress. The differential form of momentum equation is 

derived by applying control volume with both body and surface forces. The body 

forces are due to external fields such as gravity, while surface forces are due to 

stresses that act on the sides of the control surfaces equal to normal pressure plus 

viscous stress. For Newtonian fluids the shear stress is proportional to the rate of 

strain. This stress tensor is included in the axial momentum governing equation. 

Considering a system of cylindrical polar coordinates  zr ,,  the steady two 

dimensional flow of an incompressible viscous fluid from source at the inlet of a 

cylindrical pipe along the z axis is considered in Figure 3.3. Given that 0u , 

meaning there is no change in angular velocity with respect to tangential  direction 

( ). The motion is therefore purely in axial and radial directions, depending on r 

and z. Considering a steady flow of viscous incompressible fluid in a tube with an 

axisymmetric diverging conical ring insert given velocity components  vu, . 

The equation of continuity (3.4) becomes:  
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The equations for conservation of momentum (3.5) gives:  

Radial momentum conservation equation which reduces since the flow is steady 

and gravity acts perpendicular to the axial flow which is negligible and the fluid 

injected from the slits on a slant edge parallel to the flow becomes   
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Similarly axial momentum conservation equation (3.6) reduces to:
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For a horizontal circular pipe with a Newtonian incompressible internal fluid flow, 

with only one non zero velocity in the direction of flow 
z

u . The additional term is 

obtained from a shear stress tensor component in cylindrical coordinates has 
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Then axial momentum equation becomes 
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Energy conservation equation (3.8) becomes: 
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The dissipation function for the energy equation is always positive in value and the 

term is rarely important for high speed flows in long or narrow capillaries where 

viscous heating is significant. The bulk viscosity does not appear in a momentum 

equation because divergence of the velocity vector is zero for incompressible flows. 

Body force per unit volume in the respective directions provides a means by which 

the presence of external entities is introduced into the momentum equations. 

 

3.8 Stream function and vorticity formulation  

A vortex line is an analogy to a streamline in the fluid such that at each point on the 

line a vorticity vector is a tangent to the line. The strength of a vorticity vector is 

not constant along a vortex line in the same way velocity is not necessarily constant 

along a streamline. While a vortex path in space whose surface elements are 

composed of vortex lines passing through the same closed curve.  For irrotational 

and incompressible two dimensional fluid flows both the stream function and 
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velocity potential obey the same differential equation, where the azimuthal 

component of vorticity vector is    
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In a potential vortex flow, fluid moves in concentric circles with an angular 

velocity 


u that decreases inversely to radial distance from the centre of a vortex. 

The Navier Stokes equations need to be expressed in terms of the stream function 

  and vorticity  to be able to determine the fluid flow‟s vorticity and swirl 

velocity.  On axisymmetric flow no velocity gradient exists in the   direction and 

then the continuity equation for steady incompressible flow reduces 

to 0
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  where  zr,  is the Stokes stream function. The 

stream function   can be defined for any two dimensional flow, whether flow is 

irrotational or not. At least two of the velocity components are non zero, thus 

expressing the axial and radial velocities in cylindrical coordinates has: 

                
rr

u
z 




1

 
and 

zr
u

r 




1
                                                             (3.24)   

This satisfies the continuity equation 0


U  so that velocity field is determined 

through a Poisson equation for the stream function. The divergence will be equal to 

zero because of equivalence in the mixed second derivative of the stream function. 

The change in streamline function between a pair of streamlines is equal to 

volumetric flow rate between those two streamlines. Lines of constant streamlines 

are perpendicular to lines of constant velocity potential lines since the slopes are 

negative reciprocals of one another.  
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3.9 Field synergy and heat transfer performance 

Each particle in a fluid has different physical quantities, such as temperature and 

pressure have definite physical meanings but no directions therefore no direct 

synergy relation among them. However the scalar gradient and velocity vector of a 

fluid particle in the flow field reflect not only intensity of heat transfer but also 

direction of transport process so that coupling of vectors represents a direct synergy 

relation therefore revealing the mechanism of physical quantity synergy to help 

explain heat transfer and flow process. Synergy correlation between velocity 


U , 

velocity gradient


U , temperature gradient T  and pressure gradient P  is 

obtained where


U  serves as a reference vector, as shown in Figure 3.4 so that for 

a certain fluid particle P, there are five inter section angles to reflect the synergy 

relation among physical quantities. 

 

                     


U  

 T  

  P  

 
3

    
4

  

   P 
1

      
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    
5

   
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U  

 

Figure 3.4: Intersection angles between physical quantities to determine synergy  

                   correlation. Source: Liu et al. (2009) 

The angle between 1 velocity and velocity gradient of a fluid particle P in laminar 

flow field given as 
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Velocity and temperature gradient is 
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The vector relation of a fluid particle P as a synergy angle between temperature 

gradient T  and velocity gradient 


U  is expressed has 
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In two dimensional laminar flow field the vectors are coplanar hence all fluid 

particles on a stream line satisfy  

213
  .                                             (3.28) 

 The pressure gradient P not only drives flow of fluid but also affects heat 

transfer and flow process. For a fluid particle there exists synergy relation between 

pressure gradient and velocity gradient which is expressed has 
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In a potential flow with no viscosity in a parallel fluid flow P  is orthogonal to 



U  hence 
0

4
90 so that flow resistance is zero. In viscous flow then 

0

4
90 due to viscous dissipation. Similarly synergy angle between 



U  and P is 

expressed has 
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 Liu et al. (2009) showed that if the synergy relation of every fluid particle in the 

entire fluid field is improved then heat transfer and flow can be effectively 

organized to achieve better temperature uniformity in the flow field and flow 

resistance can also be reduced. There are three kinds of problems in terms of heat 

transfer enhancement. First if convective heat transfer is to be enhanced then the 

synergy between velocity and temperature gradient should be considered. The 

smaller the synergy angle 
2

  is the larger the convective heat transfer coefficient h 

will be. Secondly if the flow resistance is to be reduced then the synergy between 

velocity and pressure gradients should be considered. The smaller a synergy angle 

5
  is the smaller the pressure drop P . Third if the purpose is to raise the overall 

performance of a heat transfer unit then the synergy between temperature gradient 

and velocity gradient should be considered.  

According to the principle of physical quantity synergy it is possible to 

design excellent heat transfer surfaces and structures ensuring that the increased 

amplitude of convective heat transfer is close to or bigger than that of flow 

resistance by improving synergetic relation among physical quantities. The 

principle of field synergy in enhancement of convective heat transfer provides that 

better synergy of velocity and temperature gradients, gives higher convective heat 

transfer rate under the same conditions. Synergy of these two vector fields or the 

three scalar fields implies that the included angle between the velocity and 

temperature gradients should be as small as possible i.e. velocity and temperature 

gradient should be as parallel as possible.  Local values of the three scalar fields 

should be simultaneously large i.e. larger values of the angle should correspond to 

larger values of velocity and temperature gradient. The velocity and temperature 

profiles at each cross section should be as uniform as possible. Better synergy 
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among the scalar fields will lead to a larger value of Nusselt number. By decreasing 

the included angle between velocity vector and temperature gradient, then synergy 

will make the integration value larger i.e. enhancing the heat transfer. Field synergy 

number 
PrRe

Nu
Fc   represents the degree of synergy between velocity and 

temperature gradient fields for the entire domain. Fc stands for the dimensionless 

heat source strength i.e. the dimensionless convection term over the entire domain 

which physically is an indication of the degree of synergy between velocity and 

temperature gradient fields. Its value can be anywhere between zero and one 

depending on the type of heat transfer surface. Field synergy number and Stanton 

number have identical formulas relating to the Nusselt number. However this 

equation is always valid regardless of type of flow and heat transfer surface 

geometry. Stanton number is an alternate to Nusselt number for expressing 

dimensionless heat transfer coefficient for convective heat transfer over the heat 

transfer surface.  

