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ABSTRACT

Bearings constitute a majority of the components found in rotating machines.
Though inexpensive, their failure can result in unnecessary downtime, losses in
production, and propagation of failure to other critical components leading to
expensive maintenance actions. Most of these rotating machinery are operated under
adverse and varying conditions which result in difficulty in defining health indices
from condition monitoring data. Predicting the failure of such machines is crucial
to determine when the maintenance is required thereby leading to a reduction in
maintenance costs and an improvement in the safety and reliability of the machines.
Therefore, techniques for condition monitoring of rotating machinery operated
under non-stationary conditions are necessary. This work employed a model-based
condition monitoring approach to predict the failure of rotating machinery under
non-stationary conditions. One of the advantages of model-based approach is the
ability to incorporate physical understanding of the system monitoring. Firstly,
the vibration model for rolling element bearing with fault was constructed in
MATLAB/Simulink environment. An automatic parameter identification based on
Particle Swarm Optimisation (PSO) algorithm was employed to identify the dynamic
parameters of a rolling element bearing due to its ease of implementation and
rapid convergence property. The optimized bearing parameters were then used in
diagnosing bearing faults. To evaluate the feasibility of this approach, two publicly
available data sets were employed. The results showed an improved average accuracy
of 99.67% and 99.2% for bearing faults of Case Western Reserve University and
University of Paderborn datasets, respectively. Additionally, the bearing model with
estimated parameters was used to generate degradation data by varying the fault
depth. Feature extraction was carried out where Root Mean Square (RMS) was
determined as the appropriate health indicator. Lastly, Paris degradation model was
employed to determine bearing damage and its evolution with time while factoring
in speed, applied load, and bearing geometry. The remaining useful life of the
bearing was found to be 1598 cycles. The prediction results and evaluation indexes
demonstrated the effectiveness and superiority of the proposed method.

xvi



CHAPTER ONE

INTRODUCTION

1.1 Overview

This chapter discusses the background of condition monitoring of rolling element

bearings, the problems identified in the current methods used, and the objectives

that have been formulated to tackle the problem.

1.2 Condition Monitoring of Rolling Element

Bearings in Rotating Machines

Rotating machineries are the most common mechanical components in industrial

applications. Their main components are gear boxes, rolling element bearings, and

rotary shafts. The work of bearings in rotating machines is to reduce friction and

allow for smoother rotation of shafts. Typically, these machines operate under

adverse conditions of high load and high temperatures. These conditions may cause

severe breakdowns and decrease in the equipments performance resulting in reduced

safety, availability and reliability, economic losses, and lower product quality (Jardine

et al., 2006)

A good maintenance strategy is crucial in preventing catastrophic failures while

maintaining machine safety and reliability as well as adding value to maintenance

practices. According to Heng et al. (2009), the simplest maintenance strategy

employed in the industries is known as breakdown maintenance. This is where

machines are run until they fail and when failure has occurred, reactive maintenance

is carried out. This approach can be extremely costly due to long hours of machine

1



downtime and may also lead to propagation of failure to other components. A slightly

more effective time-based maintenance technique known as preventive maintenance

involves periodical cleaning, servicing, and inspection of machines in order to prevent

abrupt failure. However, this method cannot guarantee the absence of any breakdown

and the replacement of parts before their end lifetime. In addition, there is an

increase in the number of maintenance actions hence increasing the maintenance

cost during the lifecycle of an equipment.

A more efficient maintenance approach is condition-based maintenance (CBM) which

has been adopted to address the issue of machine reliability and reduction of

maintenance related expenses. Figure 1.1 shows a schematic diagram comparing the

operational, maintenance, and total cost for the different maintenance strategies.

Condition-based maintenance is a maintenance strategy aimed at maximizing

productivity and machine up time while lowering operating costs by carrying out

maintenance when the need arises (Peng et al., 2010). The actual conditions of a

machine are monitored to obtain the health status of a system and if the indicators

show signs of upcoming machine failure, maintenance is carried out. A CBM program

consists of two important aspects known as diagnostics and prognostics.

2



Figure 1.1: Maintenance strategies versus cost (Jardine et al., 2006)

Diagnostics is concerned with fault detection, isolation, and identification when it

occurs. Fault detection indicates when a failure has occurred; fault isolation locates

the faulty component; and fault identification determines the nature of the fault when

it is detected. Prognostics, unlike diagnostics, is a prior event analysis process that

deals with failure prediction before it occurs. It is the ability to predict accurately and

within acceptable error bandwidth the remaining useful life of a failing component or

subsystem. Prognostics is much more efficient than diagnostics in reducing machine

downtime. Diagnostics, however, is required when fault prediction of prognostics

fails and a fault occurs.

Currently, there are several methods for fault diagnosis of rolling element bearings

which can be classified as data-based and model-based fault diagnosis methods.

In the recent past, vibration based condition monitoring has been widely used

for bearing fault detection (Zhang et al., 2007). An overview of vibration-based

condition monitoring in rotating machines is given in (Sinha & Elbhbah, 2013). The

wide use of such methods is because vibrational behaviour is often sensitive to small

3



structural variations as well as changes in process parameters. However, vibration

signals are usually non-stationary in actual operation due to the changing frequencies

thereby restricting the extraction effect for fault features. This affects the accuracy

of fault diagnosis. Moreover, the changes in vibrational behaviour often present a

confusing array of data on which to base any diagnosis and in these situations an

accurate theoretical model becomes invaluable.

Model-based approach to fault diagnosis of rolling element bearings has been

garnering attention in the last two decades (Mbagaya et al., 2017). This approach

relies on an explicit mathematical model of the system under observation by assuming

that a fault in the system will lead to deterministic changes in the model parameters.

Model-based fault diagnostic approach can be more effective than other approaches

that do not use models if a correct and accurate model describing the behaviour of the

system is built. However, one of the biggest challenges of model-based diagnostics is

accurate development of the model that captures the behaviour of the system (Gao

et al., 2015).

Figure 1.2 shows the general approach of a model-based diagnostic system. Residual

signals are generated using available inputs and outputs from the monitored system

and they indicate the presence of a fault in the system (Isermann, 2011). The

majority of the existing model-based diagnostic techniques are based on parameter

estimation, parity equations or state estimation.

4



Figure 1.2: General flowchart of a model-based diagnostic system
(Isermann, 2011)

Prognostics and health management (PHM) of rotating machinery, especially for

bearings, has attracted extensive attention due to its effectiveness in avoiding the

abrupt shutdown. One of the challenges associated with remaining useful life(RUL)

estimation of bearings is building an appropriate degradation model to accurately

describe the bearing degradation process. Since the objective of prognostics is to

accurately predict the remaining useful life (RUL) of machinery before failure occurs,

different approaches have been proposed for the RUL prediction of rolling bearings

in recent decades Lee et al., 2014. These approaches can be classified into three main

methods as shown in Figure 1.3. Data-driven approach relies on observable past data

and statistical models(Gebraeel et al., 2004; Gebraeel & Lawley, 2008; Tobon-Mejia

et al., 2010). The models are derived from routinely monitored system operating

data such as oil debris, vibration signals, temperature, and pressure.
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Figure 1.3: Approaches to Prognostics Gebraeel and Lawley, 2008
.

Reliability-based approaches are premised on the use of simple reliability functions

such as Weibull law and exponential law, rather than complex mathematical models

(Orchard & Vachtsevanos, 2009). On the other hand, model-based approaches use

models derived from first principles (Kacprzynski et al., 2004; Lee et al., 2014;

Li & Lee, 2005). These approaches employ residuals as features by carrying out

consistency checks between sensed measurements of a system and outputs of a

mathematical model.

Most of the research that has been carried out in the field of prognostics has focused

on machines operating under stationary conditions. In this case, the operating

conditions of a system are set at relatively constant values and condition monitoring

data is acquired at suitable intervals. Rotating machines have increased complexities

and complex degradation processes due to non-stationarity, which is either induced

manually by the operator, or automatically through a controller or through

environmental factors. Satisfactory results can therefore not be produced when

traditional techniques are applied to non-stationary conditions. With increasing

complex machinery, there is need for CBM techniques that are able to operate on

such machines operating under non-stationary conditions such as wind turbines,

6



production equipment operating at intermittent conditions, and automobile drive

trains.

The focus of this research is to address the challenge of coming up with a bearing

model with parameters optimized to increase accuracy and that can predict the

failure of rotating machines under non-stationary conditions. The key subject of

this study is rolling element bearings because they have resulted in a majority of

the failures in rotating machines (Bonnett & Yung, 2008) as depicted in Figure 1.4.

Such an undertaking of acccurate modeling and predicting the failure of bearings can

improve the safety and reliability of rotating machines while reducing maintenance

costs.

Figure 1.4: Bearing failure (Bonnett & Yung, 2008)

1.3 Problem Statement

The failure of rolling element bearings is one of the cases of breakdown in rotating

machines. Statistics show that bearing failure accounts for 40% of the breakdowns

that occur in rotating machinery (Djeddi et al., 2007). The failure of bearings

can be catastrophic in high reliability application areas such as aerospace and

automatic processing machines. Since rolling element bearings are operating in harsh

conditions, their degradation in health is expected and failure of such elements can

cause machine downtime and it is economically costly. It is important to have a well
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developed condition monitoring (CM) program to improve the reliability of such

machines.

Current trends in research on rotating machines has been limited to stationary

operating conditions. However, in most practical cases, the operating conditions

of rotating machinery do not remain constant in the life of the system. For example,

in wind turbines, the variations in load and wind speed make it difficult to predict

the failure of wind turbines due to the stochastic nature of the operating conditions.

Therefore, it is critical to predict the failure of such machines that are operated under

non-stationary conditions in order to save on operation and maintenance (OM) costs

and improve machine reliability.

Data-based approach has been used for bearing condition-based maintenance.

However, the accuracy of such an approach is dependent on the huge training data

required by machine learning algorithms. Incremental learning can be employed

in situations that are not included in the database used to train models. For

new systems, this data is not readily available and hence it is therefore easier to

incorporate a model-based approach.

Model-based approach is more effective than other approaches that do not use models

if a correct and accurate model describing the behaviour of the sytem is built.

However, one of the biggest challenges of model-based systems is development of

the model to accurately capture the behaviour of the system. In the case of rolling

element bearing, the ability to optimise the bearing parameters such as stiffness

and damping will determine the accuracy of the model. With automatic parameter

identification, one just needs the base model and it can be used with different sizes

and geometry of similar components. Moreover, the time taken to construct a model

is reduced.
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1.4 Objectives

The main objective of this study is to predict the failure of rotating machinery

operated under non-stationary conditions using model-based approach. To realize

this objective, the following specific objectives were carried out.

1. Development of fault models and fault evolution models for rolling element

bearings to be used in failure prediction

2. Automatic parameter estimation of bearing parameters using Particle Swarm

Optimisation (PSO) algorithm

3. Validation of the fault models with experimental data from a dedicated test-rig

for ball bearings

4. Estimation of the remaining useful life (RUL) of bearing

1.5 Justification

Failure in rotating machines is very costly in modern industries that are focused

on performance and productivity. Succesful implementation of failure prediction

method will result in significant cost savings and increased revenues. This will be

achieved by eliminating unnecessary and costly preventive maintenance, optimizing

maintenance scheduling, and reduction of the lead time for procuring the spare parts

(Lee et al., 2014). This research will be beneficial to manufacturing environments,

aerospace, and military applications where there is increased use of autonomous and

self-optimizing mechatronic systems.

This thesis covers dynamic modelling, automatic parameter estimation, fault

diagnostics, and RUL estimation of rolling element bearings operating under

non-stationary conditions. The dynamic model aims to give the insights and
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knowledge for further enhancements of current monitoring practices. The scope of

the model is limited to diagnosing localised faults in rolling element bearings. The

parameters of the bearing model are estimated using Particle Swarm Optimisation

algorithm. Estimation of the Remaining Useful Life (RUL) of the bearing was carried

out using Root Mean Square (RMS) as the primary health indicator.

