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A B S T R A C T   

Maize (Zea mays L.) is an important food crop in Kenya, while low and erratic rainfall, and low nutrient input 
mainly result in low maize yield. This study were to assess optimal nutrient and irrigation management practice 
for maize in central Kenya based on field experiment combined with modeling simulation. On-farm experiment 
with four treatments including no fertilizer (N0), N applied at dose of 100 kg ha–1 only in the form of a chemical 
fertilizer (N100) or combined with animal manure (N100M) or straw (N100S) has been conducting since 2013 in 
central Kenya. The Decision Support System for Agro-technology Transfer–Cropping System Model 
(DSSAT–CSM) was firstly calibrated under the relative optimal treatment N100M, and it was then evaluated for 
the rest three treatments for 6 maize growing seasons from 2014 to 2018. The responses of grain yield to different 
irrigation and fertilizer regimes were simulated using the calibrated DSSAT–CSM. The combination of fertilizer 
and manure (N100M) resulted in the highest yield and that of fertilizer and straw (N100S), in the highest level of 
soil water content in each soil layer. The model (DSSAT-CSM) successfully predicted both grain yield (normalized 
root mean square error, or nRMSE, of 21–37% and the index of agreement, or d, of 0.89–0.93) and changes in 
water content of each soil layer (nRMSE < 20% and d > 0.70) in all treatments except N100S. The yield was most 
sensitive to any deficit in soil water content (dry spells) at the beginning of grain-filling stage, and the best 
regime for high yield, high water-use efficiency, and high agronomic efficiency comprised irrigation at 50–70 
mm during that stage combined with fertilizer N at 100–120 kg ha–1. The estimated magnitude yield gain with 
respect to optimal nutrition and irrigation ranged from 2 to 4 t ha–1 in different crop seasons. Optimal application 
of irrigation at the sensitive stage, fertilizer N, animal manure, and straw mulching holds great potential as an 
integrated farming practice for high grain yield and for efficient use of resources in maize cultivation in semi-arid 
parts of Kenya.   

1. Introduction 

Maize (Zea mays L.) is the staple food of 90% of Kenya’s population 
(Ochieng et al., 2017). Maize is a suitable crop for warmer conditions 
but sensitive to water stress (Araya et al., 2015). Most of Kenya is either 
arid or semi-arid, characterized by highly variable weather including 
uneven distribution of rainfall and frequent droughts during critical 

stages of maize growth. Crop production is mainly rain-fed, irrigated 
area accounts for less than 2% of Kenya’s total cultivated area (FAO, 
2015), and also suffers from nutrient imbalance due to chronically low 
use of fertilizers, the latter being one of the major causes of low soil 
fertility in sub-Saharan Africa (Burke et al., 2019). Inadequate and 
erratic rainfall, lack of measures to conserve soil moisture, and degraded 
and infertile soil together with low nutrient inputs result in maize yields 
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in Kenya being very low (Tittonell et al., 2008; Mucheru-Muna et al., 
2010, 2014; Ngetich et al., 2014) and the increasing frequency of 
extreme climatic events such as droughts and floods is bound to weaken 
food security in eastern Africa even further (Bryan et al., 2013; Rowell 
et al., 2015). 

Climate-smart agriculture was suggested as an adaptation strategy to 
ensure food security in the face of climate change. In East Africa, 
climate-smart villages take many forms: they may be weather-smart 
(they get seasonal weather forecasts), water-smart (they practise such 
measures as rainwater harvesting), carbon-smart (they compost their 
organic waste to get manure), and so on (Ogada et al., 2020). Biazin 
et al. (2012) reviewed some commonly used rainwater-harvesting and 
management practices and reported that they hold a significant poten
tial to increase rainwater-use efficiency and to sustain rain-fed agricul
ture in sub-Saharan Africa. Nyagumbo et al. (2019) reported that in-field 
water-harvesting technologies have the potential to increase soil water 
content and, consequently, maize yield in areas that face water shortage 
in semi-arid regions of Zimbabwe. Long-term measures aimed at soil and 
water conservation also tend to increase soil organic matter in farmlands 
of south-eastern Kenya (Saiz et al., 2016). In an on-farm experiment in 
semi-arid Kenya, growing maize using a ridges-and-furrows system and 
mulching with plastic film increased soil water content and grain yield 
(Mo et al., 2016). These two measures supplemented with balanced 
application of fertilizers could serve as a promising adaptive manage
ment practice to obtain higher yields from maize and to fix larger 
amounts of agricultural carbon in semi-arid eastern Africa (Mo et al., 
2017). Other measures such as no tillage and residue retention, con
ventional tillage and manure, and the combination of both these mea
sures increased maize yield substantially when compared to the yields 
from conventionally managed farms in both sub-humid and semi-arid 
agro-ecological zones and from both more fertile and less fertile soils 
in Kenya (Mutuku et al., 2020). Tully et al. (2015) reported that mineral 
fertilizers could increase maize grain yield in western Kenya, and Kiboi 
et al. (2019) reported that mineral fertilizers, with or without animal 
manure or crop residues, increased maize yield, and mulching with crop 
residue also increased soil water content in the central highlands of 
Kenya. In addition to rainwater harvesting, it is feasible to expand the 
area served by both dam-based and small-scale irrigation in Kenya (You 
et al., 2014). Nakawuka et al. (2018) reviewed the literature on trends, 
constraints, and opportunities related to smallholder irrigation in four 
East African countries, namely Ethiopia, Kenya, Tanzania, and Uganda, 
and reported that it is possible to increase the area under such irrigation 
despite many challenges. Augmenting rain-fed agriculture by rainwater 
harvesting not only lowers the risk of total crop failure due to dry spells 
but also increases the productivity of water and crops substantially 
(Biazin et al., 2012). 

Besides on-farm trials, crop modeling has become an essential tool to 
evaluate optimal management strategies cost-effectively and quickly 
once the models are calibrated and their results compared against those 
from local on-farm experiments. Many models have been developed that 
simulate agro-ecosystems, and two most popular and widely used 
among them are APSIM (Agricultural Production Systems sIMulator; 
Holzworth et al., 2014) and DSSAT (Decision Support System for 
Agrotechnology Transfer; Jones et al., 2003), which are process-based 
crop growth simulation models. Some farming systems prevalent in 
Africa have also been modeled. For example, the DSSAT-CERES-Maize 
model predicted yields reliably from several sites in Kenya using such 
variables as plant population, cultivars, sowing dates, and the dose of 
nitrogen (N), predictions that enabled farmers to make decisions that 
were compatible with the farmers’ socio-economic circumstances 
(Wafula, 1995). Whitbread et al. (2010) summarized the application of 
APSIM to simulate key soil and crop processes in highly constrained and 
low-yielding maize–legume systems in southern Africa. Zinyengere et al. 
(2013) investigated the impacts of climate change and agronomic 
practices on yields of various major food crops at specific locations in 
southern Africa using DSSAT. Araya et al. (2015) calibrated and 

evaluated the performance of both APSIM and DSSAT-CSM (cropping 
system model) in simulating maize growth and predicting yield in 
southwestern Ethiopia and found the predictions to be reliable, which 
enabled the authors to assess the impact of climate change on future 
maize yield. Corbeels et al. (2016) evaluated how well DSSAT could 
simulate the response of maize in Zambia to no tillage and mulching 
with crop residues. Seyoum et al. (2017) used APSIM to characterize the 
pattern of major droughts and their frequencies as they affected 
maize-based cropping systems in eastern and southern Africa. Araya 
et al. (2019) calibrated and validated DSSAT-CSM for predicting yield 
and biomass of wheat in northern Ethiopia under different combinations 
of the dose of N and the quantity of irrigation. 

It was against this background that the current study was carried out 
in central Kenya with the following objectives to: (1) investigate the 
impact of N applied only in the form of a chemical fertilizer or combined 
with animal manure or straw or both on grain yield of maize and soil 
water content; (2) evaluate DSSAT-CSM for predicting grain yield and 
for simulating the dynamics of soil water by comparing the model’s 
outputs with measured data; and (3) estimate optimal quantities of 
irrigation and N for maize based on the sensitivity of its yield to different 
irrigation and fertilizer regimes. 