 

3.10 Non – dimensionalisation of the governing equations 

It is necessary to determine non dimensional numbers that provide effects of 

varying flow parameters which gives a comparison between experimental and 

theoretical results. Dimensionless parameters allow application of results obtained 

in a model to be applied in any other geometrically similar case. We let L, U and P 

denote characteristic length, velocity and pressure respectively and express the non 

dimensional variables by indentifying them with an asterisk primed quantities.  
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where T  is the characteristic driving temperature difference for heat transfer. 
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In the continuity equation (3.16) the parameters are replaced to obtain  
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The radial momentum conservation equation (3.17) becomes 
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Factoring out the dimensional variables and multiplying by 
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This simplifies to: 
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The axial momentum conservation equation (3.21) becomes  
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Multiplying with 
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 it reduces this equation to: 
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Energy conservation equation (3.22) becomes:
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Where Pr and Re are non dimensional numbers. 
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3.11 Non -dimensional numbers 

Dimensionless numbers are of key importance in parametric analysis of 

engineering problems since they help in understanding similarity between problems 

with similar type of fluid flow.  

i) Reynolds number Re this is ratio of inertia force to viscous force,  



 ULUL
Re .                          (3.36) 

ii) Pressure coefficient Pc this is a ratio of pressure force to inertia force, 

2U

P
Pc


 .                    (3.37) 

iii) Prandtl number Pr is the ratio of momentum diffusivity (Kinematic 

viscosity) to thermal diffusivity,  

k

C
P


Pr                        (3.38) 

which is a ratio of viscous to thermal force. In heat transfer involving convection 

mode, warm and cold particles mix because of their pressure difference which 

involves momentum transfer hence a measure of relative ability of fluid to allow 

momentum and thermal diffusion. 

iv) Nusselt number, 

 Nu
Tk

QL

k

hD


                                  (3.39) 

 Nu provides a dimensionless temperature gradient at a point. It is a ratio of actual 

to conductive heat flux. 

v) Field synergy number  

PrRe

Nu
F

C
                                  (3.40) 

FC represents the degree of synergy between velocity and temperature gradient 

fields in a domain.  
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The non dimensional numbers will be used to determine the behavior of fluid flow 

in geometrically similar cases when obtaining pressure and temperature profiles in 

the next chapter after discretization of the governing equations. 
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CHAPTER FOUR 

SIMULATION OF THE FLUID FLOW 

4.1 Introduction 

In this chapter simulation is done using „solid works‟ to obtain values of velocity 

components along the pipe to be used in solving other variables in the flow. The 

Governing equations of fluid flow in cylindrical coordinates are expressed in terms 

of central finite difference and discretization of equation done to determine flow 

parameters at different points of the pipe.  The multi-longitudinal vortex pairs 

formed by an incompressible Newtonian fluid passing through a diverging conical 

ring insert with slits cut out on the slant edge are observed by obtaining cross 

sections of the flow simulations. Then comparison is done on flow pattern obtained 

when a diverging conical ring insert with slits is used and those of other solutions 

obtained by other researchers on heat transfer enhancement. 

4.2   Pipe entrance effect 

A fluid entering a circular pipe at uniform velocity experiences the no- slip 

condition when particles in the outer layer are in contact with the pipe inner surface 

and come to a complete rest. The no- slip condition causes the fluid particles in the 

adjacent layers to slow down as a result of fluid friction therefore a velocity 

gradient develops along the pipe. The region of flow in which effects of viscous 

shearing forces caused by fluid viscosity are felt is called the velocity boundary 

layer. Thickness of this boundary layer increases in direction of flow until the 

boundary layer reaches a centre line of the pipe; this part is called the 

hydrodynamic entrance region. The part beyond an entrance region has velocity 

profile fully developed and remains unchanged with the temperature remaining 

constant. The region starting from pipe entrance of fluid to the meeting point of 

boundary layer on opposite sides of a cylindrical pipe is called the hydrodynamic 

entrance region. Thereafter a hydro dynamically fully developed region is formed 
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and its within this section that a DCR insert is placed where there exist a fully 

developed velocity profile. Figure 4.1 shows variation of the boundary layer due to 

wall shear stress in the flow direction of a pipe from the entrance region into a fully 

developed region. In laminar flow the hydrodynamic entry length is given 

by DL
h

Re05.0 .  

 

Figure: 4.1 Variation of boundary layer from the pipe entrance. Source: Fluid  

                   dynamics (2005) 

 

The shear stress at the pipe wall is proportional to the slope of velocity profile 

which remains unchanged in the hydro dynamically fully developed region 

therefore wall shear stress is highest at the pipe inlet where thickness of boundary 

layer is small and decreases gradually to a fully developed value while pressure 

drop is higher at the entrance of a pipe. Placing the DCR at a fully developed 

region ensures that fluid flow at that section of the pipe is laminar during entry into 

the DCR insert, therefore providing a uniform velocity input in both the cone‟s 

inlet as well as at the slits. In this case swirl flow generated by the slits will have 

stronger vortices which ensure better heat transfer enhancement. 
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4.3 Simulation of fluid flow past a diverging conical ring insert 

To determine the flow variables we simulate a physical situation by modeling a 

cylindrical tube with a diverging conical ring insert having two slits on opposite 

sides of the slant edge. A computer modeling software „Solid works‟ is used to 

simulate the flow by construction of pipe geometry to demonstrate a case of hot 

water flowing in a horizontal pipe. The following physical properties of water at a 

temperature of 373 K are used in the simulation: density at 957.9 kg/m
3
, specific 

heat (Cp) is 4217 kJ/Kg.K,  thermal conductivity (k) is 0.679 W/m.k, dynamic 

viscosity  is  2.82 X 10
-4 

Kg/m.s and a volume expansion coefficient is  

7.5 X 10
-4 

k
-1

.  A cross section diagram at the DCR insert outlet displays the path 

lines indicating a multi-longitudinal vortex pair generated by one slit. As illustrated 

in Figure 4.2 with a key on the colour code provided on the left side showing 

values of pressure. 

 

 

 

Figure 4.2: Pressure distribution of fluid flow generated by one slit 
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Figure 4.3: Pressure distribution for fluid flow generated by two slits  

The uniform green colour implies that pressure is the same at the cross section but 

the fluid exhibits a pair of multi longitudinal vortices. 

A cross section diagram at the DCR insert outlet displays the path lines indicating 

two multi-longitudinal vortex pairs generated by the two slits. As illustrated in 

Figure 4.3 with a key on the colour code provided on the left side showing values 

of pressure. 
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Figure 4.4: Fluid velocity vectors forming two pairs of multi– longitudinal 

vortices 

The illustration on Figure 4.4 shows the velocity path lines of the fluid at different 

positions in a given cross section at the DCR insert outlet. The colour code is 

provided in a key on the left hand side. 

 

 

Figure 4.5: Fluid velocity vectors generated by three slits 
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The fluid velocity is highest at the regions with orange and lowest where it is green 

in colour. Figure 4.5 show a case of three slits indicating velocity variations. 

 

  

Figure 4.6: Temperature variation along path lines of multi longitudinal 

vortices 

The diagram on Figure 4.6 shows the values of temperature obtained at the same 

cross section used to observe pressure and velocity of the fluid to establish fluid 

synergy that enables heat transfer enhancement. 

The uniform red colour show uniform temperature along the cross section. The 

number of vortex pairs is equal to the number of slits on the cone and this causes a 

mixture of inner core and near wall fluid which enhances heat transfer. Different 

patterns of multi longitudinal vortex pairs are then compared with the level of heat 

transfer enhancement.  