1.6 Organisation of the Thesis

This thesis is composed of five themed chapters:

Chapter 1 is the introductory chapter. Here, the relevant background information

on rolling element bearing failure in rotating machines is given. The problem

statement, objectives of the research and justification are also presented in this

chapter.

Chapter 2 provides the literature review on fundamentals of rolling element

bearings, parameter estimation of bearings, bearing diagnostics and prognostics. In

addition, the identified research gaps have been stated in this chapter.

Chapter 3 is the methodology chapter. It highlights the development of the

bearing model, the identification of bearing dynamic parameters using Particle

Swarm Optimisation algorithm , diagnosis of bearing faults and remaining useful

life estimation procedure using Root Mean Square (RMS) as the health indicator.

Chapter 4 provides the results and discussion from bearing development, bearing

parameters estimation using Particle Swarm Optimisation (PSO) algorithm, the

simulation of the bearing degradation process, feature extraction, development of

degradation model using Paris law, and remaining useful life estimation. Results

from validation of the models using two publicly available datasets is also discussed.

Chapter 5 is the conclusion and recommendations chapter. Here, the findings of

this research work are provided and recommendations for future research have been

provided.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This chapter looks into the major concepts of rolling element bearing failure,

approaches of bearing diagnostics and prognostics, parameter estimation techniques

in bearing diagnostics, and bearing prognostics. The chapter also reviews previous

work done by other researchers and identifies gaps from these researches.

2.2 Rolling Element Bearings

Rolling element bearings are mechanical elements that are used when rotating

or linear motion between two moving parts is required. They consist of four

components: the inner race, outer race, cage, and rolling components as shown

in Figure 2.1.

Figure 2.1: Rolling element bearing components (Liu et al., 2013)
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2.2.1 Rolling Element Bearing Failure

Statistics show that bearing failure is one of the main causes of breakdown in

rotating machinery (Alewine & Chen, 2012). Failure of rolling element bearings

may occur in different ways and at different stages of their service life. Some of

the bearing failures that may occur during the early stages of their service life may

be due to inappropriate design, faulty installation, brinelling or overload. When a

bearing nears the end of its lifetime, failure may be caused by fatigue, contamination,

lubrication, fracture or creep.

In cases where the bearing is well aligned, properly loaded and sufficiently lubricated,

the failure that occurs is caused by rolling element contact fatigue. This failure is

due to application of repeated stresses on a finite volume of material (Roemer et al.,

2008). The result is that material from the load bearing surface of rolling elements

and raceway flakes off leaving a spall or a pit as shown in Figure 2.2.

Figure 2.2: Ball bearing with a spall (Roemer et al., 2008)

Once a spall is initiated, it quickly grows and develops and the appearance of a spall

is usually a sign of bearing failure. However, in some applications, there is usually

a lapse of time from initiation of first spall to the end of the useful life of a bearing.

A study by Harris (2001) showed that 3 to 20 % of a particular bearings useful life

remains after spall initiation.
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2.2.2 Bearing Characteristic Faults

When a single point defect occurs in any part of the bearing, a high frequency

resonance is excited in the structure of the bearing as the defect comes into contact

with the elements in the bearing. This frequency is known as characteristic frequency

and it can indicate the type of fault present in a bearing (Sawalhi & Randall, 2008).

The most common rolling element bearing faults are damage of the inner race, outer

race, cage fault, and rolling element fault (Sawalhi, 2007). The inner race damage,

Ball Pass Frequency of Inner Race (BPFI), is expressed as

BPFI =
nbfr
2

(
1 +

Db

Dp

cosα

)
. (2.1)

Outer race fault also known as Ball Pass Frequency of Outer Race (BPFO), is given

by

BPFO =
nbfr
2

(
1− Db

Dp

cosα

)
. (2.2)

Cage fault also known as Fundamental Train Frequency (FTF) is given by

FTF =
frDb

2Dp

(
1− Db

Dp

)
cosα. (2.3)

The rolling element fault also known as Ball Spin Frequency (BSF) is expressed as

BSF =
nbfr
2

(
1− Db

Dp

cosα

)
. (2.4)

Here, nb is the number of rolling elements, Db andDp are the rolling element diameter

and the pitch diameter of the bearing respectively, fr is the rotational speed of the

inner race (shaft speed) and α is the radial contact angle (Sawalhi, 2007).
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2.2.3 Fatigue Spall Initiation and Propagation

2.2.3.1 Spall Initiation

Many modern theories that exist for predicting spall initiation from bearing

dimensions are based on Lundberg-Palmgren (L-P) Model (Harris & Yu, 1999). Yu

and Harris (2001) proposed a new stress-based fatigue life model where the empirical

data required to complete the model can be obtained using element testing in lieu

of complete bearing testing employed by L-P.

According to Yu and Harris (2001), the typical equation that is used to predict the

life of a bearing is a function of the basic dynamic capacity Qc and the applied load

as stated below

L10 =

(
Qc

Q

) (z+x+y)
3

(2.5)

where L10 is the life of a bearing, Q is an applied load, and Qc is dynamic capacity.

Here,

Qc = A1D
(2z−x−y)
(z+x+y)

[(
T

T1

)z
u(DΣρ)

(2z−x−y)
3

(a∗)z−x(b∗)z−y

d

D

] −3
z+x+y

(2.6)

where A1 is material property, T is a function of contact surface dimensions, T1

is value of T when a = b = 1, u is number of stress cycles per revolution, D is

ball diameter, ρ is curvature (inverse radii of component), d is component (raceway)

diameter, a is function of contact ellipse dimensions, b is function of contact ellipse

dimensions and x, y, z are the axes.

2.2.3.2 Spall Propagation

Once a fatigue spall has been generated, vibratory loads, heat generation rates and

contact stresses increase. This results in formation of more fatigue cracks within the

subsurface of the bearing. Raje et al. (2008) propagated rolling element bearing
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fatigue spalls well beyond the laboratory criteria of 6.5 mm2. His experiments

indicated that the propagation of rolling contact fatigue beyond its initial appearance

is a highly variable process.

Li and Lee (2005) predicted spall progression of tapered roller bearings using an

empirical method. The empirical constants need to be determined for all bearings

and all operating conditions for which is used. Harris (2001) presented a spall

progression model by extending the I-H fatigue life theory. With their model,

prediction of the life of a spall progression was achieved so long as bearing fracture

does not occur. The equations relating spall progression rate dSp
dN

to spall length Sp

are as follows;
dSp

dN
= C((θmax + τavg)

√
πSp)m (2.7)

where θmax is maximum stress, τavg is average shearing stress, Sp is spall length, C

and m are constants.

The research done by Harris (2001) showed that 3 to 20% of a particular bearings

useful life remains after spall initiation. The study identified two spall progression

regions as shown in Figure 2.3. Stable spall progression region characterized by

gradual spall growth and minimum vibratory loading and unstable spall region

characterized by increasing broadband vibration amplitudes.

Orsagh et al. (2003) used the progression model of Kotzalas and Harris and compared

the predicted progression size with oil particle quantity. The findings revealed

a correlation between the oil debris data and the spall size. Scaling of the oil

particle quantity was then done to approximate spall size. For an ideal result to

be obtained, various physics parameters of this model such as material constants

should be determined accurately by numerical experiments.

Roemer et al. (2008) implemented bearing prognosis in three modules as shown in

Figure 2.4. The first module is diagnostic where variables for bearing diagnoses

15



Figure 2.3: Scaled accelerometer signal and spall size as a function of time
Harris, 2001

are measured. Such variables include vibration, acoustic emissions and oil debris

data. Second module is where health assessment of current bearing is done with

input from the diagnostic features. Prognostic Module then takes over where failure

prediction is done based on presence of the incipient fault. The drawback of this

approach is model uncertainties and development of the fault earlier than predicted

or without warning.

2.2.4 Modelling the Vibration of Localized Defects

Diagnostics and prognostics benefit highly from the ability to model the vibration

of localized defects. This is due to the signals that are produced with well-defined

characteristics rather than randomly waiting for the signals to show up. Simulation
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Figure 2.4: Prognostic bearing model approach (Roemer et al., 2008)

is also valuable for giving a better understanding of how faults are generated, in

particular where non-linear interactions are involved. Bearing fault simulations can

also be used to evaluate the effectiveness of different bearing diagnostic techniques

and their performance under the influence of noise masking (Sawalhi, 2007). The

main techniques to diagnose and examine rolling element bearings defects using

vibration analysis are time domain, frequency domain, time-frequency domain and

envelope analysis Jardine et al., 2006.

2.3 Diagnostics

There are several methods for fault diagnosis of rolling element bearings which can be

classified as data-based and model-based fault diagnosis methods. In the recent past,

vibration based condition monitoring has been widely used for bearing fault detection

(Zhang et al., 2015). An overview of vibration-based condition monitoring in rotating
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machines is given in (Sinha & Elbhbah, 2013). The wide use of such methods

is because vibrational behaviour is often sensitive to small structural variations

as well as changes in process parameters. However, vibration signals are usually

nonstationary in actual operation thereby restricting the extraction effect for fault

features. This affects the accuracy of fault diagnosis. Moreover, these changes in

vibrational behaviour often present a confusing array of data on which to base any

diagnosis and in these situations an accurate theoretical model becomes invaluable.

This thesis focuses on model-based approach to fault diagnosis of rolling element

bearings since it has been garnering attention in the last two decades (Mbagaya

et al., 2017). This approach relies on an explicit mathematical model of the system

under observation by assuming that a fault in the system will lead to deterministic

changes in the model parameters. Model-based fault diagnostic approach can be

more effective than other approaches that do not use models if a correct and accurate

model describing the behaviour of the sytem is built (Jardine et al., 2006). However,

one of the biggest challenges of model-based diagnostics is development of the model

that accurately captures the behaviour of the system (Gao et al., 2015). In the case

of rolling element bearing, the ability to accurately describe the bearing parameters

such as stiffness and damping will determine the accuracy of the model and thus,

the accuracy of fault diagnosis (Sawalhi, 2007).

2.4 Parameter Estimation Techniques in Bearing

Diagnostics

Parameter estimation has been a focus in recent decades with several applications

to estimation of the dynamic parameters of bearings Tiwari et al., 2004. Parameter

estimation relies on the principle of comparing the parameters of a defective system

with the parameters of a healthy system. Therefore, a theoretical dynamic model of

the process is important to apply parameter estimation methods (Isermann, 2011).
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Some authors have attempted to estimate the bearing dynamic parameters using

experimental techniques such as random, impulse, and unbalance excitation

techniques. Tiwari and Chakravarthy (2006) presented an algorithm for

identification of bearing dynamic parameters and residual unbalances, by using

impulse response measurements. Another research done by Jiang et al. (2015)

developed a multi-degree of freedom rotor model to identify the effective stiffness

and damping of an active magnetic bearing system. However, both these method

were time-consuming, not robust to noise and required the bearings to be tested in

isolation thus affecting the accuracy of the obtained parameters.

Sudhakar and Sekhar (2011) employed two different approaches for the identification

of unbalance fault in a rotor system. One of the methods was equivalent loads

minimization while the other was vibration minimization method. The study showed

that vibration minimization method identified unbalance fault with less error when

compared with equivalent loads minimization method where the modified theoretical

fault model is used. Regardless of this, the accuracy of the model is not guaranteed

due to the 2% error that was encountered.

Samadani et al. (2014) presented an application of recurrence plots (RPs) and

recurrence quantification analysis (RQA) for parameter estimation-based diagnostics

of nonlinear systems. To demonstrate the procedure, a detailed nonlinear

mathematical model of a servo electro-hydraulic system was used. This approach

was time consuming and computationally demanding, thus makes it hard for it to

be applied in an automated manner or for it to be integrated into a control system.

An improvement of this approach was done by Mohamad et al. (2018) who employed

an Extended Phase Space Topology (EPST) method for model-based fault detection

and diagnostics of an electrohydraulic system. The drawback of this aproach was

that the proposed method was only applied to numerical data obtained from the

mathematical model of the system and the accuracy of the model was not guaranteed

since no validation of the results with experimental data was done.
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Several authors have employed algorithms with respect to parameter estimation of

bearings. The most common algorithm that has been employed is the least squares

method. Alonge et al. (2001) applied least squares techniques techniques together

with genetic algorithm (GA) in parameter identification of induction motors. The

least squares method required lower computation time than that based on GA, but

it was not accurate in estimation of parameters.