2. Materials and methods 

2.1. Description of the site 

2.1.1. Location 
Data for this study were collected from an ongoing long-term field 

experiment set up in 2013 and continues to date. The site in Juja, about 
35 km from Nairobi, the capital city of Kenya, is part of the large farm of 
Jomo Kenyatta University of Agriculture and Technology (1◦05′ S, 
37◦01′ E) in Kiambu county in a semi-arid part of central Kenya with 
subtropical highland climate. The area is characterized by two main 
rainy seasons, the longer season from March to May and the shorter 
season from October to November. However, the shorter season some
times extends to the first week(s) of December. Maize is grown in both 
seasons to benefit from this pattern of rainfall. Maize is planted in late 
current year and harvested in early next year in short rains. The region 
being dry for most part of the year, yields are low if farmers fail to sow at 
the onset of the short and unpredictable rainy season from March to May 
or from September to November. Juja is also characterized by a low 
water table, and the loose clay cotton soils are the main reason for the 
flooding in Juja in some years during the heavy rains that sometimes 
occur in April. The two extremes, namely long dry spells and the short 
but heavy rains accompanied by floods, require planning and better 
management practices to retain soil water, to carry out timely irrigation 
in optimal amounts, to apply fertilizers at optimal rates, and so on to 
maximize output. 

2.1.2. Soil 
The soil at the site is a chromic vertisol with poor drainage. Analysis 

of the top layer (0–20 cm) at the beginning of the long-term experiment 
showed that available N was 175 ppm, soil organic carbon was 17.7 g 
kg–1, total nitrogen was 1.55 g kg–1, and the soil comprised 62.9% clay, 
23.6% sand, and 13.6% silt. Before the long-term experimental began, 
the site had been grassland with some small, scattered bushes mainly 
used by the university for grazing dairy cattle. 

2.1.3. Layout of experiment 
The general layout of the experimental field consisted of 81 ran

domized plots each measuring 80 m2 (10 m × 8 m) grouped into nine 
blocks (labeled A to I), each block comprising nine plots, each plot 
representing a different treatment. The whole experiment thus encom
passed nine treatments laid out in a randomized complete block design 
with three replications. For this study, four treatments, each with three 
replications (blocks A, B, and D), were chosen for comparing the 
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experimental data with outputs from the DSSAT model. The four treat
ments were as follows: (1) no nitrogen (N0), (2) N at 50 kg ha–1 given as 
a basal dose using diammonium phosphate (DAP) following by another 
dose of N at 50 kg ha–1 as topdressing using urea (N100), which is the 
recommended practice, (3) N100 along with 3 t ha–1 of cattle manure 
containing 2.0% N (N100M), and (4) N100 along with 5 t ha–1 of maize 
straw containing 0.5% N (N100S). 

This study was carried out over 5 consecutive years (2014–2018) 
during which all the treatments and other management practices 
remained unchanged except those that depended on the weather (see 
below). Even the manure was obtained from the same source throughout 
to ensure uniformity. Although, as mentioned earlier, two crops of maize 
were taken each year, most of the time the crops raised during the short 
rainy season failed because of either dry spells or floods, which is why 

the experimental data consist of data for all the five crops grown during 
the long rainy season and for only one crop grown during the shorter 
rainy season (Table 1). Data on the dynamics of soil water were collected 
during only three seasons, namely November 2016 to February 2017, 
May–September 2017, and April–August 2018. Changes in the weather 
affected some operations; for instance, heavy rains at the beginning of 
some seasons and the consequent water-logging meant that the appli
cation of fertilizers and manures had to be delayed to minimize the 
possible leaching of N. 

The field was usually plowed using a tractor-mounted disc plow 
(20–30 cm deep) a little before the onset of the seasonal rains and the 
soil allowed to dry for at least two days before harrowing to break up 
large lumps. The whole field was then marked and divided into plots as 
given above, with one-meter-wide paths between the plots for easy 

Table 1 
Field management data for N0, N100, N100M and N100S treatments from 2016 to 2018 at the experimental site, Kenya.  

Season 
sequence 

Year Rainy 
season 

Crop Tillage 
date 

Planting 
date 

Row 
space 
(cm) 

Harvest 
date 

N0 N100 　 N100M  N100S 

Fertilizer Fertilizer 　 Fertilizer Manure 　 Fertilizer Straw 
residue 

(Kg N ha− 1)  

1  2014 Long 
rains 

Maize 29-Mar- 
14 

31-Mar- 
14  

70 30-Jul- 
14  0 

100 100  60   100  25  

2  2015 Long 
rains 

Maize 8-Apr- 
15 

9-Apr-15  70 20-Jul- 
15  0 

100 100  60   100  25  

3  2016 Long 
rains 

Maize 2-Apr- 
16 

4-Apr-16  70 17-Aug- 
16  0 

100 100  60   100  25  

4  2017 Long 
rains 

Maize 19-Mar- 
17 

22-Apr- 
17  

70 12-Sep- 
17  0 

100 100  60   100  25  

5  2017 Short 
rains 

Maize 31-Oct- 
17 

2-Nov-17  70 27-Mar- 
18  0 

100 100  60   100  25  

6  2018 Long 
rains 

Maize 2-Apr- 
18 

5-Apr-18  70 8-Aug- 
18  0 

100 100  60   100  25  

Fig. 1. Weather data, 2014–2018: (a) monthly average air temperature (black or blue marks indicate growing seasons) and (b) monthly precipitation (MP) in each 
year (black or blue bars indicate growing seasons) and cumulative precipitation during each growing season (GSP). 
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movement, which was further facilitated by alternating the inter-row 
spacing between 40 cm and 70 cm. Maize seeds were sown manually 
using a string to mark each row. Within each row, spacing was main
tained at 30 cm using a stick of the same length and sharpened at one 
end for digging. Seeds were sown 2.5 cm deep, two seeds to a hole, and 
carefully covered with loose soil, which was then compacted slightly to 
facilitate proper germination. Each plot accommodated 15 rows, with 
33 plants on average in each row, the average density was 500 plants per 
plot. 

2.2. Harvest and sampling 

The crop was harvested manually by cutting each plant close to the 
ground. Some stalks were cut into smaller pieces using a tractor- 
mounted cutting machine and stored in sacks until required for the 
treatment N100S; the rest of the lot was used by the university as cattle 
feed. The cobs were air-dried for weeks before being shelled and 
weighed when completely dry. For the data on biomass (dry matter), 
plant height, and the number of leaves, plants were selected at random. 
Dry weight was recorded after drying in an oven at 70 ◦C for 48 h. 

Soil samples were collected before and after the rains from all the 
treatments at seven depths along the soil profile: 0–10 cm, 10–20 cm, 
20–30 cm, 30–40 cm, 40—60 cm, 60–80 cm, and 80–100 cm. Soil was 
retrieved using an auger to drill the soil samples, packed into labeled 
self-sealing (Ziplock) polythene bags, weighed, repacked into smaller 
paper bags, dried in an oven at 105 ºC for 24 h, and weighed again to 
calculate the water content. Other soil properties measured included pH, 
bulk density, content of soil organic carbon, and percentages of silt and 
clay: all were determined using appropriate field and laboratory 
methods. 

2.3. Weather data 

Data on the main weather parameters required to calibrate and run 
the model, such as daily maximum and minimum air temperatures, daily 
solar radiation, and daily precipitation, were collected from an auto
mated weather station (ET107, Campbell Scientific, Logan, Utah) 
installed in the field in November 2016. However, the DSSAT model 
requires daily values of the weather parameters throughout the year for 
each year. Therefore the missing weather data, for the period from 
January 2014 to November 2016, were obtained from the Kenya Agri
cultural and Livestock Research Organization weather station in Thika 
town 18 km from the experimental site. The weather data were down
loaded weekly from the automated weather station to monitor the 
changes in daily temperature and rainfall to manage the irrigated plots 
accordingly. 