 

4.4  Synergy of physical quantities 

The field synergy principle has two types of applications: first it facilitates in 

having a better understanding of known heat transfer phenomena or experimental 
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results and second it is to guide the development of novel enhancement of heat 

transfer structures. The velocity field in a duct flow can be varied by changing the 

duct configuration. For example vortices occurring when the flow goes through a 

specially designed alternatively twisted elliptic tube give comparative results for 

the Nusselt number and friction factor between the test results for water.  Heat 

enhancement can be made with a reasonable increase in friction and for laminar 

flow cases the ratio of heat transfer enhancement is even much larger than that of 

the friction factor increase. Vortices significantly improve the synergy between the 

velocity and the temperature field. Inserts are used in a circular tube to increase the 

uniformity of temperature profile which improves the field synergy between the 

velocity and heat flow fields. The field synergy principle is used in enhancing our 

understanding of the heat transfer phenomena. It also provides a rule to improve 

any surface structure for a better heat transfer performance.  There are several ways 

to improve the synergy between velocity and temperature gradient (heat flow 

fields) including varying the velocity and temperature boundary conditions. 

 

4.5 Comparing vortices generated by insert with theoretical models  

Numerical solutions of the field synergy equation for laminar convection heat 

transfer in a straight circular tube together with other governing equations indicate 

that multi- longitudinal vortex flow is the best way for heat transfer enhancement in 

laminar convection on cylindrical pipes. The swirl flow field with multi- 

longitudinal vortices has better heat transfer capability than a bare tube without 

additional volume force and its heat intensity grows much faster than the flow 

resistance increase.  
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Figure 4.7: Flow velocity vector generated by a turbulator with no slits 

This flow simulation in Figure 4,7 compares favorably with research work done 

using other methods has illustrated in Figure 4.8 below. 

 

Figure 4.8 a and b: Temperature field and a flow velocity vector for a single vortex 

Source: Liu et al (2012). 

This kind of flow field is consistent with the principle of heat transfer enhancement 

in core flow of the tube proposed by Liu et al. (2012) who intended to design a 

flow field in which disturbance in the boundary flow is kept at relatively lower 

level while disturbance in the core is enhanced greatly. 
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Figure 4.9: Flow circulation by a turbulator with two slits 

 

The colours in Figure 4.9 illustrate variation of velocity along the path lines 

showing faster movements at the pipes centre line where the two pairs of multi- 

longitudinal vortices meet which agrees Figure 4.10 below. 

 

Figure 4.10 a and b: Temperature field and flow field structure with two multi- 

longitudinal vortex pairs. Source: Liu et al (2012) 
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The vortices are distributed symmetrically around a central part of the tube area 

such that velocity gradient near the tube wall is not increased to a large extent. This 

is indicated in the Figures 4.7 and 4.9 which are comparing simulation in this 

research work and those done by Liu et al. (2012). In practical applications when 

inserts are adopted to obtain longitudinal swirl flow with multiple- vortices in a 

tube, friction resistance will be much higher due to longitudinal vortices generated 

which decay gradually in stream wise direction due to viscous shear force.  

4.6 Diverging cylindrical pipe internal surface friction  

A diffuser is an expanding duct whose primary objective is to recover fluid static 

pressure from a fluid stream while reducing the flow velocity. A portion of the 

kinetic energy in the flow is converted into potential energy for fluid pressure. In a 

diffuser the pressure gradient opposes the flow and as a result fluid in the boundary 

layer decelerates and thickens rapidly. If it separates from the walls large unsteady 

eddies are formed that block the diffuser flow. Separation of fluid from diffuser 

walls is called a stall and it degrades diffuser pressure recovery which limits 

performance. It is largely governed by boundary layer growth and onset of 

separation influenced by flow profile whose cross section area at the entrance is A1 

and at the exit A2. For a specific case of steady flow in a diffuser the loss 

coefficient is defined has  

2

2

u

Hg
K


                                              (4.1) 

and the value of  the diffuser efficiency is  
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21
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A

A

K
 .                                                                                     (4.2) 

 This efficiency would be zero if there is no pressure recovery and unity in the case 

of full pressure recovery. Figure 4.11 shows the variation of diffuser performance 
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efficiency against the angle of divergence which establishes that maximum output 

is obtained when a cone has an angle of 7
0
 at the vertex. 

   

Figure 4.11: Diffuser performance efficiency against the cone angle of divergence.  

                     Source: Idelchik (1994).  

In practice the actual efficiency  depends on the diffuser geometry and sometimes 

other factors such as uniformity of the entering flow. Larger angles lead to flow 

separation within the diffuser which causes large viscous losses. Smaller angles 

imply diffusers become too long leading to larger viscous wall friction losses. The 

basic data set that is needed by a fluids engineer is knowledge of the loss 

coefficients for a straight cylindrical pipe. In this instance the loss coefficient will 

clearly be proportional to the length of the pipe and therefore we need to define a 

loss coefficient per unit length given by 
L
K  where L is the pipe length. But in order 

to keep the quantity dimensionless we need to multiply this by a length and the 

obvious choice is the pipe diameter, d. The resulting loss coefficient is called the 

friction factor f  which is defined has 

  
Lu

Hgd

L

Kd
f

2

2 
  .                                                                                (4.3)  

Where u is the volume averaged fluid velocity equal to the volume flow rate 

divided by the internal cross sectional area of the pipe. 
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 The friction factor is a function of Reynolds number for flow in the pipe 

is


ud
Re .   

Figure 4.12: Moody diagram for pipe friction factor as a function of Reynolds 

number. Source: Lewis F. Moody (1944). 

 

In addition f depends on nature of flow in the pipe, whether it is laminar or 

turbulent. The friction factor also depends on roughness of the interior surface of a 

pipe. This information is contained in a chart known as a Moody diagram whose 

content is in Figure 4.12 showing the friction factor plotted against the pipe 

Reynolds number. To help determine the best values of Re to perform the fluid 

flow past the DCR insert in a cylindrical tube. The diagram is semi empirical based 

on principles of research in measurement of surface roughness and understanding 

of velocity distribution within a boundary layer. 



55 

 

It is regarded as a temporary solution until sufficient further scientific advances are 

made but it continues to fulfill the function that Moody attributed to the graph. „A 

simple means of estimating the friction factor‟. It has relevance for a very broad 

range of situations from flow in micro tubes to flow in large pipe lines or tunnels. 

The Moody diagram helps in determining the range of Reynolds number at which 

the flow can remain laminar from the inlet to a DCR insert at a specific value of the 

friction factor. 

 

4.7 Coefficient of skin friction  

The resistance coefficient inside the tube is determined by skin friction 

2
2
1 u

C
f 


 .              (4.4)  
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From which a graph is be plotted to show variation of the coefficient of skin 

friction with pressure gradient at fixed Re Number. To determine the fluid friction 

characteristic in a cylindrical pipe, the skin friction is plotted against Re.  Skin 

friction is defined as the ratio of wall shear stress to dynamic pressure. 
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4.8 Boundary conditions 

Considering the theory of diffuser performance, when using hot water the flow 

parameters have been selected to ensure laminar flow during simulation as follows: 

at the pipe inlet axial velocity smu
z

/4 while some distance into the pipe where 

there is no entrance effect at the diverging conical ring insert inlet smu
z

/6 , 

inlet pressure is
 
P0 =110,000 Pa and temperature is T0=370 K. While Reynolds 

number (Re) satisfies the inequality 1000 < Re < 4000, pressure coefficient (PC) = 

6.5 and Prandtl number (Pr) = 1.75. Figure 4.13 shows the position of a conical ring 

insert in the cylindrical tube with the coordinate axis indicated. The DCR insert 

inlet radius is 18 mm and the outlet radius is 25mm, with the length along the z axis 

as 70 mm, to provide an angle that is less than 15
0 

at the vertex and an half angle of 

7
0 

between the horizontal axis and the slant edge. 