Another author, Kim et al. (2007) used a hybrid evolutionary algorithm as an

optimization tool in bearing parameter identification. The methodology was based

on global optimization scheme using measured unbalance response of rotorbearing

system. Results showed that the proposed methodology was effective in identification

of bearing coefficients and the magnitude of unbalance using the measured unbalance

response. However, there is need for further investigations in order to increase the

accuracy and reliability of the identified results.

Tiwari and Chougale (2014) presented an identification algorithm for the estimation

of dynamic parameters of Active Magnetic Bearings (AMBs) and rotor residual

unbalances. The proposed algorithm was applied to experimental data from a test

rig. The results showed that the algorithm was able to detect the AMB dynamic

parameters, However, some inconsistencies were noted due to variations of the

estimated parameters from the theoretical ones.

Mao et al. (2016) employed a transfer matrix method and a computational to identify

the bearing dynamic parameters of a flexible rotor-bearing system. The proposed

method was tested with a numerical example and experimental application. The

results showed that it is robust to the noise and is computationally less expensive.

However, it was only applied to one set of bearing size and geometry.

Han et al. (2013) presented a method based on Kriging surrogate model and

evolutionary algorithm to identify the bearing parameters and unbalance information
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in rotor-bearing system. The developed algorithm was tested with numerical example

and experimental application. The method was more robust to noise compared to

other traditional identification techniques and it is less computationally expensive.

However, some modeling errors still exist due to the lack of precision in bearing

parameters with some sample sizes. This inaccuracy of the model leads to a search

for a method that will still reduce computational time while maintaining the accuracy

required in modelling.

Recently, Particle Swarm Optimisation (PSO) algorithm has gained much

attention with wide application in different fields due to its simple concept,

easy implementation, and fast convergence. Particle Swarm Optimisation is

a population-based evolutionary algorithm that provides an efficient means of

estimating the bearing parameters and was discovered by Kennedy and Eberhart

in 1995 Eberhart and Kennedy, 1995. The algorithm is based on the simulation of

predation by birds and swarm intelligence.

The few simple lines required to describe the basic algorithm and the derivative free

search for the solution make PSO an easy-to-use algorithm for real life problems.

Like well known stochastic optimization methods such as Evolutionary Strategies or

Simulated Annealing, PSO is not restricted to a local solution of the optimization

problem. Thus, the solution does hardly depend on an initial starting point which

can be of great advantage in the optimization process searching for novel designs.

Deng et al. (2019) employed empirical mode decomposition, fuzzy information

entropy, improved PSO algorithm and least squares support vector machine

(LS-SVM) in order to effectively diagnose the fault of motor bearing. The empirical

mode decomposition and fuzzy information entropy were used to effectively extract

the fault features, and the improved PSO algorithm was used to optimize the

parameters of the LS-SVM. There was improved classification accuracy with PSO.

Xia et al. (2016) employed a key kernels-PSO (KK-PSO) method for the fault
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diagnosis of rotor-bearing system. The analysis results indicated that the irritating

infinite-solution problems in the traditional identification methods can be resolved

effectively by the KK-PSO method. Therefore, the simplicity in computation and

rapid convergence property has made PSO useful in parameter identification of

bearing systems (Feng et al., 2013).

Figure 2.5 presents a block diagram showing the principle of PSO-based parameter

estimation. The initial state Xo is given to both the real system X and the estimated

model X̂. Then outputs from the real system and its estimated model are input to

the optimization algorithm, where the objective function is calculated (Alfi, 2011).

Since this algorithm depends on the objective function to guide the search, it must be

defined before initialization is carried out. The fitness function of estimated model

parameters is considered to be the mean squared error (MSE) between real and

estimated responses for a number of given samples. Hence, the objective function is

given as

MSE =
1

N

N∑
k=1

[
X(k)− X̂(k)

]2
(2.8)

where N is the sampling number, X(k) and X̂(k) are real and estimated values of

state vector at time k, respectively.

Figure 2.5: Principle of parameter estimation (Alfi, 2011)
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With automatic parameter identification using PSO, one just needs the base model

and it can be used with different sizes and geometry of similar components. Moreover,

automatic parameter identification reduces the time taken to construct a model.

When compared to algorithms such as GA, more research is being carried out using

PSO algorithm in parameter estimation of nonlinear dynamic systems due to its

simple concept, easy implementation, and fast convergence (Shi et al., 2001). The

simplicity in computation and rapid convergence property has made it very useful in

parameter identification of this system as it will be seen in the subsequent sections.

Moreover, fewer parameters are needed in PSO.

2.5 Prognostics

The field of prognostics has encountered several advancements in the past 10 years

(Lee et al., 2014). Various techniques that have been successfully employed for

prognostics include vibration analysis, oil analysis, temperature analysis and acoustic

emissions. These methods are effective in describing machine performance. The two

main categories used to describe the different approaches to prognosis are data-driven

approaches and model-based approaches. In this section, studies that are related to

prognostics under non-stationary conditions are reviewed.

2.5.1 Data-driven-Approach to Prognostics

Data-driven methods are based upon statistical and learning techniques and are

derived from routinely monitored system operating data such as oil debris, vibration

signals, temperature, and pressure. Most of the data-driven approaches originated

from the theory of pattern . They mainly comprise of Artificial intelligence (AI)

techniques and statistical methods (Jardine et al., 2006). Statistical methods include

state space models (e.g Bayesian networks (Elwany & Gebraeel, 2008), hidden

Markov Models (HMM) and hidden semi-Markov Models (HSMM) (Dong & He,

2007)) and regressive models while AI techniques include neural networks (Malhi
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et al., 2011).

Figure 2.6 illustrates the stages in a data-driven approach. Data acquisition involves

measuring the appropriate form of data. The measured condition monitoring data

can be vibration data, acoustic data, oil analysis data, etc. The data measured

is polluted by different types of noise. Pre-processing removes the noise through

filtering and prepares it for feature extraction. Feature extraction involves processing

the filtered data. It can be performed in the time-domain, frequency-domain or

time-frequency domain. After this has been done, post-processing is then carried

out to prepare feature vectors for pattern recognition stage. Pattern recognition is

where a method is applied to decide the damage state based on the feature vectors

extracted by signal processing techniques (Peng et al., 2010).

Figure 2.6: Data-driven prognostic approach (Peng et al., 2010)

Data-driven approach is advantageous over model-based approach in cases where

the system is complex and thus accurate modeling becomes expensive. Moreover,

data-driven approach is applicable where an understanding of first principles of

system operation is not comprehensive. However, the primary drawback of such

approach is that effectiveness is not only dependent on the quantity but also quality

of system operational data. The systems require large amount of training data

and it may have wider confidence intervals in comparison to other approaches.

Furthermore, it is difficult to obtain run-to-failure data particularly for new systems

because running systems to failure could be lengthy and costly.

Gebraeel et al. (2004) predicted bearing failure time by using the artificial neural

network (ANN) approach. An experimental setup was developed to perform
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accelerated bearing tests where vibration information was collected from a number

of bearings that are run until failure. This information was then used to train neural

network models on predicting bearing operating times. Vibration data from a set

of validation bearings were then applied to these network models. The resulting

predictions were used to estimate the bearing failure time. Comparisons between

these predictions with the actual lives of the validation bearings and errors were

computed to evaluate the effectiveness of each model. The results showed that 64%

of the predictions were within 10% of actual bearing life, while 92% of predictions

were within 20% of the actual life. However, the drawback of this method is that

the failure thresholds were not adequately defined.

A trained dynamic wavelet neural network (DWNN) was employed by

vachtsevanos2001fault in prognosis of a defective bearing with a crack in its inner

race. It was noted that more extensive failure data, that is difficult to obtain in

critical processes, is required to draw firm and comparative conclusions.

A Recursive bayesian technique was proposed by Zhang et al. (2007) to estimate asset

health reliability using condition monitoring data. This method enabled reliability

evaluation using observations from individual assets, rather than using failure data

from a population of assets. Validation of the employed method was implemented

by an experiment on bearing life testing as a case study. The accuracy of such

a technique relies strongly on the correct determination of thresholds for various

trending features (Lee et al., 2014).

Hidden Markov models (HMMs) were integrated with an adaptive stochastic fault

prediction model and principal component analysis (PCA) and used in bearing

prognosis by Zhang et al. (2005). The principal features extracted by PCA were

utilized by HMM to generate a health/degradation index representing the current

system health status. This was then used as an input to an adaptive prognostics

component for on-line remaining useful life prediction. The merit of this approach is
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the on-line learning capability which increases its prediction accuracy. However, the

inability to physically observe a defect n an operating unit makes it difficult to relate

the defined health-state change point to the actual defect progression. Chinnam and

Baruah (2003) also employed HMMs to model degradations on bearings, and to

estimate the underlying RUL.

Dong and He (2007) presented a statistical modelling methodology based on

segmental hidden semi-Markov models (HSMMs). An HSMM is a hidden Markov

model (HMM) with temporal structures. However, unlike HMMs, HSMMs employ

explicit probability distributions such as Gaussian distribution to model the state

durations more accurately. The developed method was then tested using data from

a real hydraulic pump health montoring application case study. The results showed

that the recognition rates for all states were greater than 96%. For each individual

pump, the recognition rate increased by 29.3% in comparison with HMMs. However,

the limitation experienced is the difficulty in relating the defined health-state change

point to the actual defect progression since it is often impractical to physically

observe a defect in an operating unit.

2.5.2 Model-based Approach to Prognostics

The model-based prognosis approach relies on a mathematical model of system under

observation by assuming that a fault in the system will lead to deterministic changes

in the model parameters. Input includes information on operating and environmental

conditions. A comparison of model output to actual system outputs is done to

generate a residual signal as depicted in Figure 2.7. The ratio of output and input

can be used as a health index to track degradation of the system (Daigle & Goebel,

2011). Based on that generated signal, useful information is extracted and potential

fault conditions are identified.

A common model-based approach is crack growth modelling. Li and Lee (2005)
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Figure 2.7: Model-based prognostic approach (Daigle & Goebel, 2011)

based their bearing prognostic methodology on the in process adaptation of defect

propagation rate with vibration signal analysis. The defect size as predicted by a

fatigue crack propagation model was compared to the estimation from a diagnostic

model in the future to fine tune the propagation model parameters. However, the

assumption that the defect size can directly be estimated from vibrations is faulty

since the instantaneous defect size cannot be measured without interrupting machine

operation.

Lee et al. (2014) used an embedded gear dynamic model to predict the remaining

useful life (RUL). The advantage of this model is that finite element analysis

(FEA) enables stress calculation based on the gear geometry, speed, load, material

properties and so on. However, this method is time consuming, needs expensive

software to analyze the vibration data and calculate the stress value, and the results

rely on the accuracy of the defect size.

Oppenheimer and Loparo (2002) used Forman Law of linear elastic fracture

mechanics to model rotor shaft crack growth. The assumption made from these crack

growth models is that the defect size could be estimated directly from vibration data.

This assumption, however, is questionable since instantaneous defect size cannot be

measured without interrupting the operation of the machine thereby hindering the

usefulness of this model.

Bian and Gebraeel (2014) investigated a method for modeling degradation signals
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from components functioning under dynamically-evolving environment conditions.

In-situ sensor signals were utilized in real time to predict and update the distribution

of a components residual lifetime. The research showed that the Bayesian updating

scheme provides reasonable lifetime prediction results, especially as information is

progressively revealed over time. However, this is based on the simplified assumption

that the current environmental or operational conditions affect the time-dependent

rate at which a components degradation signal increases.

Gašperin et al. (2011) modelled feature time series as an output of dynamic state

model. The model was then used to determine the presence of a fault and predict

the future behavior and remaining useful life of a system. The optimal model at

the current state of failure is found by adopting an algorithm for on-line model

estimation. The approach is validated using the experimental data on a single stage

gearbox. The results showed that the model can be used to predict the evolution of

the fault under variable operating conditions, if the future time profile of the load is

known. Moreover, a linear relationship was assumed between operating conditions,

fault dimension and vibration feature value.