The highest and the lowest annual average air temperatures during 
the 5 years were 27.3 ◦C and 13.8 ◦C. Monthly average temperatures 
ranged from 18.4 ◦C, in March, to 22.9 ◦C in July (Fig. 1a). Annual 
rainfall ranged from 771 mm to 1409.2 mm and monthly rainfall, from 

0 mm to 395.3 mm. Most of the rainfall occurred from March to May and 
from October to November (Fig. 1b) although drought was frequent in 
January and from July to August (Fig. 1b). Rainfall during the six 
cropping seasons ranged from 143 mm in 2017 to 719 mm in 2018, both 
the extremes being in the long rainy season (Fig. 1b). 

2.4. Simulation 

2.4.1. Data for model input 
The Crop Estimation through Resource and Environment Synthesis 

(CERES)-Maize (Jones and Kiniry, 1986) is one of the cropping system 
models (CSMs) embedded in DSSAT. The CERES-Maize module and the 
CENTURY-based soil module in DSSAT (version 4.6.1) (Jones et al., 
2003; Hoogenboom et al., 2010, 2014) were used for simulations. The 
model runs with a daily time step and simulates crop growth, develop
ment, and yield of specific cultivars based on the effects of weather, soil, 
and management practices (Jones et al., 2003). The model requires data 
on crop management, daily weather, initial soil conditions, cultivar, and 
soil profile. Data on crop management included the method of tillage 
and date, date of sowing, row spacing, plant density, fertilizers and 
manures (dates and amounts), and other details. The relevant informa
tion on crop management during all six seasons is summarized in 
Table 1. The straw was cut into small pieces (about 2–5 cm) and used as 
mulch for all the plots under N100S, applied immediately after sowing. 
The straw served as mulch and, after its decomposition, as a source of 
soil organic matter. For the rest of the treatments (N0, N100, N100M), 
all the plant biomass was cut and totally cleared from the field after 
harvesting or before plowing for the next season. The field was plowed 
to a depth of 20 cm in March or April (for the first season of the year) and 
in October (for the second season of the year) in all the years except for 
the second season in 2017, when the field was plowed in December. The 
field was left fallow between the harvest of a crop and sowing the next 
crop. 

The minimum daily weather data required to run the DSSAT model 
included daily maximum and minimum temperatures (◦C), daily solar 
radiation (MJ m–2), and daily precipitation (mm). The data on soil bulk 
density, content of organic carbon, total N, and proportions of clay, silt, 
and sand were obtained from the measurements and analyses of the soil 
samples. The measured initial content of organic carbon in the topsoil 
was 17.7 g kg–1, total N was 1.55 g kg–1, and soil pH was 5.5 (Table 2). 
The other data including the drained upper limit (field capacity), soil 
water lower limit (wilting point), degree of saturation, and saturated 
hydraulic conductivity were obtained from published data collected by 
Jomo Kenyatta University of Agriculture and Technology during the 
detailed survey of the university’s soil. 

2.4.2. Calibration for the cultivar 
The DSSAT model has to be calibrated for the cultivar coefficients 

under the optimum conditions, namely minimum nutrient contents 
stress and weather stress for the given region. Such calibration is 

Table 2 
Soil profile dataa of the experimental field.  

Soil depth 
(cm) 

Lower 
limit 
(cm3 

cm–3) 

Drained 
Upper 
limit (cm3 

cm–3) 

Saturation 
(cm3 cm–3) 

Saturated 
hydraulic 
conductivity 
(cm h–1) 

Bulk 
density 
(g cm–3) 

Organic 
carbon (g 
kg–1) 

Clay (<
0.002 mm) 
(%) 

Silt 
(0.05–0.002 mm) 
(%) 

Total 
nitrogen 
(g kg–1) 

pH in 
water 

Cation 
exchange 
capacity 
(cmol kg–1)  

0–10  0.200  0.302  0.413  0.37  1.13  17.7  62.9  13.6  1.55  5.5  36.5  
10–20  0.200  0.324  0.416  0.37  1.13  17.6  66.0  18.0  1.58  5.5  36.5  
20–30  0.200  0.324  0.420  0.37  1.13  6.3  66.0  18.0    5.5  43.3  
30–40  0.200  0.338  0.426  0.46  1.13  6.3  66.0  14.0    5.9  43.3  
40–60  0.218  0.336  0.438  0.63  1.13  6.3  68.0  12.0    5.9  43.3  
60–80  0.218  0.332  0.451  0.67  1.27  8.4  70.0  10.0    6.0  55.5  
80–100  0.218  0.340  0.472  0.68  1.38  5.5  71.0  10.0    6.2  47.0 

aThe data on topsoil bulk density, content of organic carbon, total N, and proportions of clay and silt were obtained from the measurements and analyses of the soil 
samples collected at the beginning of the experiment. The other data were obtained from Kenya soil survey report in 1978. 
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necessary because cultivar coefficients control the stages of crop growth, 
which can vary with the weather (Jones et al., 2003). The calibration 
was carried using trial and error: the value of each parameter was 
changed by ± 5%, and the root mean square error (RMSE) between the 
simulated and the measured grain yield was used for determining the 
values that offered the best match. In calibrating for cultivar co
efficients, in addition to grain yield, three phenological stages were also 
considered: seedling emergence, flowering, and grain filling. The cali
brated cultivar coefficients in this study were based on adjusting earlier 
calibrated cultivars available in the model database. The study used a 
total of three cultivars: one in 2014 and 2015, one in 2016, and one in 
2017 and 2018. Based on the field experimental observations, N100M 
treatment obtained the highest grain yield was under relative optimum 
nutrition in this study. Therefore, the parameters for all the three cul
tivars were calibrated using the relative optimum N100M treatment and 
the actual local weather and soil conditions (Table 3). The simulated 
phonological stages (e.g., emergence, flowering, and grain filling days) 
under the calibrated cultivar coefficients were roughly in the same 
phonological stages as field crops in this region. The simulated grain 
yields N100M were evaluated to ensure the predicted yields matched the 
actual yields very well. The model outputs were validated using other 
three different treatments. 

The simulation was carried out through the DSSAT Sequence Anal
ysis program to make it possible for the dynamics of soil water and of soil 
nutrients to be transferred continuously from the beginning to the end of 
the simulation. A total of four management files in the DSSAT readable 
format, namely SQX, were created for each of the four treatments based 
on the input data described earlier. A graphics software package, namely 
EasyGrapher, was used for data visualization and statistical evaluation 
of the model’s output. The focus was on evaluating the model by 
comparing the simulated or predicted grain yield and soil water dy
namics with actual values measured during the experimental years. 

2.4.3. Statistical analysis 
A number of statistical analyses were carried out, aimed at different 

aspects of the model’s performance. To address all the aspects satisfac
torily, five deviation statistics were used: root mean square error 
(RMSE), mean error (E), normalized RMSE (nRMSE), index of agreement 

(d), and modeling efficiency (EF). The features of each deviation sta
tistics are described in detail in our earlier publications (Yang et al., 
2014; Li et al., 2015a, 2015b). Each deviation statistic addresses only 
one specific aspect; however, using each of the five indexes helped us to 
quantify the overall performance. The five deviation statistics were 
calculated using the following equations: 

Table 3 
The calibrated cultivar coefficients of maize for the experimental field using 
CERES-Maize in DSSAT-CSM (v4.6).  

Cultivar Calibrated coefficients 

Calibration year 2014–2015 2016 2017–2018 
Cultivar name KE0001 KE0002 KE0003 
P1 Thermal time from seedling emergence 

to the end of the juvenile phase 
(expressed in degree days above a base 
temperature of 8 deg.C) during which 
the plant is not responsive to changes in 
photoperiod 

110 160 110 

P2 Extent to which development 
(expressed as days) is delayed for each 
hour increase in photoperiod above the 
longest photoperiod at which 
development proceeds at a maximum 
rate (which is considered to be 12.5 h) 

0.75 0.75 0.75 

P5 Thermal time from silking to 
physiological maturity (expressed in 
degree days above a base temperature of 
8 deg.C) 

550 500 850 

G2 Maximum possible number of kernels 
per plant 

750 400 750 

G3 Kernel filling rate during the linear 
grain filling stage and under optimum 
conditions (mg day–1) 

9.5 9.0 9.5 

PHINT Phylochron interval; the interval in 
thermal time (degree days) between 
successive leaf tip appearances 

65 55 60  

Table 4 
The combination of different irrigated water amounts and timing of irrigation 
applied for each irrigation strategy scenario during dry seasons in 2017 and 
2018.  