 

 

  

 

 

 

 

Figure 4.13: Schematic diagram of a diverging conical ring insert with two slits 

 

Momentum flux on the fluid force through the ring at the DCR is obtained by  

  




0

22 rdrum                                       (4.6)  

The flux is a constant and on the surface of a conical insert temperature  

T hot water = T wall.                                             (4.7) 

j 

k 
i  

r 

z 
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Simulating the fluid flow using solid works, a computational fluid dynamics 

software programme, reveals that the velocity profile before and after the DCR 

insert is as indicated in Figure 4.14 showing a rise of velocity within the insert and 

a flow separation thereafter in the region appearing blue past the insert. 

 

 

   

Figure 4.14: Fluid velocity in the neighborhood of a DCR insert. 

 

Observation of the region along the centre line at a radial distance of 1.8 cm which 

is equivalent to the DCR insert inlet radius the fluid flow is laminar. The fluid 

separation occurring as the fluid exits the DCR insert does not affect the inner 

region of the fluid flow and agrees with the theory of a divergent diffuser. 

4.9  Variation of pressure along the tube. 

 

Results are obtained using a 4 m long tube of internal radius 0.05 m, to compare 

what happens when the diverging conical ring insert has different number of slits if 

it is placed in the tube a distance 3.5 m from the entrance.  
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Figure 4.15: Graph showing pressure variation due to number of slits on an  

                     insert. 

 

Figure 4.15 shows pressure change for four distinct cases of diverging conical 

insert. With no slit, one, two and three slits providing pressure variations with 

distance along the pipe axial plotted for values along a path at the pipe‟s centre line.  

A pressure drop is observed in the four different cases with an abrupt drop noted at 

the DCR insert, although a higher pressure drop is noted when the number of slits 

decreases. 

The pressure drop is observed at the DCR insert inlet which is placed a distance of 

3.5 m from the pipe inlet. To avoid the pipe entrance effect in a cylindrical pipe to 

ensure the flow is laminar while the fluid passes through the DCR insert. An 

increase in the number of slits allows more fluid flow in the pipe hence low 

pressure due to an increase in effective cross section area allowing the fluid to pass 

through.  
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4.10 Determining coefficient of skin friction 

The simulation provides horizontal velocity components uz and pressure P at 

specific radial distance ri,k along the pipe‟s centre line. The horizontal components 

of axial velocities are obtained along the lines marked in Figure 5.1 with plains 

chosen before fluid enters the DCR insert, when within the insert and after it passes 

through. 

Table 4.1: Variation of horizontal distance with pressure and horizontal 

velocity component  

Horizontal distance from 

pipe inlet (m) 

Velocity  

ki
z

u
,

 

Pressure 

 P i,k  
ki

z

ki

u

P

,

,  

6.50 6.394 107914.51 16877.4 

6.55 6.394 107826.91 16863.76 

6.60 6.394 107739.31 16850.06 

6.65 6.394 107651.70 16836.36 

6.70 6.394 107564.11 16822.66 

6.75 6.394 107476.49 16808.95 

6.80 6.395 107388.89 16792.63 

6.85 6.395 107301.29 16778.93 

6.90 6.373 107213.69 16759.99 

6.95 8.501 93609.95 11011.64 

7.00 8.338 83779.35 10047.89 

7.05 6.738 86570.29 12848.07 

7.10 6.418 86936.02 13545.65 

7.15 6.233 87011.55 13959.82 

 7.20 6.104 86867.07 14231.17 

7.25 6.059 86722.6 14313.02 

7.30 6.046  86578.13 14319.9 

7.35 6.033 86433.65 14326.81 
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7.40 6.030 86244.64 14302.59 

7.45 6.035 86055.63 14259.42 

7.50 6.040 85866.61 14216.32 

7.55 6.045 85677.60 14173.3 

7.60 6.051 85488.59 14128.01 

7.65 6.064 85299.58 14066.55 

7.70 6.078 85110.57 14003.05 

 

Plotting the horizontal distance in the cylindrical pipe against a quotient of pressure 

divided by horizontal velocity a graph is obtained as shown below in Figure 4.16. 

The analysis is done from a distance of 6.5 m to avoid the hydrodynamic entrance 

region effect, where viscous shearing forces are felt. The part beyond an entrance 

region has velocity profile fully developed and remains unchanged with the 

temperature remaining constant. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Graph showing quotient of pressure with horizontal velocity 

component against horizontal distance. 
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This observation describes the variation of coefficient of skin friction along the 

pipe in presence of a turbulator. An abrupt change of velocity and a drop in 

pressure are noted at the point where a DCR insert is placed on the pipe, which also 

generates the heat transfer enhancement.   

 

 

Table 4.2:  Variation of Reynolds number with coefficient of skin friction 

Reynolds number 

(Re) 

Re ρ Coefficient of Skin friction (Cf) 

  After insert Before insert 

1000 957,900 0.02923 0.03445 

1500 1,436,850 0.01948 0.02297 

2000 1,915,800 0.01461 0.01723 

2500 2,394,750 0.01169 0.01378 

3000 2,873,700 0.00974 0.01148 

3500 3,352,650 0.00835 0.00984 

 

With the quotient considered to be 16500 before insert and have stabilized at 

14,000 after fluid passes the insert then the coefficient of skin friction is determined 

on a range of Reynolds number as tabulated in Table 4.2 above. From equation 4.5 

the coefficient of skin friction is determined which provide comparison of 

Reynolds number to skin friction has shown in Figure 4.17 below indicating that 

values of coefficient of skin friction after the fluid passes through the DCR insert 

are lower. 
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Key: 

__ . .  __   

Before insert 

 

______    

After  Insert 

 

Figure 4.17: A graph of coefficient of skin friction against Reynolds number 

The fluids coefficient of skin friction reduces with increase in Reynolds number or 

decreasing value of the quotient of fluid pressure to horizontal velocity component. 

4.11  Grid points in the fluid flow domain 

Given that rir
i

  and zkz
k

  representing a plane along the cylindrical tube 

such that  (i, k) = (0,0) is at the centre of the inlet on a  DCR insert. Figure 4.6 

below shows the position of each point in the neighbourhood of (i,k) which are 

required in the numerical determination of solutions to the discretized equation. 

 r 

 

  

   

 z 

 

  

 

 

Figure 4.18: Discrete grid points. 

i-1 

i+1 

k-1 k+1 

i 

k 



63 

 

Figure 4.18 illustrates a finite difference grid to determine the mesh points of flow 

parameters, each nodal point is identified by an ordered pair (i, k) that defines a 

specific location. 

 

4.12  Discretization of governing equations 

The finite central difference method is applied since it provides more accurate 

approximation of values at the middle of a given set of data on a grid. To enable us 

solve the nonlinear partial differential equations obtained after non 

dimensionalising the governing equations and writing variables in discrete form to 

obtain. 