The research done by Liao and Tian (2013) was also based on simplified assumptions

on the relationship between operating conditions and the rate of degradation.

An enhanced Bayesian technique for predicting the RUL of a single unit under

time-varying operating conditions was investigated. The approach integrates in situ

degradation measurements of the interested unit as well as the operating conditions

with a population-based Accelerated Degradation Testing (ADT) model. The results

showed that the proposed approach is capable of achieving accurate RUL prediction

under complex operating conditions that may involve stochastic components.

However, more test units need to be considered and further investigation into the

different failure modes needs to be done.

Zhang et al. (2005) developed an integrated prognostics approach to deal with
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time-varying operating condition, which integrates physical gear models and sensor

data. The degradation model is built on the physics of damage progression,

which takes the form of a function of environmental parameters. Any changes

of these environmental parameters, such as load, temperature, and speed can be

manifested immediately in the physical model. The assumption that future loading

conditions are known may lead to difficulty in quantifying the remaining useful life.

Moreover, validation of the proposed model with experimental investigations in a lab

environment did not take place. Therefore this model may not represent the physical

behavior of the target system.

2.5.3 Prognostic Techniques

The various techniques that have been successfully employed for prognostics include

vibration analysis, oil analysis, temperature analysis, acoustic emissions and so on.

Vibration analysis has been used to predict the RUL of bearing by use of current

and previous vibration data and for diagnosis of all types of fault, either localized or

distributed.

Vibration-based signal analysis can be performed in the time domain, the frequency

domain or the time-frequency domain. Monitoring the variation in statistical

indices such as kurtosis, root mean square (RMS) value or crest factor can help

detection of bearing faults in the time-domain analysis (Hiyama et al., 2008).

The disadvantage with this method is that it is difficult to determine appropriate

thresholds which should not be exceeded because variations exist in different

applications. Frequency-domain analysis is based on time-frequency transformation

and the most popular diagnostic method uses Fourier Transform. The presence

of fault characteristic frequency indicates a fault in bearing diagnosis. The main

disadvantage of frequency domain analysis is inability to locate particular frequency

in time domain. To overcome this problem, time-frequency analysis is used.
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Figure 2.8: Short time fourier transform spectogram (Boashash, 2015)

Time-frequency domain techniques can be used to analyze non-stationary signals.

A popular time-frequency analysis is the Short Time Fourier Transform (STFT)

(Boashash, 2015) which is a Fourier-related transform that determines the sinusoidal

frequency and phase content of local sections of a signal as it changes over time.

Figure 2.8 shows the spectrogram obtained using STFT. The three time-varying

frequency components can be observed. However, this method is limited in its

time-frequency resolution. Cocconcelli et al. (2012) enhanced the fault signature

of a ball bearing under varying motor-speed by averaging the short-time fourier

transform (STFT) for each shaft revolution in the time-frequency domain. The sum

of the averaged STFT coefficients was used as an indicator of the level of damage on

the bearing. However, the relationship between the damage indicator and varying

shaft speed is lacking.

Feng and Liang (2014) presented a time-frequency analysis method based on the

Vold-Kalman filter and higher order energy separation (HOES) to extract fault

symptoms in a wind-turbine gearbox under non-stationary conditions. The results

showed that it was effective in diagnosing gear faults. However, investigation on how

the faults evolve with time was not done.
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An alternative to STFT is the Wavelet Transform (WT) which has more flexible

time-frequency resolution and is more applicable in fault detection. This method can

be classified according to signal decomposition paradigms as continuous WT, discrete

WT and wave packet analysis. Pathak (2009) proposed the use of discrete wavelet

transform (DWT) with high multiresolution analysis (HMRA) of stator currents for

fault diagnosis of rotors in doubly fed induction machine (DFIM). However, this

approach was only evaluated for fault diagnosis.

Guan et al. (2017) presented a time-frequency method that outperforms others

in providing fine-resolution timefrequency preparation. The synchrosqueezing

transform-based method was effective in detecting distributed and localized gear

faults under nonstationary conditions. However, the method was not evaluated on

ability to track evolution of the faults.

Antoniadou et al. (2015) presented a time-frequency analysis approach for condition

monitoring of wind turbine gearboxes under varying operating condition. The

Empirical Mode Decomposition (EMD) method was used to decompose the vibration

signals into meaningful signal components associated with specific frequency bands

of the original signal. Furthermore, the Teager-Kaiser energy operator (TKEO)

approach was employed to improve the estimation of instantaneous spectral

characteristics of the vibration data under certain conditions. In this approach,

the relationship between the operating conditions and the features is assumed.

Wang and Zhang (2005) predicted the residual life of aircraft engines monitored based

upon available oil monitoring information. The fundamental concept behind the

model is the proportional residual life that assumes the residual life is proportional

to the actual wear measured by the oil analysis programmes. The oil analysis data

used was the total metal concentration obtained using Spectrometric Oil Analysis

Programme (SOAP) from aircraft engines. The principal component analysis PCA

was applied to preanalyze the data. The goodness-of-fit test was then carried out to
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test the model established. The results obtained from the analysis showed that it

is feasible to model the relationship between residual life and information obtained

from an oil analysis program. However, this model required the determination of

a threshold level to indicate defect initiation point, which is in practice, difficult to

determine.

Orchard and Vachtsevanos (2009) employed particle filtering for prognosis in turbo

engine. Particle filtering was used in the proposed method as CM data to monitor

turbine blade health. The particle filtering algorithm consecutively updated the

current state estimate for a nonlinear state-space model (with unknown time-varying

parameters), and predicted the evolution in time of the probability distribution for

the crack length. Authors reported acceptable results in terms of precision and

accuracy. However, this method registers poor performance with high dimensional

data.

2.6 Summary of Identified Research Gaps

A lot of research is currently being conducted on diagnostics and prognostics of

rotating machines with the aim of improving reliability, reducing life-cycle costs and

increasing the machines safety and availability. While there are so many benefits in

this field, many industries have not adopted the approaches listed in this literature.

The identified research gaps are as follows:

1. Most of the research done does not depict how the faults evolve with time and

failure thresholds under non-stationary conditions are not defined. Most of the

literature available focuses on stationary operating conditions which is not the

case for many practical cases where the operating conditions vary during the

lifetime of the system. In this case, it is challenging to define health indices

and to define failure thresholds.
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2. Another major challenge that has been highlighted in literature is to develop

methods that are capable of handling real-world uncertainties that lead to

accurate predictions. Some uncertainties are caused by model simplification

and model parameters. Some of the research work featured employ simplified

assumptions on the relation between operating conditions and the rate of

degradation. The accuracy of the model is crucial in model-based condition

monitoring. Parameter estimation then is the most important step in

model-based diagnostics and prognostics because once model parameters are

determined, accuracy of the model is guaranteed and predicting the remaining

useful life is straightforward.

3. Moreover, research works with proposed models have not been validated

with experimental investigations and as such may not represent the physical

behavior of the target systems. It is therefore evident that methods for

prognostics of systems under stochastic non-stationary operating conditions

need to be investigated.
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CHAPTER THREE

METHODOLOGY

3.1 Overview

The purpose of this chapter was to emphasize the model-based diagnostics and

prognostic components that were used to realize the objectives. Diagnostics included

the creation of a bearing model, the identification of bearing dynamic parameters

using the Particle Swarm Optimisation (PSO) technique, as well as simulation

and diagnosis of bearing defects. The first step in prognostics was to simulate

the bearing degradation process in order to generate vibration data. After that,

feature extraction was performed, and a good health indicator was chosen. Finally,

estimation of the Remaining Useful Life (RUL) wasdescribed.

3.2 Diagnostics

Figure 3.1 is a block diagram summarizing the model-based diagnostic approach

that was employed. The process began with a development of the bearing model in

SIMULINK environment. The parameters of the model were then optimized using

PSO algorithm. The model with estimated parameters was then used to carry out

bearing fault diagnostics.

Figure 3.1: Block diagram showing the Model-Based Diagnostic Approach
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3.2.1 Modelling of a Rolling Element Bearing

A simple rolling element bearing was modeled as a lumped mass-spring-damper

system. The model proposed by Sawalhi and Randall (2008) was adopted in this

study. The model has five degrees of freedom (DOF) as shown in Figure 3.2. A slight

modification was made to introduce damping in the shaft/inner race which had not

been done in the initial model.

Figure 3.2: Five-DOF Bearing Model (Sawalhi & Randall, 2008)

The following assumptions were made in the development of the model:

• The outer race is stationary while the inner race rotates at constant speed

• All translational motions are in x− y plane and rotations are about z-axis.

• There is no slippage between races and balls, and the balls always remain in

contact with the races

• The contact between the ball and inner race, and ball and outer race is

considered as surface contact which follows Hertzian contact model
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• There is constant angular separation between balls due to an ideal massless

cage, and the balls are massless (Sawalhi, 2007)

The general equations of motion for this rotor-bearing system needed for modelling

can be expressed by

msẍs + csẋs + ks(xs) + (fx((xs − xp), ωs, dt)) = 0, (3.1)

msÿs + csẏs + ks(ys) + (fx((ys − yp), ωs, dt)) = 0, (3.2)

mpẍp + cpẋp + kp(xp) + (fx((xs − xp), ωs, dt)) = 0, (3.3)

mpÿp + (cp + cr)ẏp + (kp + kr)yp − kryb − crẏb

+ (fy((ys − yp), ωs, dt)) = 0
(3.4)

mrÿb + cr(ẏb − ẏp) + kr(yb − yp) = 0, (3.5)

where ms denotes the mass of shaft, cs denotes damping of shaft, ks is stiffness of

shaft, mp is mass of pedestal, cp is damping of pedestal, kp is stiffness of pedestal,

mr is mass of resonance changer, cr is its damping and kr is its stiffness, ωs is shaft

rotational speed, yb is measured vibration response, xs and ys denote the shaft’s

degree of freedom, xp and yp are the outer race degree of freedom.

The overall contact deformation (compression) δj for the jth rolling element can be

expressed as

δj = (xs − xp) cos θj + (ys − yp) sin θj − c− βjCd, (3.6)

where, βj is the fault switch, c is the clearance, and Cd is the depth of spall. Since

the compression occurs only when δj is positive, a contact state γj is introduced as

γj =

1, if δj > 0.

0, otherwise.

(3.7)
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The angular positions of the rolling elements ϕj, are functions of previous cage

position ϕo, cage speed ωc (calculated from geometry and shaft speed ωs assuming

no slippage) and time increment dt and is expressed as (Deshpande, 2014)

ϕj =
2π(j − 1)

nb
+ ωcdt+ ϕo, (3.8)

where j is the rolling element and nb is number of balls. The cage speed ωc is given

by

ωc =

(
1− Dp

Db

)
ωs

2
, (3.9)

where Dp is pitch diameter and Db is ball diameter.

Using Hertzian theory for non-linear stiffness, the ball raceway contact force is given

by

f = kbδ
n, (3.10)

where, kb is load deflection factor, depends on the contact geometry and the elastic

contacts of the material, and exponent n= 1.5 for ball bearings and n= 1.1 for roller

bearings.

The load deflection factor is given by

kb =
48EI

L3
, (3.11)

where, L is the length of the beam E is Young’s Modulus and I is the moment of

inertia. The total force for a ball bearing with nb balls is calculated by summing the

contact forces in the x and y directions and is given by

fx = kb

nb∑
j=1

γjδ
1.5
j cosϕj, (3.12)

fy = kb

nb∑
j=1

γjδ
1.5
j sinϕj, (3.13)
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where, nb is number of balls of the bearing, γj is the contact state of the overall

contact deformation δj of the jth rolling element, while ϕj is the angular position

of the rolling elements.

3.2.2 Modelling of Outer Race Fault

A spall of a depth (Cd) over an angular distance of (△ϕd) is modelled using the fault

switch βj to simulate the contact loss at a defined angular position (ϕd). This in

turn defines the spall region as a step function (Sawalhi, 2007). The outer race spall

normally occurs in the load zone and is fixed in location between ϕd and ϕd +△ϕd

as shown in Figure 3.3.