Irrigation 
strategy 

Irrigated 
water (mm) 

Irrigation date Growing stage 

Julian day 
in 2017 

Julian day in 
2018 

IR0  0    
IR1  10 173 (June 

22, 2017) 
1 (January 1, 
2018) 

Silking 
begining IR2 30 

IR3 50 
IR4 70 
IR5 90 
IR6  10 180 8  
IR7 30 
IR8 50 
IR9 70 
IR10 90 
IR11  10 188 (July 7, 

2017) 
15(January 
15, 2018) 

Grain filling 
begining IR12 30 

IR13 50 
IR14 70 
IR15 90 
IR16  10 195 22  
IR17 30  
IR18 50  
IR19 70  
IR20 90  
IR21  10 202 29  
IR22 30  
IR23 50  
IR24 70  
IR25 90  
IR26  10 209    

IR27 30    
IR28 50    
IR29 70    
IR30 90   

IR31  10 216    
IR32 30    
IR33 50    
IR34 70    
IR35 90   

IR36  10 173 1   
10 188 8   
10 195 15   
10 202 22   
10 209 29  

IR37  20 173 1   
20 188 8   
20 195 15   
20 202 22   
20 209 29  

IR38  30 173 1    
30 188 8    
30 195 15    
30 202 22    
30 209 29  

IR39  40 173 1   
40 188 8   
40 195 15   
40 202 22   
40 209 29  

IR40  50 173 1   
50 188 8   
50 195 15   
50 202 22   
50 209 29   
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E =

∑n

i = 1
(Si − Mi)

n
(1)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i = 1(Si − Mi)
2

n

√

(2)  

nRMSE =
RMSE

M
× 100 (3)  

d = 1 −

∑n

i = 1
(Si − Mi)

2

∑n

i = 1
(|Si − M| + |Mi − M|)

2
(4)  

EF = 1 −

∑n

i = 1
(Si − Mi)

2

∑n
i = 1(Mi − M)

2 (5)  

where Si is the simulated or predicted value, Mi is the actual or measured 
value, n is the number of values, and M is the average of the measured 
values. 

In addition, the paired-t-test was used to ascertain whether differ
ences between the simulated and measured values were statistically 
significant. The relationship between the simulated and measured 
values was also fitted by a linear regression (y = bx + a, where y and x 
represent the simulated and measured data, respectively) to evaluate 
model performance. The slope of the linear regression indicates the 
extent of systematic bias. The significances of the slope, intercept and 
the coefficient of correlation were tested. 

2.4.4. Sensitivity of model 
Sensitivity analysis is a fundamental tool for understanding and 

building simulation models (Confalonieri et al., 2010) and provides very 
useful information on the performance and general behavior of a model. 
In this study, the dry period from late June to August 2017 and that in 

January 2018 occurred during the critical stages of silking and grain 
filling, while the early critical stages such as flowering (Saddique et al., 
2019) and heading (Araya et al., 2019) did not encounter drought period 
during experiment running from 2014 to 2018. Therefore, the irrigation 
strategy was designed for the dry periods in both the seasons involving 
the longer and the shorter rainy seasons in 2017 (Table 4). The irrigation 
strategy consisted of a combination of different times and quantities of 
irrigation; the crop was irrigated from the beginning of the silking stage 
to the late grain-filling stage at intervals of 7 days, and the quantities 
ranged from 10 mm to 90 mm at intervals of 20 mm. The sensitivity of 
grain yield to these combinations was simulated for the two seasons in 
2017 under different doses of N including N0, N100, and N100M to 
assess the optimal irrigation strategy. Treatment N100S was excluded 
because that soil water content under that treatment could not be 
captured reliably. A total of six management files in the DSSAT readable 
format, namely MZX, were created for the two seasons and for the three 
treatments, namely N0, N100, and N100M. The responses of grain yield 
and irrigation water productivity (IWP) to irrigation regimes were 
evaluated. The productivity of irrigation water (kg ha–1 mm–1) was 
calculated using the equation given by Zhang et al. (1999), Howell 
(2001), and Araya et al. (2019): 

IWP =
(GYI − GYR)

I
(6)  

where GYI is grain yield (kg ha–1) from the irrigated crop; GYR is the 
corresponding yield (kg ha–1) obtained from the rain-fed crop; and I is 
the amount of irrigation (m3 ha–1). 

In addition, the precipitation use efficiency (PUE) (kg ha–1 mm–1) of 
maize grain yield was also calculated as the ratio of grain yield under 
rain-fed condition to precipitation in crop growth period using the 
following equation (Ojeda et al., 2018; Srivastava et al., 2019): 

PUE =
GYR

P
(7)  

where GYR is grain yield (kg ha–1) under rain-fed condition; and P is the 

Fig. 2. Predicted (black bars) and actual (blank bars) grain yield of maize from four treatments, namely (a) 0 kg ha–1 of N (the control, or N0), (b) 100 kg ha–1 of N 
(N100), (c) 100 kg ha–1 of N combined with manure (N00M), and (d) 100 kg ha–1 of N combined with mulching with straw (N100S). Correlation and regression 
between predicted and actual grain yield: (e) from N0; (f) from N100; (g) from N00M; and (h) from N100S. The slope without “* ” indicates not significant difference 
with 1 at 0.05 probability level. The intercept without “* ” indicates not significant difference with 0 at 0.05 probability level. R2 marked with “* ” indicates sig
nificant correlation at 0.05 probability level. Error bars represent standard deviation (n = 3). 
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amount of precipitation in crop growth period (mm). 
The sensitivity of grain yield to various doses of N in the two dry 

seasons of 2017 and in the normal season in 2018 was simulated under 
rain-fed conditions and under optimal irrigation according to the results 
from the simulated responses of grain yield to different irrigation 
strategy scenarios. The dose of N was varied from 0 kg ha–1 to 
160 kg ha–1 in increments of 20 kg. The responses of agronomic effi
ciency (AE) of fertilizer N, PUE and IWP to the different doses were 
investigated. Using the results from this sensitivity analysis, the opti
mum dose of N to simultaneously achieve high grain yield, high AE, and 
high IWP were identified for both dry and normal years. In addition, 
effects of the interaction between irrigation regime and the dose of N on 
grain yield were also investigated. Agronomic efficiency (kg kg–1) was 
calculated using the following equation (Fageria and Baligar, 2005): 

AE =
(GF − GU)

N
(8)  

where GF is the grain yield (kg) from plots to which N had been applied, 
GU is the grain yield (kg) from plots that had not received N, and N is the 
dose (kg) of N. 

3. Results 

3.1. Grain yield and precipitation use efficiency 

Grain yield, as a function of the weather, cultivar coefficients, dose of 
N, and application of manure and of straw, varied markedly with the 
year and the treatment (Figs. 2a–2d). Averaged over the 5 years 
(2014–2018), the yield was 1.52 ± 1.13 (S.D.) t ha–1 in the control plots 
(N0), 3.33 ± 1.38 t ha–1 in plots that had received fertilizer N alone 
(N100), 4.18 ± 1.12 t ha–1 in plots supplied with fertilizer N and manure 
(N100M), and 3.21 ± 0.67 t ha–1 in those supplied with fertilizer N and 
straw (N100S) (Table 5). The average yield under N0, because of N 
deficiency, was significantly lower than that under any of the other three 
treatments (p < 0.05, t-test) but did not differ significantly among those 
three. The inter-annual variation in yield under any given treatment was 
mainly due to the different cumulative precipitation (GSP) as well as 
different distribution of rainfall during the growing season. Grain yield 
in both seasons from 2014 to 2016 reflected the trends in cumulative 
GSP whereas that in 2017 was not affected although the cumulative GSP 
was very low (132 mm; Fig. 1b) because rainfall in that year was evenly 

Table 5 
Statistical evaluation of simulated maize grain yields, and precipitation use efficiency against measured values.  