Continuity equation (3.32) in discrete form is 
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The radial momentum equation (3.33) in discrete form is  
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Therefore to obtain the horizontal velocity component requires the initial values of 

pressure and the radial velocity component to be known to solve the discrete 

equation.
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(4.9) 

 

The axial momentum conservation equation (3.34) in discrete form is  
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(4.10)  

The energy conservation equation (3.35) in discrete form 
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Therefore determination of the flow variables can be predicted using the Navier- 

Stokes governing equations for fluid flow in a cylindrical pipe given in equations 

3.32, 3.34 and 3.35 which are in non dimensional form after being discretized using 

central finite difference to obtain equations 4.8, 4.10 and 4.11 that are then coded 

using Matlab to generate graphs of pressure and temperature, in which the 

Reynolds number can be varied to determine the possible variations within the 

range of a laminar fluid flow. In the next chapter different maximum values of 

temperature obtained from the different number of slits are used to achieve the 

thermal performance factor to determine the most efficient number of 

symmetrically positioned slits on a conical ring insert. 
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CHAPTER FIVE 

ANALYSIS AND DISCUSSIONS OF RESULTS 

5.1 Introduction 

Since the flow within the insert is not a perfect laminar flow, horizontal velocity 

components are determined using the CFD simulation software which is then used 

to solve the mathematical model provided. Where the discretized continuity 

equation is solved using a tri diagonal matrix whose right hand side is determined 

by obtaining differences in the horizontal velocities to compute using row reduction 

the radial velocity components to be used the pressure and temperature profiles 

 A theoretical determination of the heat transfer enhancement factor is obtained, 

then analysis is done for different set ups. The results obtained in simulation of this 

flow are presented graphically and discussed to ensure they are correctly 

interpreted. Other sets of results are also generated for different number of slits in 

the DCR insert to determine its effect on the rate of heat transfer enhancement.  

 

5.2 Determination of pressure and temperature profiles 

To determine the pressure and temperature profiles inside the conical ring insert 

values of horizontal velocity uz are obtained along several plains perpendicular to 

the fluid flow direction which is the axial length along this tube as indicated in 

Figure 5.1. The horizontal axial velocity components are approximated using a 

computer simulation software „solid works‟.  
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Figure 5.1: Shows numbered lines along which velocities values Uz are  

                  obtained 

 

A second case of simulation done where a conical insert as a half angle of  5
0
 in 

a pipe of radius R= 2.5 cm and a vertex inlet of radius r = 1.8 cm, where the initial 

fluid velocity at the tube‟s inlet is uz= 4 m/s is used and a pressure difference of 10 

k Pa between pipe inlet and outlet of length 8 m.  The simulation provides 

horizontal velocity components uz at specific radial distance ri,k along the pipe with 

special preference given to the region inside the diverging conical ring insert. Three 

regions are selected at different radial distances within the conical insert as shown 

in Table 4.3 representing the tube‟s inner core ( i = 0,1,2), the middle region ( i = 

8,9,10) and the inner path next to DCR insert inlet  

( i = 16,17,18). The step size along the horizontal direction is Δz =0.01 and in the 

radial direction is  
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Δr =0.001. Fluid velocity values provided in a tabulated form is provided in Table 

5.1. which is the axial velocity uz along the axial planes.  

 

Table 5.1: Axial velocity values of points across a DCR insert 

Step 

size   

Δz=0.0

1m 

Radial  distance  Δi = 0.001m 

0.00

01 

0.00

1 

0.00

2 

… 0.00

8 

0.00

9 

0.01 … 0.01

6 

0.01

7 

0.01

8 i=0 i=1 i=2  i=8 i=9 i=10  i=16 i=17 i=18 

k=1 6.438

5 

6.41

09 

6.39

71 

 6.23

17 

6.20

41 

6.19

03 

 5.92

76 

5.87

57 

5.77

19 
k=2 6.452

7 

6.42

39 

6.40

95 

 6.23

68 

6.20

80 

6.19

36 

 5.94

92 

5.90

26 

5.80

92 
k=3 6.453

4 

6.42

16 

6.40

58 

 6.21

54 

6.18

37 

6.16

78 

 5.85

67 

5.81

01 

5.71

70 
k=4  6.453

6 

6.45

22 

6.42

59 

 6.24

18 

6.21

55 

6.18

92 

 5.84

96 

5.77

79 

3.39

62 
k=5 6.453

8 

6.42

76 

6.40

13 

 6.24

36 

6.21

73 

6.19

10 

 5.85

19 

5.78

02 

5.70

86 
k=6 6.440

9 

6.41

77 

6.39

45 

 6.25

51 

6.23

19 

6.20

86 

 5.90

60 

5.82

83 

5.75

07 
k=7 6.454

4 

6.42

81 

6.40

18 

 6.24

41 

6.21

78 

6.19

15 

 5.85

22 

5.78

05 

5.70

88 
k=8 6.454

0 

6.42

88 

6.40

36 

 6.25

23 

6.22

70 

6.20

18 

 5.88

78 

5.81

60 

5.74

43 
k=9 7.152

6 

7.15

31 

7.15

36 

 7.02

19 

6.93

25 

6.84

32 

 6.12

46 

5.97

44 

5.82

42 
k=10 8.332

3 

8.32

46 

8.31

69 

 8.29

10 

8.30

50 

8.31

90 

 8.07

36 

7.95

58 

7.83

80 
k=11 9.158

4 

9.15

92 

9.16

00 

 9.18

21 

9.19

42 

9.20

63 

 8.69

22 

8.53

67 

8.38

11 
k=12 9.495

7 

9.54

76 

9.59

96 

 9.70

26 

9.67

72 

9.65

18 

 8.54

41 

8.27

99 

8.01

56 
k=13 9.204

4 

9.34

36 

9.48

28 

 9.50

92 

9.43

36 

9.35

81 

 7.55

06 

7.20

42 

6.87

29 
k=14 8.913

2 

9.10

54 

9.29

77 

 9.05

98 

8.94

28 

8.82

59 

 6.54

78 

6.26

88 

5.98

98 
k=15 8.621

9 

9.15

42 

9.34

14 

 8.32

54 

8.05

52 

7.68

41 

 5.60

96 

5.39

06 

5.17

16 
k=16 8.330

7 

8.72

28 

9.11

49 

 7.45

97 

7.10

72 

6.75

47 

 4.99

13 

4.81

45 

4.63

77 
k=17 8.039

4 

7.82

75 

7.61

56 

 6.30

42 

6.03

92 

5.77

42 

 4.42

70 

4.24

29 

4.05

88 
k=18 7.354

2 

7.25

49 

7.05

65 

 5.86

60 

5.66

75 

5.46

91 

 4.27

86 

4.08

01 

3.88

17 
k=19 6.184

4 

6.09

13 

6.02

92 

 5.65

67 

5.59

47 

5.53

26 

 5.06

10 

4.96

59 

4.87

08 
k=20 6.076

0 

6.04

00 

6.00

40 

 5.80

58 

5.76

98 

5.73

38 

 5.42

66 

5.36

02 

5.29

39 
k=21 6.097

8 

6.06

77 

6.05

26 

 5.87

20 

5.84

19 

5.82

68 

 5.61

08 

5.57

18 

5.49

38 
 

The horizontal components of axial velocities are obtained along the lines marked 

in Table 5.1 with some plains chosen before the fluid enters the DCR insert, when 

within the insert and after it leaves. Along each plain three sets of values are 

provided at equally spaced intervals from the centre line to the edge of the inlet of 

the DCR insert. This gives the values of axial velocity at the centre, middle and 

outer region of the fluid flow within the insert. 
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5.3 Solving the discretized equations 

Using boundary conditions and non dimension numbers in the discretized 

governing equations for the flow of hot water in a cylindrical tube in the region just 

before and after the conical ring insert. If Δz = 0.01, Δr = 0.001, axial velocity at 

the tube inlet is uz = 4 m/s and at the DCR insert inlet is uz = 6 m/s rising due to the 

constriction which reduces the mass flow rate causing rise in velocity. In which the 

horizontal component starts reducing as radial velocity increases from zero and 

ki
r

,
is the radial distance from the centre of the tube with a singularity existing at 

k
r

,0
. Parameters are predetermined at the centre line with boundary conditions 

Po=1.1x10
5 

Pa, To =370 K, 1000<Re<3000, Pr =1.75 and PC = 6.5 then the 

governing equations are solved to obtain the various flow profiles. 