Figure 3.3: Spall definition on outer race (Sawalhi & Randall, 2008)

3.2.3 Modelling of Inner Race Fault

A spall on the inner race rotates at the same speed as the rotor and therefore in this

case, ϕd = ωst + ϕdo. For both the outer and inner race fault, the fault switch βj is
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defined as

βj =

1, if ϕd < ϕj < ϕd +△ϕd.

0, otherwise.

(3.14)

3.2.4 Development of Particle Swarm Optimisation

Algorithm in Parameter Identification

Particle Swarm Optimisation is a swarm intelligence optimisation algorithm that

simulates social behaviour such as birds flocking or fish schooling in order to achieve

precise objectives in a multi-dimensional space. This method was first introduced

by Eberhart and Kennedy (1995).

In PSO, the population is referred to as a swarm and an individual is called particle.

Similar to evolutionary algorithms, PSO performs searches using a swarm of particles

that are updated from one iteration to another as they travel through a search space.

Each swarm of particles has a position vector and a velocity vector, which represent

respectively the potential solution of the problem and the direction in the search

space (Singh & Tiwari, 2018). Particle Swarm Optimisation remembers both the

best position found by all particles and that by each particle in the search process.

In order to determine the optimal solution, the particle’s velocity is updated by the

following equation

vk+1 = ωvk + c1r1(pbest − xk) + c2r2(gbest − xk), (3.15)

where, ω is the inertia, k is the iteration number, xk is the current particle position,

vk is current velocity of the particle, pbest is the optimal particle position, gbest is

optimal swarm position, c1 and c2 are the learning factors describing the cognitive

and social behaviour of the system, and r1 and r2 are random numbers between 0

and 1 (Ge et al., 2019).
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The particle’s position is updated by

xk+1 = xk + vk+1. (3.16)

The velocity of the particle was adjusted based on its best performance and the best

performance of the best particle and this is bound to a maximum and minimum value

beyond which the particle should not exceed. The algorithm continues to perform

repeated applications of updating equation until a stopping criterion is reached.

To solve the problem of parameter estimation, the bearing parameters to be

estimated were listed in a state vector called parName given by

parName = ′ms′;′ mp′;′mr′;′ ks′;′ kp′;′ kr′;′ kb′;′ cs′;′ cp′;′ cr′;′ c′;′ slip′ (3.17)

where the ms,mp and mr are mass of shaft, pedestal and resonance changer

respectively, ks, kp and kr are stiffness of shaft, pedestal and resonance changer

respectively, kb is load deflection factor, cs, cp and cr are damping of shaft, pedestal

and resonance respectively, c is clearance and slip is slippage.

Figure 3.4 shows the steps that were carried out in development of the PSO algorithm

and were also listed in Lei et al. (2018). The steps in the flow chart are explained in

details in the sections below.

1. Set PSO parameters. The parameters such as population size, initial inertia

etc and their corresponding values were initialised as listed in Table 3.1. These

parameters have been referenced in several researches (Alam et al., 2015) as

the ones that give optimal results

2. Initialize a population of particles with random position and velocities. A
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Figure 3.4: Flowchart of PSO algorithm (Jin et al., 2014)

population of particles was initialized using the following equation

p = rand(pSize,Dim) (3.18)

where p are uniformly distributed values from 0 to 1, pSize and Dim are

the population size and dimension respectively. The random values were then
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converted to the relevant range between xmin and xmax in every dimension.

This was done in a 2-dimensional problem space. The particle’s velocity was

bound to a maximum and minimum value beyond which the particle should

not exceed. Limit on the search space was applied using a limiting maximum

velocity vmax which is given by

vmax = .06 ∗ (xmax− xmin) (3.19)

where xmax and xmin are the maximum and minimum values of the

parameters to be estimated respectively.

3. Evaluate the objective function. The objective function was set to be the mean

squared error (MSE) between the desired and measured vibration response.

The objective function is given as

MSE =
1

N

N∑
k=1

[
X(k)− X̂(k)

]2
(3.20)

where N is the sampling number, X(k) and X̂(k) are real and estimated

values of state vector representing RMS, kurtosis and peak amplitude and peak

frequency at time k, respectively. The goal is to reduce the MSE between the

desired and measured vibration response in order to obtain optimal bearing

parameters.

4. Find the local best and global best. These represent the optimal values of

particle and swarm position and were compared with those of the current

population and those results which are better than the rest were retained.

5. For each particle, the particle position and velocity were updated using the

Eqs 3.16 and 3.15 respectively to generate a new swarm

6. Memory updating- The fitness value of the newly updated particles was
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evaluated and then the local best and global best were updated

7. Termination criteria examination. If the objective function was not met, the

algorithm returns to step 3, else it proceeds to step 7

8. Obtain optimized parameters. The global best position in the swarm was

selected as the ultimate solution and this revealed the optimized bearing

parameters.

The main goal of the PSO algorithm is to find the optimal bearing parameters that

minimize the objective function (Lin et al., 2016). Therefore, the convergence of the

algorithm is dependent on the selection of the parameters such as inertia factor of

the particle, population size, maximum velocity and so on.

Table 3.1: PSO Parameters

Parameters Symbol Value
Population size p 25
Initial inertia win 0.8
Final inertia wf 0.3
Self-confidence factor c1 3
Swarm confidence factor c2 2

3.2.5 Simulation Setup

MATLAB/Simulink environment was used to come up with the bearing model where

the equations of motion are solved. This model was created using parameters from

Sawalhi and Randall (2008) and was used to diagnose bearing faults of outer race

and inner race. The contact force was implemented as a Matlab function block in

SIMULINK environment. The function block had various inputs and outputs which

correspond to the equations previously listed above. The Function block is seen

in Figure 3.5. The inputs to the function block include contact angle (phi0), time
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Figure 3.5: Matlab Function Block

increment (dt), xs, xp, ys and yp, which are the shaft and outer race’s degrees of

freedom , pr which includes several variables such as number of balls (nb), cage speed

(wc), slippage (slip), clearance (c), location of outer race fault (phid), width of outer

race fault (dph), load deflection factor (kb) and finally the fault depth denoted as

Cd in the function block. The outputs of the function block are fx and fy which

denote contact force in the x and y direction respectively. The outputs are fed to

block parameters of addition or subtraction depending on the equations. Moreover,

mass, spring and damping are modeled using gains and integrals accordingly. The

bearing model was dynamically updated as the simulation proceeded. The complete

simulink model is shown as a figure in Appendix B.

The physical specifications of the bearing-pedestal system that were used to come

up with the inital bearing model are listed in Table 3.2. The pedestal stiffness was

chosen to correspond to the 174-Hz frequency (the casing’s lowest natural frequency

in the vertical direction (Sawalhi & Randall, 2008)). The sprung mass stiffness is

chosen to provide a typical high frequency resonance of 15 kHz. The rolling elements’
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damping was set to 5%, while the rolling elements’ friction was set to 5%. The

pedestal’s damping was set at 8%, while the sprung mass system’s damping was set

to 5%.

Table 3.2: Search Range of Bearing Parameters and their Initial Values
(Sawalhi & Randall, 2008)

Parameters Specified Search Range Initial Values
Mass of shaft 0.01 ≤ ms ≤ 2 0.5134
Mass of pedestal 0.01 ≤ mp ≤ 2 1.752
Mass of resonator 0.01 ≤ mr ≤ 2 0.8392
Stiffness of shaft 1× 106 ≤ ks ≤ 1× 108 9.2325× 107

Stiffness of pedestal 1× 106 ≤ kp ≤ 1× 108 1.987× 107

Stiffness of resonator 1× 108 ≤ kr ≤ 1× 1010 4.291× 109

Load distribution factor 1× 1011 ≤ kb ≤ 1× 1012 6.918× 1011

Damping of shaft 2× 103 ≤ cs ≤ 1× 104 4.917× 103

Damping of pedestal 2× 103 ≤ cp ≤ 1× 104 6.3123× 103

Damping of resonator 2× 103 ≤ cr ≤ 1× 104 5.4230× 107

Clearance 1× 10−7 ≤ c ≤ 1× 10−5 8.1927× 10−7

Slippage 0.008 ≤ slip ≤ 0.02 0.0198

The model was also used in the PSO algorithm to set up the objective function and

identify parameters of the bearing baseline conditions. Once the optimal parameters

were obtained, the model was then simulated with these parameters to obtain the

bearing response with different fault conditions.

The estimated parameters were used to simulate outer race fault and inner race

fault and the accuracy of the model with parameters estimated by PSO was

determined by comparing the characteristic defect frequencies (Cd) of simulation

to the corresponding theoretical defect frequencies (Td) as shown in Equation 3.21

Accuracy(%) = 100−
(
Cd− Td

Cd
× 100

)
(3.21)

Frequency was used as opposed to amplitude because amplitudes vary greatly due

to presence of noise in the system. The model was then validated by experimental
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data from two publicly available datasets.

3.3 Prognostics

Figure 3.6 is a block diagram summarizing the workflow of the prognostics section.

Figure 3.6: Block diagram representation of RUL Framework

First of all, a simulation of the bearing degradation process was done in Matlab using

the developed bearing model employing the estimated model parameters to generate

vibration data. Statistical features such as RMS and Kurtosis were then extracted

from the simulation data. A quantitative assessment of the statistical features was

done. Root Mean Square (RMS) was selected as the most suitable health indicator

and used in the bearing degradation model to estimate the remaining useful life of

the bearing.
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3.3.1 Simulation of the Bearing Degradation Process

Simulation of the vibration signals that represent the degradation process of rolling

element bearings was carried out. The estimated parameters that yielded a higher

accuracy acted as inputs to the SIMULINK model , together with the geometric

data from CWRU Dataset ,to generate vibration degradation data The defect width

was varied from 0 to 3 mm with 50 simulations carried out to obtain their vibration

signals. The parameters of the bearing used in the simulation are as shown in Table

3.3.

Table 3.3: Bearing Geometric Data

Bearing Specification Value
Outer diameter (mm) 25
Inner diameter(mm) 0.8
Pitch diameter(mm) 29.05
Ball diameter (mm) 6.75
Number of balls 8
Contact angle (degree) 0
Sampling frequency(kHz) 25.6

‘

3.3.2 Statistical Feature Extraction

Feature extraction of the simulated vibration signals was carried out in time domain.

Time domain methods usually involve statistical features that are sensitive to

impulsive oscillation, such as kurtosis, skewness, peak-peak (P-P), RMS, and sample

variance. The 4 domain statistical features that were used as potential health

indicators of the bearing are RMS, kurtosis, skewness and crest factor.
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3.3.2.1 Root Mean Square (RMS)

The RMS of a signal (x) is given by

RMS(x) =

√√√√ 1

N

N∑
k=1

x2
k, (3.22)

where N is the number of samples in the signal and xk is the discrete value at time

index k. RMS values of vibration signals describe the energy content of a signal and

can be used to monitor the overall vibration level of bearings due to the fact that

the overall vibration level typically increases as the bearing deteriorates Sawalhi,

2007. Root Mean Square (RMS) is one of the commonly used statistical parameters

(Ahmad et al., 2018; Li et al., 2015) to indicate the health of a bearing and was used

as a prediction indicator in this thesis.

3.3.2.2 Kurtosis

The kurtosis of a random signal (x) is given by

KU(x) =

√
1
N

∑N
k=1(xk − µ)4

σ4
, (3.23)

where N is the number of samples in the signal, xk is the discrete value at time

index k, µ is the mean and σ is the standard deviation. Kurtosis is a measure of

impulsiveness in a signal and hence a good indicator of a fault. A healthy bearing

has a kurtosis value of 3 but the value increases as the bearing fault increases.

3.3.2.3 Crest Factor

The crest factor of a signal (x) is given by the peak value divided by RMS as expressed

in the following equation

CF =
max(xk)

RMS
, (3.24)
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where xk is the discrete value at time index k and RMS is the root mean square

value of the signal. The crest factor can provide an early warning for faults when

they develop.