Treatment Measured Simulated Sample No. E RMSE nRMSE (%) d EF Paired-t (p) 

Grain yield (t ha–1) 
N0  1.52 (1.13)a  1.71 (1.16)  5  0.18  0.57  37.37  0.93  0.72  0.53 
N100  3.33 (1.38)  3.55 (1.13)  6  0.23  0.73  21.92  0.89  0.67  0.50 
N100M  4.18 (1.12)  4.34 (1.34)  5  0.16  0.46  11.04  0.96  0.81  0.51 
N100S  3.21 (0.67)  3.87 (0.87)  5  0.66  0.75  23.49  0.73  -0.55  0.02 
Entire data  3.07 (1.42)  3.38 (1.45)  21  0.30  0.64  20.97  0.95  0.78  0.03 
Precipitation use efficiency (kg ha–1 mm–1) 
N0  5.22 (4.23)  6.35 (6.20)  5  1.12  3.08  59.05  0.89  0.33  0.48 
N100  14.59 (13.88)  14.50 (11.56)  6  -0.09  2.64  18.06  0.99  0.96  0.94 
N100M  19.16 (15.68)  19.58 (16.18)  5  0.42  1.34  7.01  1.00  0.99  0.54 
N100S  13.86 (9.06)  17.03 (12.04)  5  3.17  4.23  30.52  0.95  0.73  0.09 
Entire data  13.27 (11.95)  14.37 (12.13)  21  1.10  2.99  22.53  0.98  0.93  0.09  

a Values in brackets are the S.D. for each treatment. 

Fig. 3. Predicted (black bars) and actual (blank bars) PUE (precipitation use efficiency) of maize grain yield from four treatments of N0 (a), N100 (b), N00M (c), and 
N100S (d) (see Fig. 2 for explanation of the abbreviations of the treatment). Correlation and regression between predicted and actual PUE: (e) from N0; (f) from 
N100; (g) from N00M; and (h) from N100S. R2 marked with “* ” indicates significant correlation at 0.05 probability level. Error bars represent standard devia
tion (n = 3). 
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distributed. On the other hand, grain yield in the season 2017/18 was 
affected although the cumulative GSP was high because of the dry spell 
in January 2018. The average grain yield under N100S was almost equal 
to that under N100, although the inter-annual variation in N100S (S. 

D. = 0.67 t ha–1) was much lower than that in N100 (S. 
D. = 1.38 t ha–1). In seasons with dry spells, such as 2016 and 2017/18, 
grain yields under N100S were markedly higher than those under N100, 
probably because mulching, by retaining more soil moisture, offset to 

Table 6 
Statistical evaluation of simulated soil water contents in different soil layers at the 0–100 cm soil depth against measured values.  

Treatment Soil depth (cm) Soil water content (cm3 cm–3)   

Measured Simulated Sample No. E RMSE nRMSE (%) d EF 

N0  0–10  0.294  0.275  41  -0.019  0.046  15.72  0.80  0.45  
10–20  0.300  0.281  41  -0.019  0.044  14.57  0.82  0.47  
20–30  0.313  0.288  41  -0.025  0.047  15.13  0.81  0.43  
30–40  0.316  0.302  41  -0.014  0.046  14.56  0.82  0.43  
40–60  0.307  0.306  41  -0.001  0.041  13.26  0.82  0.47  
60–80  0.286  0.305  41  0.019  0.039  13.68  0.79  0.10  

80–100  0.276  0.305  41  0.029  0.049  17.77  0.62  -1.24 
N100  0–10  0.300  0.272  41  -0.029  0.057  19.00  0.77  0.31  

10–20  0.305  0.276  41  -0.029  0.060  19.64  0.74  0.25  
20–30  0.317  0.279  41  -0.037  0.063  19.72  0.70  0.05  
30–40  0.315  0.290  41  -0.026  0.059  18.73  0.72  -0.04  
40–60  0.305  0.291  41  -0.014  0.049  16.01  0.78  0.20  
60–80  0.292  0.289  41  -0.003  0.044  15.16  0.76  -0.05  

80–100  0.277  0.289  41  0.012  0.044  15.76  0.72  -0.08 
N100M  0–10  0.305  0.277  41  -0.027  0.055  18.06  0.76  0.30  

10–20  0.311  0.282  41  -0.029  0.055  17.63  0.74  0.25  
20–30  0.315  0.286  41  -0.029  0.054  17.07  0.73  0.10  
30–40  0.315  0.299  41  -0.016  0.048  15.30  0.82  0.37  
40–60  0.315  0.300  41  -0.014  0.040  12.67  0.86  0.57  
60–80  0.296  0.298  41  0.001  0.038  12.77  0.80  0.14  

80–100  0.278  0.304  41  0.026  0.050  17.86  0.61  -0.75 
N100S  0–10  0.328  0.284  41  -0.044  0.070  21.18  0.62  -0.18  

10–20  0.335  0.284  41  -0.051  0.077  22.89  0.53  -0.32  
20–30  0.336  0.283  41  -0.053  0.081  24.16  0.47  -0.59  
30–40  0.334  0.300  41  -0.033  0.072  21.68  0.60  -0.25  
40–60  0.327  0.307  41  -0.021  0.056  17.03  0.70  0.06  
60–80  0.309  0.305  41  -0.005  0.045  14.55  0.72  -0.08  

80–100  0.287  0.316  41  0.029  0.055  19.19  0.48  -2.01  

Table 7 
Statistical evaluation of the simulated soil water storage amounts in 0–100 cm soil depth against the measured values.  

Treatment Soil water storage in 0–100 cm soil depth (mm) 

Measured Simulated Sample No. E RMSE nRMSE (%) d EF 

N0  209.25  206.15  41 -3.10  22.56  10.78  0.87  0.60 
N100  211.14  198.55  41 -12.59  30.49  14.44  0.81  0.28 
N100M  213.07  204.57  41 -8.50  25.92  12.17  0.84  0.43 
N100S  225.69  207.88  41 -17.81  38.02  16.84  0.65  -0.45  

Fig. 4. Total soil water content in 0–100 cm profile under N0, N100, N00M, and N100S (see Fig. 2 for explanation of the abbreviations of the treatment). Error bars 
represent standard deviation (n = 3). 
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some extent the adverse effects of the dry spells (data are shown in 
Section 3.2). 

The precipitation use efficiency (PUE) of grain yield under rain-fed 
condition varied markedly with the year and the treatment 
(Figs. 3a–3d). The PUE ranged in 0.63–9.76 kg ha–1 mm–1, 
4.45–38.89 kg ha–1 mm–1, 5.73–45.10 kg ha–1 mm–1 and 
4.70–27.23 kg ha–1 mm–1, with averages of 5.22 ± 4.23, 14.59 ± 13.88, 
19.16 ± 15.68 and 13.86 ± 9.06 kg ha–1 mm–1 for N0, N100, N100M 
and N100S, respectively (Fig. 3, Table 5). The PUE in the treatments 
with fertilizer N applied were much higher than that in N0. The high 
inter-annual variation in PUE under any given treatment was mainly 
associated with the different cumulative precipitation during crop 
growing period. 

After calibrating the performance of DSSAT-CSM under N100M to 
ensure that the predicted yields would match the actual yields closely 
(nRMSE = 11.04%, d = 0.96, and EF = 0.81), the model was validated 
and the results showed that the model indeed performed well in pre
dicting the yields under N0 (nRMSE = 37.37%, d = 0.93, EF = 0.93) and 
those under N100 (nRMSE = 21.92%, d = 0.89, EF = 0.89) (Table 5), 
although it overestimated the yields under N100S. In addition, a strong 
linear regression was seen between the predicted and the actual yields in 
every treatment (Fig. 2, e–h). The slope of the regression (0.68–1.17) in 
none of the treatments was statistically different from 1 (p > 0.05), and 
the intercepts of all the treatments were not statistically different from 
0 (p > 0.05). The predicted yields were significantly positively corre
lated with measurements in any of the treatments (p < 0.05) except N0 

Fig. 5. Predicted and actual water content of different layers of soil in plots given N at 100 kg ha–1 combined with manure (N100M): (a) 0–10 cm, (b) 10–20 cm, (c) 
20–30 cm, (d) 30–40 cm, (e) 40–60 cm, (f) 60–80 cm, and (g) 80–100 cm. Error bars represent standard deviation (n = 3). 
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(p = 0.06). The paired-t-test showed that the predicted yields were not 
statistically different from the actual yields in any of the treatments 
(p > 0.50) except N100S (Table 5). The model also predicted the PUE of 
grain yield quite well (Fig. 3, Table 5). 