Equation (4.9) is expressed has  
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At the DCR insert inlet boundary values are estimated from a flow simulation using 

solid works. The equation is expressed as a tri diagonal matrix shown in Figure 5.2 

which uses the coefficients occurring in the three middle terms of the matrix to 

obtain the radial velocities the matrix is solved using Matlab algorithm given in 

Appendix 1, to determine radial velocities which vary with radial distance.  Values 

of uz‟s provide for differences on the column in the right hand side of Equation 

(5.1) to be able to solve the tri-diagonal matrix to determine the value of ur‟s. At 

the DCR insert inlet k = 0 for i=1 to i=18; then at 

 k =1 the rows are tabulated starting from i=1 to i=18 on the diverging conical ring 

insert where i= 0 is at the centre line of the pipe up to i =18 the inlets inner radius 

for each of values of k given upto k =21. 
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Figure 5.2: Tri diagonal matrix to determine radial velocities. 

  

Solution of the tri- diagonal matrix equation is used to solve Equation (5.2) to 

obtain the pressure profile in Figure 5.3, the algorithm used to obtain the pressure is 

given in Appendix 2. Given velocities in axial and radial directions obtained, which 
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are used with a step size in axial direction and radial distance from the pipes centre 

line.  
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                                                                                                                         (5.2) 

The pressure profiles are obtained for various axial velocities at specific radial 

distance using Equation (5.2) with a fixed step size in the axial direction. The 

investigation as established that internal flow of the fluid within the conical insert is 

different from the region immediately after the insert. Within the diverging conical 

insert the higher the Reynolds number the higher the pressure. While immediately 

after it pass the insert the lower the Reynolds number the higher the fluid pressure 

as indicated in Figure 5.3 below.  
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Figure 5.3: Pressure variation along axial distance for 1500 ≤ Re ≤ 3000.  

 

The energy equation which is expressed in Equation (5.3) when substituted with the 

constants, non dimensional numbers and boundary conditions together axial 

velocity estimated by simulating in the flow determine temperature variations along 

the tube. 
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This equation provides a temperature profile along the DCR insert for varying axial 

velocity.  

 

Figure 5.4: Temperature profile along the pipe with variation of Reynolds  

                   number.  
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5.4 Accuracy, stability and convergence of the numerical method 

Accuracy is the extent of approximation for a numerical solution when compared 

with an exact solution. The truncation error associated with the diffusion term using 

a finite difference method is of order  2z . When the mesh is refined, it is true that 

the truncation error decreases. The order of a discretization method is n if its 

truncation error is of order  nz . A consistent numerical method is one in which 

truncation error tends to vanish as the mesh becomes finer. Stability is a property of 

the path to a solution. In a steady state problem we obtain a discretized set of 

algebraic equations to be solved.  An iterative solution method is unstable or 

divergent if it fails to yield a solution to the discrete set. The term convergence has 

two common uses. First an iterative method is said to converge to a solution 

meaning it has successfully obtained a solution to a discrete algebraic set. Secondly 

there is convergence to mesh independence implying that the process of mesh 

refinement and its use in obtaining solutions remain essentially invariant with 

further refinement.  

 

5.5.  Variation of temperature along the tube 

Temperature of the fluid along a tube is determined for the different set ups to 

compare the variations due to number of slits on the conical insert and rate of heat 

transfer. 
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Figure 5.5: Variation of temperature in different cases of DCR insert with slits. 

 

It is observed that the pressure drops abruptly in the insert while temperature 

increases. A case where the DCR insert has two slits attains the highest temperature 

past the insert outlet as well as the greatest temperature change between outlet and 

inlet values. 

Fluid temperature is nearly constant immediately it enters the pipe but starts to rise 

as it approaches the DCR insert which is followed by an abrupt drop then a rise in 

temperature due to heat transfer enhancement. This is as a result of movement in 

fluid particles caused by the turbulator which releases the dissipation energy. As 

the fluid moves past a DCR insert it is noted that the case with two slits on opposite 

sides of the conical ring gains the highest temperature towards the pipes exit, since 

it generates multi longitudinal vortices that provide the best synergy. Obtaining the 

temperature difference between the inlet and outlet we realize that heat gain in a 

case with two slits on the DCR  insert  as the greatest enhancement among the 

different set ups.  
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5.6  Determination of thermal performance factor  

The heat enhancement factor of a plain tube fitted with a DCR insert is obtained 

analytically by determining the non dimensional numbers and other physical values 

required to run the simulation software solid works. With hot water used as the test 

fluid, values of the physical properties used during flow simulation are:  Inlet 

temperature T0=373 K, tube inlet pressure P0 = 110,000 Pa with tube outlet 

pressure P1 =101,330 Pa (1 atmosphere). Maximum velocity v = 4 m/s at the pipe 

inlet, density of water at a temperature of 373 K is ρ = 957.9 kg/m
3
 while specific 

heat at constant pressure Cp= 4217 J/Kg.K.  Thermal conductivity k = 0.679 W/m.k 

and coefficient of dynamic viscosity μ =2.82X10
-4 

Kg/m.s. Taking the tube‟s inner 

diameter = 0.05 m which is equal to the inserts outlet and the DCR insert inlet 

diameter =0.036 m, at which point the fluid flow velocity = 6 m/s.  

Mass flow rate (


m ) is the product of fluid density (Kg/m
3
), tube‟s cross sectional 

area (m
2
) and flow velocity of fluid (m/s) then 

 







 4

2

05.0
9.957

2

Avm


7.52333 Kg/s.  

At the pipe‟s entrance and  then  









 6

2

036.0
9.957

2




m 5.85014 Kg/s . 

At the DCR insert inlet the difference causing a rise of internal energy. When the 

fluid encounters the DCR insert which has a smaller radius than the inlet pipe 

therefore a pressure drop is experienced and a rise in fluid velocity within the 

conical tube.  

Heat transfer rate in a tube where the DCR has no slits is  

Q=


m Cp(Tout let –Tin let) = 5.85014X 4217(373.0207-373.0054)= 377.45162 J/s. 

                                                                                                                              (5.4) 
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Heat transfer coefficient in a pipe in presence of a DCR insert with no slits is 

762.532,54
)0153.0(4036.0

45162.377

0








 TDL

Q
h

slit
                              (5.5) 

A tube in presence of a DCR with one slits there is an approximate increase in inlet 

area. 

For a slit with a length of 5 cm along the slant edge on a DCR insert of divergence 

angle 15
0
 at the vertex, has a projected radial length of  

0.05xsin7.5
0 

= 6.5263x10
-3 

m.  

Since the slit has a width of 0.005 m, the slits projected cross sectional area is 

0.006526x0.005 = 3.26315x10
-5 

m
2
. 

Hence a DCR insert with one slit has an equivalent inlet area of   

π x3.24x10
-4

+3.26315x10
-5

=1.050506x10
-3 

m
2 

.  

Therefore mass flow rate skgm /03767.660010505.09.957 


 

 Heat transfer rate has  

Q=


m Cp(Tout let –Tin let) = 6.03767x 4217 x (373.0262-373.0101) = 409.89485 J/s.                                                                    

                                                                                                                              (5.6) 

The inlet cross sectional area of a DCR insert with one slit as an equivalent 

diameter of A= π r
2 

therefore m
A

r 018286.0
050506.1




.  

Hence equivalent diameter is 0.0365725 m. 

Then heat transfer coefficient
TDL

Q
h





.  

For the DCR with 1 slits  

 
46877.396,55

0161.040365725.0

89485.409

1








 TDL

Q
h

slit
                            (5.7) 

Thermal performance factor 015838.1
762.532,54

468.396,55

0

1 

slit

slit

h

h


                      (5.8)
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Similarly analysis is done on the other cases where the DCR insert as two and three 

slits with the results provided in table 5.2 to compare their rate of heat transfer and 

the thermal performance factor. 