3.3.2.4 Skewness

The skewness of a signal measures the asymmetry of a signal distribution. It is given

by

(SK) =

√
1
N

∑N
k=1(xk − µ)3

σ3
, (3.25)

where N is the number of samples in the signal, xk is the discrete value at time

index k, µ is the mean, and σ is the standard deviation. The level of skewness can

be impacted by faults in a bearing.

3.3.3 Metrics for Health Indicators

A quantitative assesment of the above mentioned health indicators was done using

three metrics; monotonicity (Javed et al., 2015; Lei et al., 2018), robustness (Zhang

et al., 2016), and trendability (Lei et al., 2018; Zhang et al., 2016).

3.3.3.1 Monotonicity

Monotonicity measures whether the Health Indicator (HI) is trending upwards or

downwards (Javed et al., 2015; Lei et al., 2018). It is given by

Mon(X) =
1

K − 1

∣∣∣No. of( d

dx

)
> 0− No. of

(
d

dx

)
< 0

∣∣∣, (3.26)

where X = xkk=1:K is the HI sequence with xk representing the HI value at time

tk, K is the total number of the HI values included in the sequence, d/dx =

xk+1 − xk denotes the difference of the HI sequence, No. of
(

d
dx

> 0
)
and No. of(

d
dx

< 0
)
represent the number of the positive differences and the negative differences,

respectively. The value of Mon (X) changes from 0 to 1 due to the absolute difference
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in positive and negative derivatives of X and a higher value of Mon(X) means that

the HI has better performance monotonically.

3.3.3.2 Robustness

This metric measures the ability of the HI to withstand random fluctuations caused

by measurement noise, stochasticity of the degradation processes and the alteration

of operating conditions (Zhang et al., 2016). The equation is given by

Rob(X) =
1

K

K∑
k=1

exp

(
−
∣∣∣∣xk − xT

k

xk

∣∣∣∣) , (3.27)

where xk is the indicator value of X at tk, and xT
k is the mean trend value of the HI

at tk which is acquired through smoothing methods.

3.3.3.3 Trendability

A bearing is likely to degrade more with use as time passes. Due to this, the

trendability is a metric used to measure the correlation between degradation trend

of a HI with the operating time (Lei et al., 2018; Zhang et al., 2016). Trendability

is given by

Tre(X,T) =
K(sumK

k=1xktk)− (
∑K

k=1 xk)(sum
K
k=1tk)√[∑K

k=1 x
2
k − (sumK

k=1xk)2
] [∑K

k=1 t
2
k − (sumK

k=1tk)
2
]
, (3.28)

where, tk is the kth value of time and xk is the value of the HI at time tk. The

values range from -1 to +1 where -1 indicates a strong negative correlation and +1

indicates a strong positive correlation.

3.3.4 Paris Law Degradation Model

Once an assessment of the health indicators was conducted, the extracted features

of best performing health indicator were used as input of the Paris model for bearing
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degradation process prediction.

Paris Law describes the rate of bearing crack growth with the following equation

da

dN
= C(∆km), (3.29)

where, a is the crack size at the number of cycles N ,∆k = γσ
√
πa,σ is the cyclic load

amplitude and m, c and γ are material constants. Henceforth, a will be referred to

as the health state of the bearing. The growth of the crack is governed by the model

parameters. The size of the crack at future cycles can be predicted by substituting the

identified parameters with future loading conditions. In order to integrate Eq.3.29,

the initial condition (initial health state, a0) is required. When the initial health

state is also unknown, it has to be included as unknown parameters. Therefore,

the Paris model has three unknown parameters m;C; a0 The three parameters were

identified by minimizing an objective function using non-linear least squares (NLS).

The objective function is the mean square error between measurements and model

simulation. To obtain the objective function, the ordinary differential equation in

Eq. 3.29 is first solved for a as

a =
[
N.C(1− m

2
)(∆σ

√
π)m + a0(1−

m
2 )
] 2

2−m
(3.30)

, a0 is the initial half crack size, a is the half crack size at the number of cycles

C is based on the initial conditions, being determined by solving Eq. 3.30 with

initial values a = a1 and N = 0. The goal was to minimize the error between

the measurements and the model. The unknown parameters were identified using

the Non Least Squares (NLS) minimization routine. The simulated data was used to

identify (or calibrate) model parameters. Once the model parameters were identified,

they were then used to predict the future behavior of the damage (Lee et al., 2014).
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3.3.5 Implementation with Bayesian Method

Bayesian inference was used to estimate and update unknown parameters based on

measured degradation data using health monitoring systems. The unknown model

parameters were represented as a probability density function (PDF), which was

updated with more data and prior knowledge or information. The more data was

available, the more accurate estimation of model parameter was possible. Once the

PDF of model parameters was obtained, it could be used to predict the remaining

useful life before the system fails. Since the model parameters are given in the form

of PDF, the remaining useful life will also be in the form of PDF

In this thesis, the Bayes method is used in the context of Bayesian inference. To

estimate the probability of A given B, the Bayes’ theorem is given by

P (A/B) =
P (B/A)P (A)

P (B)
(3.31)

where P (B/A) is the probability of B given A, Event A is the hypothesis, event B

is called evidence,P (A) is the prior and P (A/B) is called the posterior.

3.3.6 Likelihood and Prior Distribution

According to the Bayesian method explained above, the likelihood and prior

distribution should be defined in order to obtain the posterior distribution. In this

section, normal and uniform distributions are employed for the likelihood and prior

distribution, respectively. The likelihood function can be expressed in the following

form

f(yk|mi
k, C

i
k) =

1

yk
√
2πζ ik

exp

[
−1

2

(
ln yk − ηik

ζ ik

)2
]
, i = 1....ns (3.32)
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where, ζ ik =

√
ln

[
1 +

(
(σ

aik(m
i
kC

i
k)

)2
]
, is standard deviation and ηik = ln [aik(m

i
kC

i
k)]−

1
2
(ζ ik)

2 denotes mean of lognormal distribution respectively. In the above equations,

aik(m
i
kC

i
k) is the model prediction from the bearing crack growth equation at time tk

with given model parameters mi
k and Ci

k

Also, the prior/initial distributions of the parameters are assumed as normal

distributions as

f(m) = N(4, 0.22), f(log C) = N(−23, 1.12) (3.33)

,

3.3.7 RUL Prediction

In order to calculate the RUL, it was necessary to find the time cycle when the

level of degradation reaches the threshold. The degradation model was given in

such a way that the degradation can explicitly be calculated for a given cycle.

However, calculating the time cycle when the degradation reaches a certain level

is not straightforward as the relation is nonlinear and implicit. Therefore, in order

to find the end-of-life, the following nonlinear equation had to be solved to find time

cycle tEOL

ythreshold − z(tEOL; θ̂) = 0 (3.34)

In general, the above nonlinear equation was solved numerically using

Newton-Raphson iterative method. In MATLAB code, the function solve was used

to find the time cycle tEOL that satisfies the above relation, where the solution tEOL

is called the end-of-life (EOL). The remaining useful life (RUL) can be determined

from tRUL = tEOL − tcurrent. Since z(tEOL; θ̂) is a monotonic function, the above

equation will have a unique solution.
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Overview

This aim of this section is to highlight the results from the proposed model in

bearing diagnostics and prognostics. Validity of the approach that was employed was

investigated using two publicly available datasets and the results from estimation of

Remaining Useful Life were stated.

4.2 Case Study 1: Case Western Reserve

University (CWRU) Dataset

4.2.1 Experimental Setup and Dataset

This case study feature bearing dataset provided by “Case Western Reserve

University Bearing Data Center” (n.d.). The deep groove balling bearing 6205-2RS

JEM SKF was used in the experiment. The whole experimental rig shown in Figure

4.1 consists of a two horsepower three-phase induction motor, a torque transducer,

and a dynamometer. This ball-bearing vibration dataset is collected from a 2-hp

reliance electric motor and the accelerators are installed at the drive end, the fan end,

and the base, respectively. The sampling frequency used is 12 kHz under different

loads, ranging from 0 to 3 hp. There are three fault types of drive end bearing, which

are: inner race fault (IF), ball fault (BF), and outer race fault (OF). Moreover, single

point faults of three different sizes (0.18mm, 0.36mm and 0.54 mm) for each fault

type are introduced using elecro-discharge machining. The motor speed is 1797 rpm.
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Figure 4.1: Apparatus for the bearing vibration signal collection of the
CWRU bearing dataset (“Case Western Reserve University Bearing Data
Center”, n.d.)

4.2.2 Bearing Modelling and Simulation

The bearing geometric data shown in Table 4.1 was obtained from the CWRU

Bearing Data Center and it represents the dimensions of the bearings used in the

experimental data. This data was also used to calculate theoretical characteristic

frequencies using Equations 2.1-2.3. The theoretical characteristic defect frequencies

for this set of data are listed in Table 4.2. The bearing model was developed in

SIMULINK used parameters obtained from Sawalhi and Randall (2008) and this

geometric data.

This model was used to simulate faults in the inner and outer races and the accuracy

of the model was determined by the comparing the characteristic defect frequencies

in the simulated signal with the corresponding theoretical frequencies.
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Table 4.1: Bearing Geometric Data for CWRU Dataset

Bearing Specification Value
Outer diameter (mm) 52
Inner diameter(mm) 25
Pitch diameter(mm) 39.04
Ball diameter (mm) 7.04
Number of balls 9
Contact angle (degree) 0

Table 4.2: Bearing Characteristic Frequencies of CWRU Dataset

Parameters Value
Ball Pass Frequency of Inner Race (BPFI) 162.19
Ball Pass Frequency of Outer Race (BPFO) 107.34
Ball Spin Frequency (BSF) 70.59
Fundamental Train Frequency (FTF) 11.93
Number of balls 8
Contact angle (degree) 0

Figure 4.2 shows the simulated vibration response of bearing with outer race defect

with the time-domain waveform and envelope spectrum. It can be observed that the

vibration signal has periodic characteristic. This is due to impact vibration produced

by the ball as it moves over the defect. Thus the time-domain signal (a) depicts a

series of attenuation vibrations. It can also be observed that the envelope spectrum

of a single outer race fault signal contains the fault characteristic frequency of the

bearing outer race (105.7 Hz, very close to the theoretical value of 107.34 Hz) and its

second and third harmonic frequencies (216.5 Hz and 322.2 Hz, respectively). This

shows that the model is fairly accurate by 98.5% .
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Figure 4.2: Simulated vibration response of bearing with outer race defect

Figure 4.3 shows the simulated vibration response of bearing with inner race defect

with the time-domain waveform and envelope spectrum. Several spectral lines of

varying amplitudes can be observed. The envelope spectrum of a single inner

ring fault signal features several spectral lines of gradually decreasing amplitudes

appearing as sinusoidal modulation. These amplitudes occur at multiple frequencies

of each order. According to the spectrum, the characteristic frequency of defect is

163.9 Hz while the first and second order harmonics appear at 324.4 Hz and 484.9 Hz,

respectively. According to Table 4.2, the theoretical fault characteristic frequency of

the inner ring was 162.19 Hz and when compared to the simulated signal, it gives an

accuracy of 98.32%. These results obtained from the simulated vibration responses

show that the bearing model created is able to accurately diagnose bearing faults.

The simulink model was called within the PSO algorithm to set up the objective

function. Once these optimal parameters were obtained, the model was simulated

once again, using the estimated parameters to obtain the bearing response of different

fault conditions. Table 4.3 shows the results obtained from optimization of the

bearing parameters. The results obtained show that the bearing parameters values
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Figure 4.3: Simulated vibration response of bearing with inner race defect

are within the specified search range.