3.2. Soil water content 

The four treatments differed markedly in soil water content. Overall, 
and across the entire profile, the average soil water content was the 
highest under N100S and decreased progressively from N100M to N100 
to N0 (Tables 6 and 7). The paired t-test showed that the average soil 
water content in each soil layer and across the 0–100 cm profile under 
N100S was significantly higher than that in any of the other treatments 
(p < 0.01) but not significantly different among them except that in the 
layers 0–10 cm, 10–20 cm, and 60–80 cm; across the profile, it 

significantly higher under N100M than that under N0 (p < 0.05). The 
water content showed similar patterns of temporal changes in each layer 
and in each treatment (changes across the profile are shown in Fig. 4) 
although in absolute terms the levels under N100S were markedly 
higher than those under any of the other three treatments, especially 
during the dry spells in January and July 2017 (Fig. 4). These findings 
indicated that mulching with straw was effective in raising the water 
retention capacity of soil, and this greater capacity contributed to 
maintaining grain yields in seasons with dry spells. 

In each layer of soil, the daily soil water content throughout the 
model ran from 2014 to 2018 and the daily water content as measured 
fluctuated greatly. The pattern of the fluctuations was similar across all 
the treatments throughout the model (the fluctuations under N100M in 
each layer are shown as an example in Fig. 5, a–g). The pattern closely 
matched the pattern of rainfall distribution (Fig. 1b). For instance, soil 

Fig. 6. Predicted and actual total soil water content (0–100 cm) under (a) N0, (b) N100, (c) N00M, and (d) N100S (see Fig. 2 for explanation of the abbreviations of 
the treatment). Linear regression and correlation between predicted and actual values; R2 marked with “* *” indicating significant correlation at the 0.01 probability 
level. Error bars represent standard deviation (n = 3). 
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water content was generally higher in the rainy season, that was from 
March to May and from October to November, and generally lower 
during the dry periods in January and from June to August. By 
comparing the predicted soil water contents to the measured values 
from late 2016–2018, we found that the model generally captured the 
dynamics well, despite some deviations (Fig. 5, a–g and Table 6). The 
predicted contents for each layer up to the depth of 80 cm matched the 
measured values very well under N0 (nRMSE = 13.3–15.7%, d =
0.79–0.82, EF = 0.10–0.47), and the performance was moderate to good 
for each soil layer right up to 100 cm under both N100 and N100M 
(Table 6). However, the predictions were underestimates in the case of 
N100S for every layer except the deepest layer (80–100 cm) (Table 6). 

Although overall the predicted levels closely matched the actual 
levels (Fig. 6, a–d), those for the dry periods, especially during July to 
August 2017 under all treatments except N0, were marked un
derestimates (Fig. 6, a–d), mainly because of underestimating the water 
content of layers up to a depth of 60 cm. On the other hand, the pre
dicted cumulative soil water contents at all depths matched the actual 
measurements quite well under all treatments except N100S, as can be 
seen from the extent of deviation shown in Table 7 (nRMSE < 15%, d >
0.8, EF > 0.28). The total soil water content under N100S was signifi
cantly underestimated (Table 7). Although the average soil water con
tent was predicted to be the highest under N100S throughout the run 
from 2014 to 2018, the model failed to predict the actual water retention 
capacity resulting from mulching with straw. 

3.3. Sensitivity analysis 

3.3.1. Sensitivity of grain yield to irrigation 
The predicted soil water contents of each soil layer increased greatly 

as the volume of irrigation increased, and over several weeks the con
tents remained higher than those in solely rain-fed plots. Soil water 
contents in the upper soil layers (0–50 cm) were more sensitive than the 
deeper soil layers to irrigation. The predicted grain yields were signifi
cantly and positively correlated to the volume of irrigation at all times 
and under N0, N100, and N100M in both the two dry seasons (Fig. 7a 
and b). The predicted yields showed a typical linear but diminishing 
return curve when plotted against the volume of irrigation. The 

predicted yields were generally more sensitive to the volume of irriga
tion during the shorter rainy season of 2017 than during the longer rainy 
season of the same year. 

In the longer rainy season of 2017, the predicted yields were mark
edly higher, by as much as 2.0 t ha–1, when the volume of irrigation 
increased from 0 mm to 50 mm, applied during silking starting on June 
22, 2017 (i.e., Julian day 173 in 2017) to early grain filling on July 14, 
2017 (Julian day 195) under both N100 and N100M, but decreased 
progressively as the volume increased beyond 50 mm (Fig. 7a). The 
magnitude of increase in yield as the volume of irrigation increased was 
much lower under N0 than under N100 or N100M, because of N defi
ciency experienced in N0. However, the increase in yield from more 
frequent irrigation (IR 36–40) was comparable to that when the plots 
were irrigated only once. The response of IWP to the volume of irrigation 
showed typical parabolic curves when irrigation was given from silking 
to early grain filling (IR 1–20) whereas IWP showed a linear and nega
tive relationship with the volume of irrigation when it was given from 
early grain filling to mid grain filling (IR 21–35; Fig. 7c). The irrigation 
water productivity also responded negatively to volume of irrigation 
when the crop was irrigated multiple times. IWP peaked at around 
40 kg ha–1 mm–1 in scenarios IR 1–20 under both N100 and N100M but 
at 57 kg ha–1 mm–1 under N100 and at 71 kg ha–1 mm–1 under N100M 
in scenarios IR 21–30. Under N100M, peak IWP was reached under 
lower volumes of irrigation compared to that under N100. The optimal 
volume was 30 mm for N100 and 50 mm for N100M, which led to high 
yield and high IWP in the longer rainy season of 2017. 

In the shorter rainy season of 2017, the predicted yields increased 
linearly in all the treatments as the volume of irrigation increased from 
0 mm to 70 mm, applied during silking starting on January 1, 2018 
(Julian day 1 in 2018) to grain filling starting on January 15, 2018 
(Julian day 15 in 2018) (Fig. 7b). When the crop was irrigated during 
early grain filling (Julian day 22 in 2018), grain yields increased rapidly 
as the volume of irrigation increased from 0 mm to 50 mm but more 
slowly when it increased beyond 50 mm. Late irrigation (Julian day 29 
in 2018) was less effective than early irrigation in increasing yield under 
both N100 and N100S but had no effect on yield under N0. Broadly, 
irrigation increased grain yield by 1.0 t ha–1 under N0, by 3.5 t ha–1 

under N100, and by 4.0 t ha–1 under N100M as the volume increased 

Fig. 7. Predicted response of grain yield of maize and irrigation water productivity to different irrigation regimes (see Table 4 for explanation of the abbreviations of 
the irrigation strategy) under N0, N100, and N100M (see Fig. 2 for explanation of the abbreviations of the treatment) during long rainy season (a, c) and short rainy 
season (b, d) in 2017. 
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from 0 mm to 70 mm. More frequent irrigation (IR 36–40) increased 
grain yield rapidly, by 1.5 t ha–1 under N0, by 4.0 t ha–1 under N100, 
and by 4.5 t ha–1 under N100M when the volume of irrigation increased 
from 0 mm to 150 mm. The response of IWP to the volume of irrigation 
traced a typical parabolic curve for each irrigation date under both N100 
and N100S (Fig. 7d). The highest IWP was about 55 kg ha–1 mm–1 under 
N100 and 65 kg ha–1 mm–1 under N100M when irrigated at 30–50 mm 
during early grain filling (Julian days 22–29 in 2018). The once-only 
irrigation scenario with irrigation volume ranging from 50 mm to 
70 mm was optimal for both high grain yield and high IWP in the shorter 
rainy season of 2017. 