 

Table 5.2:  Coefficient of heat transfer by different number of slits on a DCR  

                  insert 

Number of slits 0 1 2 3 

inletoutlet
TTT 

  
 0.015356 0.016099 0.016128 0.014882 

Estimated area of slits (m
2
) 0 3.263x10

-5 
6.526x10

-5 
9.789x10

-5 

Equivalent Radius (m) 0.0180 0.018286 0.018568 0.018845 

Equivalent Diameter (m) 0.0360 0.036572 0.037136 0.037691 

Q [rate of heat transfer] (J/s) 377.45162 409.89486 423.38799 402.44769 

h [coefficient of heat transfer] 54,532.762 55,396.468 56,253.766 57,094.814 

 [thermal performance factor]  1.01584 1.03156 1.04698 

  

From this analytical results the rate of heat transfer is represented graphically as 

illustrated in Figure 5.6 which indicates the optimal number of slits for heat transfer 

enhancement in a cylindrical pipe is two slits in symmetrical positions directly 

opposite each other on the cones slant surface. 
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Figure 5.6: Varation on rate of heat transfer with number of slits on the DCR   

                   insert. 

It is noted that two slits on opposite sides of the conical insert are observed to offer 

the highest heat transfer enhacentment potent when it generates two longitudinal 

vortex pairs. 

5.7  Discussion of results 

When the number of slits increases the amount of fluid passing through a conical 

insert increases thus decreasing the pressure as shown in Figure 4.15. The insert 

with no slit has its graph line showing the highest pressure drop while the case of 

three slits has the lowest change in pressure, the four graph lines plotted together 

show simillar behaviour of a sudden drop of pressure at the insert inlet. 

An increase in velocity at the insert increases kinetic energy in the fluid, raising the 

collisions of fluid particles leading to a rise in temperature due to dissipation of 

heat in the boundary layer region. 

As flow blockage increases the pressure drops, leading to increased viscous effects 

because of reduced free flow area causing a secondary flow. This creates a swirl 

flow that results in mixing of fluid particles and raising the temperature gradient 

which ultimately leads to a higher heat transfer enhancement.  
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The coefficient of heat transfer increases with increase in number of slits on the 

DCR insert which increases amount of fluid flowing past the turbulator. 

The thermal performance fact also increases with rise in number of slits 

symmetricaly positioned on the conical inserts curved surface. 
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Introduction  

This chapter presents the main findings of the research study and recommendations 

for further research. 

6.2 Conclusion  

There is need to analyze the flow pattern when using a diverging conical ring insert 

with slits and its effect in determining the change in temperature and pressure for 

the different set ups. Comparing zero, one, two and three slits which attains the 

second specific objective. 

There is a difference in values computed for rate of heat transfer with change in 

number of slits which shows that two multi-longitudinal vortex pairs in the 

diverging conical ring insert is a flow pattern that enhances heat transfer than the 

other cases. This is generated by two symmetrical slits on opposite sides of the 

conical insert, in relation to the first specific objective. 

The rate of heat transfer was highest when a conical insert has two slits which is 

423.3879 J/s in the analysis done in Table 5.2, while the thermal performance 

factor increases with the number of slits. This is a result of rise in the mass flow 

rate past the insert; this provides a result in relation to the third specific objective. 

It is found that as Reynolds number increases then coefficient of skin friction 

reduces on the fluid flow past the diverging conical ring insert, as shown in Section 

4.10 to achieve the fourth specific objective. 

An increase in velocity at the insert increases kinetic energy in the fluid, raising the 

collisions of fluid particles leading to a rise in temperature due to dissipation of 

heat in the boundary layer region hence a temperature rise. Temperature rise 

provides heat transfer enhancement on the fluid.  
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There is variation in every set up for values are obtained to determine the variation 

of temperature along the pipe showing change of temperature due to the diverging 

conical insert in the cylindrical pipe. It is observed that heat transfer enhancement 

occurs has the fluid passes through the diverging conical ring insert.  

 

6.3 Recommendation 

Future researchers to investigate the effect of a diverging conical ring insert on 

compressible fluid flow, for example hot air passing through a turbulator fixed in a 

pipe on a combustion exhauster. 

i) To determine effect of swirl flow generated by a divergent conical ring 

insert with slits using the stream function equation and vorticity equation to 

determine amount of heat enhancement due to fluid circulation. 

ii) To investigate synergy between pressure, temperature and velocity vectors 

of the flow with multi-longitudinal vortices along the flow tube. 

iii) To study effect of multiple diverging conical ring inserts with slits placed at 

fixed distances from each other along a tube to maintain swirl flow. 
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APPENDICIES 

Appendix 1: Algorithm for solving tri diagonal matrix to obtain radial velocity 

%numerical techniques of solving finite differences 

%developed  to solve tri diagnol matrix  

% a3=size(a1); 

% constants 

dz=0.001;  

dr=0.01; 

dz0=0; 

dr0=0; 

po=1e05; %pressure 

To=370; % temperature  

re=2000; % reynolds number 

pr=4;    % 

pc=160;  % 

 row=18; 

col=18; 

mt=[2;1;2/3;1/2;2/5;1/3;2/7;1/4;2/9;1/5;2/11;1/6;2/13;1/7;2/15;1/8;2/17;1/9]; 

for i=1:row 

    for j=1:col 

        for i=j 

        a3(i,j)=mt(i); 

    end 

   end  

end  

% disp(a3) 

a3(1,2)==0; 

find(a3==18) 
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a3(1,2:end)=0;  %take away the abnormality in matrix formation 

% disp(a3) 

% break 

a4=a3-1*diag(ones(17,1),1); 

% disp(a4) 

% break 

a5=a4+1*diag(ones(17,1),-1); 

% disp(a5) 

% break 

% to display and plot the sparse matrix use spy(a5) 

%  uz=[0 0 0.1 0 -0.2 -0.3 0.9 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0 0.4 0.4 0];% values of uz 

for k=0; 

 file1='data_uz.txt'; 

 file2='data_all_uz.txt'; 

 data=load(file1); 

 data1=load(file2); 

 uz=data(:,1);  

 ur=a5\uz;      %Mat divid for a case of Ax=b i.e x=A\b 

ur2=pinv(a5)*uz; % least squares approach 

% disp(ur2); 

 k=[ur ur2]; %compare if the two techniques give the same value 

   disp(k);  %try to check if the two technique are the same 

   Ur=zeros(18,30); 

    Ur=pinv(a5)*data1(:,1:end); % compute all the ur from all the uz values in data1 

%   disp(Ur) 

%% computation of the array of radial length variations r(i,k) 

file3='radial.txt'; 

r=load(file3); 

y2=r; 
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for i=1:18 

    for j=1:30 

        y2(i,j)=r(i,j); 

    end 

end  

r2=y2; 

a1=re.*r2; 

%%  %% computation of pressure profile 

 A=zeros(18,30); 

 for i=1:18 

     for k=1:30 

         A=Ur/(0.002)+1000/(re)-500./(a1); 

     end  

 end  

  for i=2:18 

    for j=1:30 

    uk(i,j)=data1(i-1,j); 

     end  

 end  

A2=A.*uk; 

w=2e06/re; 

 B=w+2e06; 

%  disp(B) 

  %% C values to be redone  

 C=zeros(18,30) 

  data1(:,end)=[] 

 uz=(data1(:,end)==0) 

uz1=[data1 uz]; 

% disp(uz1) 
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uz2=[uz data1]; 

% disp(uz2) 

C=uz1-uz2/(0.002); 

b2=B-C; 

%%  

y=load(file2); 

B2=b2.*y; 

disp(B2);  

% break 

%% D values 

   w2=1e06/re; w3=500./(re*r2); w4=Ur/0.002; 

   w5=w2+w3; w6=w5-w4; 

   for i=1:17 

    for j=1:30 

    uz(i,j)=y(i+1,j); 

     end  

end  

D2=w6.*uz; 