Table 4.3: Search Range of Bearing Parameters and their Estimated
Values

Parameters Specified Search Range Estimated Values
Mass of shaft 0.01 ≤ ms ≤ 2 0.1542
Mass of pedestal 0.01 ≤ mp ≤ 2 1.6198
Mass of resonator 0.01 ≤ mr ≤ 2 0.8461
Stiffness of shaft 1× 106 ≤ ks ≤ 1× 108 8.624× 107

Stiffness of pedestal 1× 106 ≤ kp ≤ 1× 108 1.125× 107

Stiffness of resonator 1× 108 ≤ kr ≤ 1× 1010 2.974× 109

Load distribution factor 1× 1011 ≤ kb ≤ 1× 1012 8.146× 1011

Damping of shaft 2× 103 ≤ cs ≤ 1× 104 5.9631× 103

Damping of pedestal 2× 103 ≤ cp ≤ 1× 104 7.3502× 103

Damping of resonator 2× 103 ≤ cr ≤ 1× 104 5.2647× 107

Clearance 1× 10−7 ≤ c ≤ 1× 10−5 8.4096× 10−7

Slippage 0.008 ≤ slip ≤ 0.02 0.0159

The bearing model with estimated bearing parameters was validated in Fig. 4.4

by comparing the vibration response of the model with estimated parameters to

vibration response of experimental data obtained from CWRU bearing dataset.

There was some similarity in the periodic characteristic in both the time-domain
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Figure 4.4: Vibration response of outer race fault of simulated signal (a)
vs experimental data (b)

and envelope spectrum waveforms of simulated and experimental signals. The

experimental data reveals more background noise compared to the simulated one.

The characteristic frequency spectra of the simulated signal is 107.4 Hz while that of

the experimental data is 107.6 Hz. This shows that the vibration response bearing

model that has parameters estimated through PSO because compares closely to the

experimental data characteristic frequency and the theoretical ball pass frequency of

inner race which is 107.34 Hz. The accuracy of the model with estimated parameters

is 99.96%. The results show an improvement in the accuracy when the bearing

parameters are estimated using particle swarm optimisation.

Figure 4.5 also shows validation of vibration response of the model with estimated

parameters compared to experimental data obtained from CWRU bearing dataset

for a bearing with inner race fault. A peak could be seen at around 20 Hz in the

experimental data which can be explained by the shaft rotational frequency. Another

peak was present at 161.9 Hz. The characteristic defect frequency of simulated

data is 161.1Hz while that of experimental data is 161.9Hz. Moreover, higher order

frequencies are present in both the simulated and experimental data. However, the
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Figure 4.5: Vibration response of inner race fault of simulated signal (a)
vs experimental data (b)

experimental data has many intermediate peaks when compared to the simulated

data. On calculating the accuracy, it was revealed that the model with bearing

parameters estimated via PSO gives an accuracy of 99.38%.

From the above results, it was easily observed from Figure 4.4 and Figure 4.5 that

parameter estimation with PSO algorithm has yielded more accurate models as

compared to when the bearing parameters are just assumed. The experimental

results indicate that parameter estimation with PSO can accurately recreate the

underlying nonlinear, rotor-bearing system. Furthermore, the method enriches the

nonlinear, rotor-bearing modeling theory and provides a reliable model for dynamic

analysis, design, and fault diagnosis of the rotor-bearing system, which is of practical

significance.
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4.3 Case Study 2: University Of Paderborn

Dataset

4.3.1 Experimental Setup and Dataset

The vibration signals used in this section are provided by the Bearing Data Center

at the “University of Paderborn Bearing Data Center” (n.d.).

Figure 4.6: Modular test rig for fault diagnosis of rotating
machinery(“University of Paderborn Bearing Data Center”, n.d.)

Figure 4.6 represents the experimental setup of the test rig. The test-rig consists

of (1) drive motor (2) torque-measuring shaft, (3) rolling element bearing module,

(4) gear module, (5) flywheel and (6) load motor. This bearing dataset consists of

the high-resolution vibration data, which are collected from experiments performed

on six healthy bearings, and 26 damaged bearing sets. It provides the basis for the

development and validation. In this research, two vibration datasets are applied for

the validation of the proposed parameter estimation method. One dataset has an

outer race fault while the other has an inner race fault. The speed of the motor is

900 RPM.
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4.3.2 Bearing Modelling and Simulation Results

The deep groove ball bearing and the simulations also employ the corresponding

bearing geometry data.Table 4.4 shows the theoretical characteristic defect

frequencies of the bearings used in this experiment calculated from Equations

2.1-2.3. The bearing characteristic frequencies were calculated using the bearing

geometric data provided in Table 4.5. The model developed in SIMULINK was

used to obtain the simulated signals of the localised faults in inner and outer race.

These characteristic frequencies observed in the signals were then compared to those

obtained from theoretical calculations and then validated with experimental signals.

Table 4.4: Bearing theoretical characteristic frequencies of UoP Dataset

Parameters Value
Ball Pass Frequency of Inner Race (BPFI) 73.94
Ball Pass Frequency of Outer Race (BPF0) 46.06
Ball Spin Frequency (BSF) 30.54
Fundamental Train Frequency (FTF) 35.76
Number of balls 8
Contact angle (degree) 0

Table 4.5: Bearing Geometric Data for UoP Dataset

Bearing Specification Value
Outer diameter (mm) 25
Inner diameter(mm) 0.8
Pitch diameter(mm) 29.05
Ball diameter (mm) 6.75
Number of balls 8
Contact angle (degree) 0

The time-domain waveform and envelope spectrum of simulated vibration signal of

outer race defect is shown in Figure 4.7. The figure clearly shows that a defect has

occurred in the outer race of a bearing due to the series of attenuation vibrations in
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the time-domain signal. Moreover, the frequency spectrum reveals the characteristic

frequency of defect of the outer race and its multiple frequencies. These multiple

frequencies appear as a series of discrete spectral lines that steadily decrease with

the increasing frequency (Sawalhi, 2007). The peak amplitude of the characteristic

frequency of defect of outer race is given as 46.83Hz. This value compares favourably

with the theoretical characteristic frequency for outer race fault which is 46.06Hz

depicting an accuracy of 98.35%.
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Figure 4.7: Simulated signal of rolling element bearing with outer race
fault

Figure 4.8 shows the time-domain waveform and envelope spectrum of simulated

vibration signal of inner race defect. Similar to the other models, the envelope

spectrum features several spectral lines of gradually decreasing amplitudes appearing

as sinusoidal modulation. These amplitudes occur at multiple frequencies of each

order. According to the spectrum, the characteristic frequency of defect is 75.51 Hz.

Compared to the theoretical value of the characteristic defect frequency for inner

race which is 73.94 Hz, the model has an accuracy of 97.88%.

These results show that the model that has been created in simulink can be used

to accurately simulate bearing faults in the inner and outer races due to the
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Figure 4.8: Simulated signal of rolling element bearing with inner race
fault

high accuracy obtained by comparing the characteristic defect frequencies to the

theoretical frequencies. Once this model has been created, it was used in the fitness

function of the particle swarm optimisation algorithm. Table 4.6 gives the search

range and estimated parameters used for University of Paderborn Dataset.

Figure 4.9 shows comparison between simulated signals of the model with estimated

parameters and experimental signal of inner race faults depicted, some similarity is

visible in the periodic characteristic in both the time-domain and envelope spectrum

waveforms of the simulated signal and experimental signal. A peak at a frequency of

around 50 Hz can be seen in the experimental data. This is not the peak characteristic

defect frequency but it can be explained by the shaft rotational speed of 3000rpm.

The experimental data reveals more background noise compared to the simulated

one. The other peak frequency of the simulated signal is 73.24 Hz while that of the

experimental data is 73.75 Hz. This reveals an improvement in the accuracy of the

bearing model whose parameters are estimated through PSO. On calculating the

accuracy of the model, it is revealed to be at 99.01%.
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Table 4.6: Search Range of Bearing Parameters and their Estimated
Values

Parameters Specified Search Range Estimated Values
Mass of shaft 0.01 ≤ ms ≤ 2 0.1276
Mass of pedestal 0.01 ≤ mp ≤ 2 1.6705
Mass of resonator 0.01 ≤ mr ≤ 2 0.7122
Stiffness of shaft 1× 106 ≤ ks ≤ 1× 108 8.981× 107

Stiffness of pedestal 1× 106 ≤ kp ≤ 1× 108 1.459× 107

Stiffness of resonator 1× 108 ≤ kr ≤ 1× 1010 4.234× 109

Load distribution factor 1× 1011 ≤ kb ≤ 1× 1012 6.2168× 1011

Damping of shaft 2× 103 ≤ cs ≤ 1× 104 4.4728× 103

Damping of pedestal 2× 103 ≤ cp ≤ 1× 104 6.4385× 103

Damping of resonator 2× 103 ≤ cr ≤ 1× 104 5.3820× 107

Clearance 1× 10−7 ≤ c ≤ 1× 10−5 8.291× 10−7

Slippage 0.008 ≤ slip ≤ 0.02 0.0182

Figure 4.10 shows a comparison between simulated signals of the model with

estimated parameters and experimental signal of outer race fault is shown. The

characteristic frequency spectra of the simulated signal is 46.39 Hz while that of

the experimental data is 45.95 Hz. This reveals the accuracy of the bearing model

that has parameters estimated through PSO because it compares closely to the

experimental characteristic frequency and the theoretical ball pass frequency of

inner race. The accuracy stands at 99.39%. These results show that the estimated

parameters produced a model with more accurate characteristic frequencies Mbagaya

et al., 2021 The accuracy of the bearing model improves from 97.88% to 99.01% for

outer race faults and from 98.35% to 99.39% for inner race faults. This shows that

the bearing parameters were accurately identified using PSO giving rise to more

accurate models that represent the bearing system.
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Figure 4.9: Vibration response of inner race fault of simulated signal (a)
vs experimental data (b)
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Figure 4.10: Vibration response of outer race fault of simulated signal (a)
vs experimental data (b)
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4.4 Effect of Varying Defect Depth and Width

An evaluation of how an increase in defect depth and width impacts the fault

detection of a rolling element bearing system is done and the effect of varying the

fault severity is studied. Initially, the bearing fault depth in the outer race and inner

race is varied from 0.9 mm, 1 mm, and 3 mm while the defect width is held constant

at 0.001 rad. The choice of values for defect depth and width was informed by the

experimental results that used the same values. Table 4.7 shows readings of the peak

amplitudes of the bearing characteristic frequency as the defect depth increases for

both a fault in the outer race and inner race.

Table 4.7: Varying bearing defect depth

Defect Depth(mm) Defect Location Amplitude
0.9 OR 0.08809
1 OR 0.1087
3 OR 0.1482
0.9 IR 0.04803
1 IR 0.04801
3 IR 0.05743

The results show that as the defect depth increases, the peak amplitude of the

bearing characteristic frequency also increases for both faults in the outer race and

inner race respectively. The increase in the peak amplitudes may be due to the

higher impact forces as the bearing falls into the defect and since the accelerations

are closely associated with impact forces, the larger the impact force, the higher

the accelerations and thus translating to higher peak amplitudes of characteristic

frequency. Sample vibration results with a defect depth of 3 mm in the outer race is

shown in Figure 4.11.

The bearing width is also varied from 0.001 rad to 0.003 rad while the depth of 2mm

is held constant. Table 4.8 shows the results of a change in amplitude with change
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Figure 4.11: Simulation of outer race fault with a defect depth of 3mm

in bearing defect depth. For the outer race defect, the peak frequency amplitude

increases initially then decreases as defect width increases. For the inner race defect,

the same phenomena is observed. The peak amplitude of the characteristic defect

frequency initially increases then decreases on increasing the defect width. It was

therefore not possible to find a correlation between the defect width and the peak

amplitudes of the characteristic frequencies because of the variations observed.

Table 4.8: Varying bearing defect width

Defect Width(radians) Defect Location Amplitude
0.001 OR 0.06692
0.002 OR 0.1502
0.003 OR 0.1482
0.001 IR 0.4184
0.002 IR 0.05677
0.003 IR 0.03838
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4.5 Simulation of the Bearing Degradation

Process

Sample results of simulation of bearing degradation in normal stage and in failure

stage is shown in Figure 4.12 and Figure 4.13 respectively. In Figure 4.12 shows

obvious impacts with a period of τ = 0.2117s which corresponds to the fault

characteristic frequency. Severe fault vibration signal usually has obvious periodical

impulses due to the defects in the raceway or rolling elements. The whole degradation

process of the bearing was simulated, with signals repeated 50 times with increasing

fault severity.
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Figure 4.12: Simulation of bearing in normal stage

4.6 Feature Extraction

Statistical features such as RMS, kurtosis, skewness and crest factor were derived

from the simulated vibration signals on the basis that they are commonly used

parameters for condition monitoring of bearing. Figure 4.14 shows the results of the

statistical features with increasing defect severity.