Under the optimal one-time irrigation scenario with 50 mm of water, 
grain yields varied depending on the date on which the crop was irri
gated under all treatments in the two seasons in all years (Fig. 8, a and 
b). In the longer rainy season of 2017, grain yields were higher when the 
crop was irrigated during silking to early grain filling than when irri
gation was delayed further. The highest grain yield was achieved when 
the crop was irrigated within two weeks of the beginning of grain filling. 
Grain yield was lower when the crop was irrigated later, that is from mid 
grain filling onwards. In the short rainy season of 2017, grain yields 
increased as the date of irrigation was delayed during silking to early 
grain filling period and peaked when the crop was irrigated 1 week after 
the beginning of grain filling, whereas grain yields decreased when 
irrigation was delayed beyond that time. Therefore, the optimal time of 
irrigation is the early grain filling period, that is within 2 weeks of the 
beginning of grain filling. 

3.3.2. Sensitivity of grain yield to nitrogen dose 
The predicted grain yield showed clear but varying responses to 

increasing doses of N in the dry spells during both the rainy seasons of 
2017 and in the normal long rainy season of 2018, under both no irri
gation and optimal irrigation (Fig. 9, a–c). The curve showing the 
response of grain yield to fertilizer N was either linear with a plateau or 
showed the typical diminishing returns. 

In the long rainy season on 2017, grain yield increased linearly from 
3.6 t ha–1 to 4.9 t ha–1 as the dose of N increased from 0 kg ha–1 to 
60 kg ha–1 and then levelled off when no irrigation was given, whereas 
under optimal irrigation, grain yield increased linearly from 4.0 t ha–1 to 
7.0 t ha–1 as the dose increased from 0 kg ha–1 to 100 kg ha–1 and then 
levelled off (Fig. 9a). In the shorter rainy season of 2017, grain yield 
increased rapidly from 0.3 t ha–1 to 2.0 t ha–1 as the dose of N increased 
from 0 kg ha–1 to 100 kg ha–1 and then levelled off in absence of irri
gation, whereas under optimal irrigation, grain yield increased expo
nentially from 1.4 t ha–1 to 4.5 t ha–1 as the dose of N increased from 
0 kg ha–1 to 60 kg ha–1; the rate of increase in grain yield then slowed 
down to reach 6.0 t ha–1 at 140 kg N ha–1 (Fig. 9b). In the normal rainy 
season of 2018, grain yield increased from 1.6 t ha–1 to 4.7 t ha–1 as the 
dose of N increased from 0 kg ha–1 to 100 kg ha–1 and then levelled off, 
regardless of whether the crop had been irrigated or not (Fig. 9c). Thus 
under normal rainfall, irrigation contributed little to increasing grain 
yield, which was only slightly higher with irrigation than that without 
irrigation as the dose of N increased from 20 kg ha–1 to 80 kg N ha–1 

(Fig. 9c). 
The agronomic efficiency of fertilizer N differed in its response to the 

dose of N depending on irrigation and the season (Fig. 9, d–f): AE was 
much higher under irrigation in both the rainy seasons of 2017 because 
they were marked by dry spells, which meant that the rain-fed crop was 
under water stress. In the longer rainy season of 2017, AE remained at 
approximately 32 kg kg–1 even when the dose of N increased from 
40 kg ha–1 to 80 kg ha–1 but declined as the dose increased beyond 
100 kg ha–1 under irrigation (Fig. 9d): AE was thus negatively correlated 
to the dose of N in absence of irrigation in the long rainy season of 2017. 
In the shorter rainy season of that year, however, AE increased rapidly as 
the dose of N increased, peaking at 52 kg kg–1 when the dose was 
60 kg ha–1, but decreased at doses greater than 60 kg ha–1 under irri
gation (Fig. 9e). In the absence of irrigation, AE responded positively to 
the dose of N from 20 kg ha–1 to 100 kg ha–1, and then decreased as the 
dose increased beyond 100 kg N ha–1 (Fig. 9e). In the longer rainy sea
son of 2018, which was marked by normal rainfall, AE responded 
negatively to the dose of N regardless of irrigation (Fig. 9f). 

Precipitation use efficiency (PUE) of grain yield under rain-fed 
condition responded positively to the dose of N in both the rainy sea
sons of 2017 and the normal season of 2018 (Fig. 10a): in the longer 
rainy season of 2017, PUE increased linearly from 27 to 37 kg ha–1 mm–1 

as the dose of N increased from 0 kg ha–1 to 60 kg ha–1 but level off at 
higher doses; in the shorter rainy season of 2017, PUE increased expo
nentially to 4 kg ha–1 mm–1 at doses of N up to 100 kg ha–1 but the in
crease slowed down at higher doses; in normal rainfall season of 2018, 
PUE increased linearly from 2 to 7 kg ha–1 mm–1 as the dose of N 
increased from 0 kg ha–1 to 100 kg ha–1 but level off at higher doses. 
Irrigation water productivity (IWP) also responded positively to the dose 
of N in both the rainy seasons of 2017 (Fig. 10b): in the longer rainy 
season, IWP increased exponentially to 40 kg ha–1 mm–1 as the dose of N 
increased from 0 kg ha–1 to 100 kg ha–1 but the increase slowed down at 
higher doses; in the shorter rainy season, IWP increased linearly to 
50 kg ha–1 mm–1 at doses of N up to 60 kg ha–1 but the increase slowed 
down at rates greater than 60 kg ha–1. The IWP was not responsive to the 
dose of N in normal rainfall season of 2018. These results indicated that 
the dose of N should be lowered to 60–80 kg ha–1 in the dry season for 
rain-fed maize, and increased to 100–120 kg ha–1 in humid seasons and 
even in dry seasons if optimal irrigation is possible, to achieve not only 
high yield but also high AE, high PUE and high IWP. 

Fig. 8. Differences in predicted grain yield of maize as influenced by the time 
of irrigation with optimal volumes of irrigation under N0, N100, and N100M 
(see Fig. 2 for explanation of the abbreviations of the treatment) during long 
rainy season (a) and short rainy season (b) in 2017. The arrows indicate the 
optimum irrigation time with the highest grain yield. 
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4. Discussion 

4.1. Grain yield and soil water content 

Our experimental findings on the effects of different fertilizer re
gimes on grain yield and soil water content were consistent with those 
reported by Tully et al. (2015), Mo et al. (2016), Kiboi et al. (2019), 
Mutuku et al. (2020), and Zeweld et al. (2020). The yield increased 
significantly when N was supplied as a mineral fertilizer under normal 
rainfall in western Kenya (Tully et al., 2015), and both grain yield and 
water use efficiency were higher in plots mulched with grass straw than 
in those that were not mulched (Mo et al., 2016). Application of mineral 
fertilizer, either by itself or combined with manure or crop residue, 
consistently increased maize yield, which was generally maximum if 
chemical fertilizers and organic manure were combined, followed by 
that obtained from mineral fertilizer alone, and minimum in the absence 
of either (control) (Kiboi et al., 2019). Application of organic inputs such 
as crop residues and manure, either singly or in combination, has the 
potential to enhance soil water content in the central highlands of Kenya 
(Kiboi et al., 2019). Mutuku et al. (2020) also reported that grain yield in 
maize was higher with mineral fertilizers combined with manure than in 
the control (with neither mineral fertilizers nor manure) in low-fertility 
fields in the sub-humid and semi-arid regions of Kenya. Sustainable 
farming practices (such as retention of crop residues and use of manure) 
increase crop production and household income, and should be pro
moted especially in drought-prone, degraded, and water-stressed areas 
(Zeweld et al., 2020). In this study, average grain yield under N100M 
was higher than that under N100 because of the more balanced nutrient 
input from the manure. Mulching with maize straw (N100S) led to much 
higher soil water content than that in any of the other treatments, 
especially during dry spells, because the mulch protected the soil from 
direct heat from of the sun that would have otherwise increased the 
evaporation of soil water. It was the greater soil water content that 
contributed to higher grain yield in seasons with dry spells compared to 
that in N100; however, such mulching did not result in higher grain 

yield in the absence of any dry spells. Addition of manure (N100M) also 
led to higher soil water content than that in the treatment without 
manure or straw (N100) or that in the treatment without external 
application of N (N0), probably because the manure also resulted in 
higher levels of soil organic matter (Mutuku et al., 2020). Thus, the 
combination of mineral fertilizer, manure, and mulching with crop 
residue (straw) is recommended as a promising practice for higher grain 
yield and water conservation in semi-arid parts of Kenya. 