%% E value     

   E2=C/re; 

   fa=0.002/pc; 

   bra=A2-B2+D2-E2; 

   fas=fa+bra; 

   pre=1e05+fas; 

   %%  save the generated pressure data 

 save_file='variables.txt'; 

 results_path=['F:\New folder']; 

 if ~exist(results_path,'dir') 

     mkdir(results_path); 
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 end 

   save(save_file,'pre');   

   save Pressure_Profile.txt pre –ascii  
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Appendix 2: Matlab algorithm to obtain pressure profile 

%for Ur values from simulation 

 %Computing Pressure profile 

    %defining parameters 

    %let x be the size of vector Re 

    z=1:4; 

    %vector for Reynolds number 

    Re(z)=[1500 2000 2500 3000]; 

    Pc=6.5; 

    i=1:1:3; 

    p(1,1:3,1:6)=2.0*10^5; 

    p(2,1:3,1:6)=2.0*10^5; 

    %defining r(i,k) 

    r(1,1:18)=repelem(0.0001,18); 

    r(2,1:18)=repelem(0.001,18); 

    r(3,1:18)=repelem(0.002,18); 

    %k ranges from 1 to 18 

    k=1:18; 

    r(i,k); 

    %importing Ur 

    Ur=xlsread('Ur from simulation.xlsx'); 

    %importing uz 

    uz=xlsread('Erick.xlsx',2); 

    Ur(k,i); 

    %generate pressure profile 

    for z=1:4 

    for k=2:18 
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    %pressure equation 

    for i=1:3 

    %repeat for values of i 

 

    p(k+1,i,z)=p(k-1,i)+(1/(50*Pc))*((500*Ur(k,i)+(1000000/Re(z))-

(500/(r(i,k)*Re(z))))*uz(k,1)... 

     -((2020000*uz(k,2))/Re(z))+((1000000/Re(z))+(500/(r(i,k)*Re(z)))-

(500*Ur(k,i)))*uz(k,3)... 

 -((50*uz(k,2))-(9950/Re(z)))*uz(k+1,i)+((50*uz(k,2))+(10050/Re(z)))*uz(k-1,i)); 

    end 

    end 

    end 

    %partitioning the matrix p 

 

    %Re=1500; 

    p1=p(:,1,1);%P at the center 

    p2=p(:,2,1);%P at the middle 

    p3=p(:,3,1);%P at the outer 

    %Re=2000 

    p4=p(:,1,2); 

    p5=p(:,2,2); 

    p6=p(:,3,2); 

    %Re=2500 

    p7=p(:,1,3); 

    p8=p(:,2,3); 

    p9=p(:,3,3); 

    %Re=3000 

    p10=p(:,1,4); 
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    p11=p(:,2,4); 

    p12=p(:,3,4); 

    %plotting curves 

 

    k=1:19; 

    k=transpose(k); 

 

    a=fit(k,p1,'smoothingspline'); 

    hL1=plot(a,k,p1); 

    legend('Re=1500'); 

    hold on; 

    b=fit(k,p4,'smoothingspline'); 

    hL2=plot(b,k,p4); 

    legend('Re=2000'); 

    hold on; 

    c=fit(k,p7,'smoothingspline'); 

    hL3=plot(c,k,p7); 

    legend('Re=2500'); 

    hold on; 

    d=fit(k,p10,'smoothingspline'); 

    hL4=plot(d,k,p10); 

    legend('Re=3000'); 

    hold off; 

    %Legend 

    legend(' ','Re=1500', ' ','Re=2000',' ','Re=2500', ' ', 'Re=3000'); 

    grid on; 

    xlabel('Axial Distanace (k)'); 

    set(hL1(2),'color','k'); 
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    set(hL2(2),'color','b'); 

    set(hL3(2),'color','r'); 

    set(hL4(2),'color','g'); 

    hold off; 

    grid on; 

    xlabel('Axial Distance (K)'); 
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Appendix 3: Matlab algorithm to obtain temperature profile 

       %COMPUTING TEMPERATURE PROFILE 

    %============================= 

    %importing Ur 

    Ur=xlsread('Ur from simulation.xlsx'); 

    %importing uz 

    uz=xlsread('Erick.xlsx',2); 

    %parameter definition-Temperature boundary conditions 

    %defining r(i,k) 

    r(1,1:18)=repelem(0.0001,18); 

    r(2,1:18)=repelem(0.001,18); 

    r(3,1:18)=repelem(0.002,18); 

    i=1:3; 

    k=1:18; 

    %defining boundary values 

    %T(k,i-1)=370=370; T(k,i)=370 T(k,i+1)=370 

    z=1:6; 

    T(k,1:3,z)=370; 

    %T(i,k-1)=370; 

    T(1,2,:)=370; 

    Pr=1.75; 

    %defining Re vector 

    Re=[1500 2000 2500 3000 3500 4000]; 

    for z=1:6; 

    for k=2:18 

        for i=1:3 

         T(k+1,i,z)=((2*10^-7)/(0.0001*Ur(k,i)*Re(z)*Pr-0.002))*((1000000-  

(500/r(i,k))+(50*uz(k,2)*Re(z)*Pr))*T(k,1)... 
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         -2020000*T(k,2)+(1000000+(500/r(i,k))-(50*uz(k,2)*Re(z)*Pr))*T(k,3)... 

         +(10000+(500*Ur(k,i)*Re(z)*Pr))*T(k-1,2)); 

        end 

    end 

    end 

    %partitioning matrix T 

    %for i=1 and Re=1:6; 

    T1=T(:,1,1); 

    T2=T(:,1,2); 

    T3=T(:,1,3); 

    T4=T(:,1,4); 

    T5=T(:,1,5); 

    T6=T(:,1,6); 

    %for i=2 and Re=1:6 

    T7=T(:,2,1); 

    T8=T(:,2,2); 

    T9=T(:,2,3); 

    T10=T(:,2,4); 

    T11=T(:,2,5); 

    T12=T(:,2,6); 

    %for i=3 and Re=1:6 

    T13=T(:,3,1); 

    T14=T(:,3,2); 

    T15=T(:,3,3); 

    T16=T(:,3,4); 

    T17=T(:,3,5); 

    T18=T(:,3,6); 



105 

 

    %Plotting Temperature profile 

    k=1:19; 

    k=transpose(k); 

    figure(1);%i=1 

    a=fit(k,T1,'smoothingspline'); 

    hL1=plot(a,k,T1); 

    hold on; 

    b=fit(k,T2,'smoothingspline'); 

    hL2=plot(b,k,T2); 

    hold on; 

    c=fit(k,T3,'smoothingspline'); 

    hL3=plot(c,k,T3); 

    hold on; 

    d=fit(k,T4,'smoothingspline'); 

    hL4=plot(d,k,T4); 

    hold on; 

    e=fit(k,T5,'smoothingspline'); 

    hL5=plot(e,k,T5); 

    hold on; 

    f=fit(k,T6,'smoothingspline'); 

    hL6=plot(f,k,T6); 

    hold off; 

    %legend 

    legend(' ','Re=1500', ' ','Re=2000',' ','Re=2500', ' ', 'Re=3000',' ','Re=3500', ' 

','Re=4000'); 

    grid on; 

    title('Temperature against Axial distance (k)-centre'); 

    xlabel('Axial distance (k)'); 
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    ylabel('Temperature in Kelvin'); 

    set(hL1(2),'color','k'); 

    set(hL2(2),'color','b'); 

    set(hL3(2),'color','c'); 

    set(hL4(2),'color','y'); 

    set(hL5(2),'color','g'); 

    set(hL6(2),'color','m');  
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Appendix 4: Publication 1 
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Appendix 5: Publication 2 
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