It is seen that the RMS of the vibration signal increases during the degradation
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Figure 4.13: Simulation of bearing in failure stage

process. For a healthy bearing, the RMS value usually remains stationary (Lim &

Mba, 2015). However, as soon as the bearing develops a fault, the RMS value begins

to increase. Figure 4.14 (a) shows how RMS changes as bearing fault increases. The

figure shows a monotonically increasing degradation trend throughout the bearing

lifetime. Depending upon the rate of defect propagation and damage growth, the

RMS value can exhibit both linear and highly non-linear trends.

Figure 4.14 (b) reveals that the kurtosis index is sensitive to the incipient faults

of the bearing but not informative for the development of the fault. In literature,

a healthy bearing is known to have a kurtosis value of 3. Any value greater than

3 indicates degradation of the bearing as witnessed at t=500 min. Therefore,

t=500 min indicates the initial time of the degradation process. To evaluate the

performance of the HI’s, comparisons based on monotonicity (Mon), correlation

(Corr), and robustness (Rob) was carried out and the results are as shown in Table

4.9. The table shows a comparison of health indicators based on monotonicty,
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Figure 4.14: Extracted Features

robustness and trendability.

Table 4.9: Comparison of health indicators based on Monotonicity,
Robustness and Trendability

Metrics RMS Kurtosis Skewness Crest Factor
Mon 0.7587 0.7436 0.7229 0.5290
Rob 0.8437 0.8958 0.8368 0.7339
Tre 0.8694 0.8439 0.8489 0.5494

The results reveal that all Mon, Rob, and Tre of RMS is higher than that of Kurtosis,

Skewness and Crest Factor thus demonstrating that RMS will yield a better HI.

4.7 RUL estimation with RMS as HI

The RMS values were input into the Paris model for prediction of remaining useful

life. Figure 4.15 shows the results from parameter estimation process. The model

parameters mk and Ck, and the damage state ak were estimated using the measured
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RMS data. Firstly, the true RMS data is generated using mtrue = 3.8 and Ctrue =

1.5 × 10−10. The measured RMS data were then generated by multiplying noise,

which is lognormally distributed with standard deviation of 0.001/ak.

In the beginning of the prediction process, it can be seen that all the parameters

are not correctly estimated. However, all these parameters converge to the actual

values when adequate RMS values are used in the parameter estimation. Once

the model parameters were identified after updating process, the future behavior of

degradation could be easily predicted by propagating the model to the future time,

i.e., substituting the identified parameters to the degradation model with future time

and loading
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Figure 4.15: Parameter estimation using Bayesian method with Markov
Chain Monte Carlo simulation

Figure 4.16 shows the prediction of degradation trend of RMS using Paris Model. In

this diagram, the black line is the Paris degradation Model, the black dots are the

RMS data, the red dash is the median, the red dot is the 90% prediction interval,

and the green line is the failure threshold. It can be seen that the RMS tracking

results of the Paris model almost coincide with the real RMS values. This shows
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that the Paris model has succeeded in restraining random errors of the stochastic

process due to the smooth degradation process.
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Figure 4.16: Prediction of degradation trend using Paris Model

In order to calculate the RUL, the degradation state was propagated until it reached

the threshold. The threshold was determined to be 0.23 due to the fact that beyond

this point, increase in fault severity did not cause any change in RMS value. The RUL

distribution was obtained for each inspection interval with the newly updated HI and

the parameters. Figure 4.17 shows the RUL prediction results in the degradation

stage.
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Figure 4.17: RUL prediction results

From the results, the percentiles of RUL at 1500 cycles is given as follows: 5th is

405.86, 50th(median) is 1598.45 and 95th is 2689.93. These results indicate that the

developed model was successful in estimating the remaining useful life of bearings

and can be investigated further in bearing prognostics.

4.8 Summary

In this section, the bearing degradation model was developed using Paris model and

remaining useful life of bearing was determined.Validation of the model was done

using 2 sets of publicly available data from Case Western University and University

of Paderborn. Results showed that there was an overall improved accuracy in

diagnosing bearing faults with the model having parameters estimated using PSO

algorithm. The similarity between the simulated and measured signals shows the

robustness of the developed model and its suitability for testing new diagnostic

and prognostic methods (Sawalhi, 2007). The results from the feature extraction

of bearing data simulated with increasing severity showed statistical trends that

were monotonically increasing albeit at different rates. From the assesment of
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the statistical features, it was revealed that RMS featured best in monotonicity,

robustness, and trendability and hence, it’s selection as the health indicator for the

degradation model. The degradation model developed using Paris Model was then

used to estimate the remaining useful life.
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CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

Mathematical models are important in the analysis, design, and fault diagnosis and

prognosis of rotor-bearing systems. However, due to the complex structure and

other factors, it is impossible to establish an accurate physical model. Thus, in

this thesis, a model-based method of the nonlinear, rotor-bearing system based

on Particle Swarm Optimisation (PSO) algorithm was proposed. The simulated

bearing model was accurate in diagnosing bearing faults. With PSO, the accuracy

averaged at 99.67% and 99.2% for bearing faults of Case Western Reserve University

and University of Paderborn datasets, respectively. Validation with experimental

results indicate that the parameter estimation with PSO can accurately recreate

the underlying nonlinearity of rotorbearing system. Furthermore, the model was

used to estimate the remaining useful life through the use of Bayesian method with

Markov Chain Monte Carlo method. Root mean square (RMS) was used as the

health indicator after a quantitative assessment of the health indicators showed

that it ranked better in monotonicity, trendability and robustnesss. This method

enriches the nonlinear, rotor-bearing modeling theory and provides a reliable model

for dynamic analysis, design, and fault condition monitoring of the rotor-bearing

system, which is of practical significance.
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5.2 Conclusion

Following the successful completion of this study, it was concluded that:

1. The bearing developed in SIMULINK had an accuracy of 98.5% and 98.32% for

outer and inner race faults from CWRU dataset, and an accuracy of 98.35% and

97.88% for outer and inner race faults from University of Paderborn dataset.

This implies that the bearing model developed was accurate in diagnosing

bearing faults

2. After estimation of parameters using PSO algorithm, the accuracy averaged at

99.67% and 99.2% for bearing faults of Case Western Reserve University and

University of Paderborn datasets. The improvement in accuracy points to the

effectiveness of PSO in parameter estimation.

3. The comparison of performance metrics such as monotonicity, robustness

and trendability revealed that RMS was the more suitable health indicator

compared to kurtosis, skewness and crest factor.

4. The remaining useful life of the bearing was found to be 1598 cycles. The

prediction results and evaluation indexes demonstrated the effectiveness and

superiority of use of Paris Model for bearing degradation with RMS as health

indicator.

5.3 Recommendations

This research can be used in industries to improve reliability prediction in the design

of safety-critical systems, reduce life cycle costs due to condition-based maintenance

practices and can lead to benefits in production due to better process quality control

and integrated maintenance development by OEMs (Lee et al., 2014).
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The following recommendations are made for further investigation in this area of

study:

• Apply the proposed bearing diagnostics technique to diagnostics of bearings

with multiple faults

• Comparison of PSO with other algorithms in estimating the bearing dynamic

parameters

• Use of other health indicators such as kurtosis to estimate the remaining useful

life of bearings

• Implementation of the remaining useful life estimation in an actual system to

show the effectiveness of the proposed approach
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APPENDIX A

Bearing Model
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Figure A.1: Bearing Model in SIMULINK
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% This class uses PSO to obtain and optimize 

parameters of a state model 

% automatically. 

% 

% INPUT: 

% typ = type of optimization to conduct (elm), 

(svm), (mdlFit) 

classdef PSOParamSearch 

    properties 

        op;      % the optimum parameters 

        bestcv; % the best value 

        bestm;  % best members 

    end 

    methods 

        function params = 

PSOParamSearch(typ,data,inOpts,Opt) 

            if nargin<4 

                Opt=[]; 

            end 

            

[out,Xm,maxIter,criteria,dsp]=initVar(typ,data,inOp

ts,Opt); 

            Dim=size(Xm,1); 

            xmin=zeros(Dim,1); 

            xmax=zeros(Dim,1); 

            for j=1:Dim 

                xmin(j) = Xm(j,1); 

                xmax(j) = Xm(j,2); 

            end 

            pSize = 50;         % population size p 

= 25 gave good results 

            % Limits on the seach space (Defining 

the solution space). 

            vmax = .06*(xmax - xmin);  % Limiting 

maximum velocity. 

            p = rand(pSize,Dim);   % uniformly 

distributed values from 0 to 1 
 

Figure B.1: PSO algorithm code
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            % Converting the random values to the 

relevant range between xmin and xmax 

            % in every dimensiton. 

            for m = 1:Dim 

                p(:,m) = p(:,m)*(xmax(m) - xmin(m)) 

+ xmin(m); 

            end 

            % initializing random swarm velocity 

            v = 2*( rand(pSize,Dim) - 0.6 ); 

            for m = 1:Dim 

                v(:,m) = v(:,m)* vmax(m);  

            end 

            %initial pbest and gbest 

            pbest = p; 

            pbestVal=zeros(pSize,1); 

            pbestVal(1)=fitnessFun(out,p(1,:)); 

            gbestVal=fitnessFun(out,p(1,:)); 

            gbest = p(1,:); 

            for m = 2:pSize 

                temp = fitnessFun(out,p(m,:)); 

                pbestVal(m) = temp; 

                if temp < gbestVal 

                    gbestVal = temp; 

                    gbest = p(m,:); 

                end 

            end 

            c_1 = 3; 

            c_2 = 2; 

            w_in = 0.8; 

            w_f = 0.3; 

            %x_store = zeros(maxIter,2); 

            fit_store = zeros(maxIter,1); 

            avg_fitness = zeros(maxIter,1); 

            iter =1; 

            while (iter <= maxIter && (gbestVal > 

criteria))  % for each generation 

                if dsp 
 

Figure B.2: PSO algorithm code (cont..)
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                        disp(['Iteration 

#',num2str(iter),' best value = 

',num2str(gbestVal)]) 

                end 

                w = w_in + (w_f - 

w_in)*iter/maxIter; 

                for m = 1:pSize            % for 

each particle 

                    for n = 1:Dim     % for each 

dimension 

                        v(m,n) = w * v(m,n) + c_1 * 

rand * ( pbest(m,n)-p(m,n) ) + c_2 * rand * 

(gbest(n) - p(m,n)); 

                        if abs(v(m,n)) > vmax(n) 

                            v(m,n) = v(m,n) * 

vmax(n)/abs(v(m,n)); 

                        end 

                        p(m,n) = p(m,n) + v(m,n); 

                        if p(m,n) > xmax(n) 

                            p(m,n) = xmax(n); 

                        end 

                        if p(m,n) < xmin(n) 

                            p(m,n) = xmin(n); 

                        end 

                    end 

                    temp = fitnessFun(out,p(m,:)); 

                    if temp  <= pbestVal(m) 

                        pbestVal(m) = temp; 

                        pbest(m,:) = p(m,:); 

                    end 

                    if temp  <= gbestVal 

                        gbestVal = temp; 

                        gbest = p(m,:); 

                    end 

                end 

                % Storing the position of the first 

particle. 

                x_store(iter,:) = p(1,:); 

Figure B.3: PSO algorithm code (cont..)
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                fit_store(iter) = gbestVal; 

                avg_fitness(iter) =mean(pbestVal);     

                iter =iter+1; 

            end 

            for j=1:Dim 

                params.op(j)=gbest(j); 

            end 

            params.bestcv=fit_store; 

            params.bestm=x_store; 

        end 

    end 

end 
 

 

Figure B.4: PSO algorithm code (cont..)
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