Following its calibration based on cultivar parameters under N100M, 
the DSSAT-CSM made reliable predictions of grain yield under both N0 
and N100, the predictions proved less satisfactory for N100S probably 
because the model underestimated soil water content especially during 
dry spell. The overall good performance of the model in predicting grain 
yield in this study was comparable with that reported earlier by Araya 
et al., (2015, 2019) and Corbeels et al. (2016). Araya et al. (2015) 
calibrated DSSATCSM using the data set from optimal management, 
evaluated the model for predicting yield without optimal management 
in south-western Ethiopia, and found that the model performance was 
moderate (RSME = 1.1 t ha–1 and d = 0.77). Corbeels et al. (2016) re
ported that, in Zambia, DSSAT was equally successful (nRSME =
10–31%) in predicting maize grain yield, whether under conservation 
agriculture (no tillage) or under conventional tillage. Araya et al. (2019) 
reported that DSSAT predicted wheat yield satisfactorily (nRSME =
10.16% and d = 0.97) under different levels of N and irrigation in 
northern Ethiopia. In addition, DSSAT-CSM generally captured the 
trends in temporal changes in soil water content of soil layers at different 
depths for all treatments except N100S in this study, and this good 
performance was comparable to that reported by Anothai et al. (2013) 
and Dokoohaki et al. (2017): the model was accurate in simulating soil 
water content over time at different depths under different levels of 
irrigation under semi-arid conditions (Anothai et al., 2013). Dokoohaki 
et al. (2017) also reported that DSSAT-CSM simulated soil water content 
accurately for a wide range of soil conditions and irrigation regimes in 
maize in semi-arid conditions. Therefore, DSSAT-CSM can be used as an 
effective tool to predict grain yield in maize and soil water content in its 

Fig. 9. Differences in predicted grain yield of maize and agronomic efficiency of fertilizer N (FN) as influenced by different doses of N without irrigation (NIR) and 
with optimal irrigation (IR) during dry spells in the longer rainy season (a, d) and shorter rainy season (b, e) in 2017 and during normal weather in the longer rainy 
season of 2018 (c, f). The arrows indicate the optimum doses of N with high grain yield. 
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root zone under various farming practices in semi-arid regions. 

4.2. Response of grain yield to irrigation and fertilizer nitrogen 

Many studies have reported the characteristics of predicted grain 
yield of maize as affected by irrigation strategies (including the timing 
and volume of irrigation), dose of fertilizer N, and combinations of 
irrigation strategies and the dose of fertilizer N as affirmed by experi
mental results (Biazin et al., 2012; Tully et al., 2015; Pardo et al., 2020; 
van Dijk et al., 2020; Xu et al., 2019; Zamora-Re et al., 2020; Zou et al., 
2020; Yan et al., 2021) and by modeling studies (Folberth et al., 2013; 
Kaur and Arora, 2018; Araya et al., 2019; Malik et al., 2019). Pardo et al. 
(2020) reported that barley responded positively to higher volumes of 
irrigation, although the highest average IWP was achieved under water 
deficit rather than under copious irrigation in semi-arid conditions. In 
western Kenya, grain yield of maize increased significantly as the dose of 
externally supplied N increased from 0 kg ha–1 to 161 kg ha–1 in 2012, 
which was a year with relatively normal rainfall, whereas N inputs had 
little impact in 2013, which was a drier year (Tully et al., 2015). 
Simulation using GIS-based EPIC predicted highest yields, 8–10 t ha–1, 
in eastern and southern Africa if three improved management practices 
are combined (high doses of nutrients, liberal irrigation, and 
high-yielding cultivars) (Folberth et al., 2013). Another model, namely 
DSSAT-CERES-Maize, was used for identifying better irrigation and 
N-management practices: the model predicted that lowering both vol
ume of irrigation and dose of N by the right amounts would lower the 

amount of N being lost through leaching without significant reduction in 
grain yield of irrigated maize grown under semi-arid conditions (Malik 
et al., 2019). The same model was also used to identify appropriate 
irrigation strategies for sustainable maize production in the arid and 
semi-arid regions of Guanzhong in China: the optimum irrigation was 
200 mm applied during flowering and grain filling (Saddique et al., 
2019). Simulation using DSSAT-CSM also showed a positive effect of 
both irrigation and N on wheat yield, biomass, and IWP and a strong and 
positive interdependence between irrigation and the dose of N as well as 
the time of irrigation (Araya et al., 2019). The above results indicate a 
significant effect of the interaction between the volume of irrigation and 
the amount of fertilizers on yield, which is why irrigation and fertilizer 
regimes should aim at optimal grain yield, IWP, and N-use efficiency and 
minimal losses of N through leaching instead of focusing on grain yield 
alone (Xu et al., 2019; Zamora-Re et al., 2020; Zou et al., 2020; Yan 
et al., 2021). Xu et al. (2019) suggested that for maize, the optimal dose 
of N was 140 kg ha–1 coupled with the recommended irrigation strategy 
considering the interactive effects of water and N on yield in 
north-western China. Based on the simulations of the various scenarios 
in this study, irrigation in amounts ranging from 50 mm to 70 mm 
during early parts of grain filling together with N at 100–120 kg ha–1 is 
recommended as the optimal regime for not only high grain yield but 
high N-use efficiency and high IWP as well. 

In addition, the significant positive response of grain yield to the 
volume of irrigation and the dose of fertilizer N in this study points to the 
large scope to increase yield by appropriate management practices in 
eastern and southern Africa (Seyoum et al., 2017). Biazin et al. (2012) 
noted that in sub-Saharan Africa, it was possible to increase crop yields 
six-fold that achieved through traditional practices by supplemental 
irrigation (from rainwater harvesting) to rain-fed crops and application 
of fertilizers. The yield gap between actual yield and water-limited po
tential yield is caused by a combination of constraints such as genotype 
low improvement (tolerance to insects, diseases, herbicides, etc.), and 
low fertilizer input being the main cause (Affholder et al., 2013; van Dijk 
et al., 2020). The results of the simulations obtained in this study will 
help in more informed decision-making on irrigation and application of 
fertilizers to increase productivity and efficient use water and fertilizers. 

5. Conclusions 

Field observations over six maize-growing seasons from 2014 to 
2018 showed that the highest average grain yield was obtained when N 
was combined with manure, and the highest soil water content of each 
soil layer was achieved when N was combined with straw mulching. The 
combination of mineral N, manure, and mulching is recommended as a 
promising practice to achieve higher grain yield and to retain more soil 
water in semi-arid areas of Kenya. 

When calibrated under N100M, DSSAT-CSM predicted the grain 
yield well. The model generally captured the dynamics of soil water 
contents accurately in all layers of soil in all the treatments except in the 
case of N combined with mulching Overall, DSSAT-CSM is recom
mended for maize grown in semi-arid regions for predicting grain yield 
and soil water content in the root zone as influenced by the dose of 
fertilizers. 

The simulated responses of grain yields to different irrigation re
gimes and fertilizer N rates showed that both N and water were critical 
and interacted to influence grain yield. The recommended strategy is to 
irrigate rain-fed maize only once, at 50–70 mm, during the early part of 
grain filling in combination with fertilizer N at 100–120 kg ha–1 to 
ensure optimal amounts of both irrigation and N. The results of the 
simulation will help in devising optimal irrigation and fertilizer regimes 
to achieve not only high grain yield but also high N use efficiency and 
high water use efficiency at the same time in semi-arid regions. 

Fig. 10. Response of precipitation use efficiency under rain-fed condition (a) 
and irrigation water productivity under optimal irrigation (b) to different doses 
of N during the longer (LR) and shorter (SR) rainy seasons in 2017, and the 
longer (LR) rainy seasons in 2018. The arrows indicate the optimum doses of N 
with high precipitation use efficiency and high irrigation water productivity. 
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