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ABSTRACT 

Automatic fruit quality inspection is important to improve quality and reduce production 
costs. Fruit grading and sorting is primarily visual. Real-time fruit inspection and grading 
requires high-quality photos with easily recognized features and fast software and 
hardware to process the images. Since forever, pineapples have been graded using a labour 
intensive and expensive method. Due to high labour costs and inconsistent in manual 
methods, industries have turned to automation. Visual sorting of pineapple slices is 
challenging to automate in food processing. The research intends to build a computer 
vision based algorithm for sorting and automating pineapple slices based on texture, 
colour and shape. This research designs a unique classification approach based on Max-
Wins-Voting SVM employing Gaussian Radial Basis kernel for real-time automatic 
implementation. First, digital photos of pineapple slices are obtained at factory floor and 
their backgrounds are removed using Otsu segmentation. Then, features (colour, colour 
moment, texture, and shape) of each image are extracted using a hybrid method to create 
a feature space. Third, Principal Component Analysis reduces feature space dimensions. 
Finally, multi-class SVMs (Max-Wins-Voting SVM, Directed Acyclic Graph SVM and 
Winner-Takes-All SVM) are built. The accuracy and calculation time of SVMs with 
different kernels (Linear, Gaussian Radial Basis, and Homogeneous Polynomial) are 
compared. SVMs are trained with the reduced feature space vector using 5-fold stratified 
cross validation. Max-Wins-Voting SVM utilizing Gaussian Radial Basis kernel was 
found reliable and robust, as shown in result. The approach provides fast, accurate real-
time automation of pineapple slice sorting achieving over 90% accuracy. The method 
classifies as good as human operator with added advantage of high quality standards and 
reduced production costs.
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CHAPTER ONE 

INTRODUCTION 

1.1  Pineapple cannery processing 

Worldwide, the second most traded fruit across the globe is pineapple, after bananas. 

Kenya's largest single manufactured export is canned pineapple, and the country ranks 

among the top five pineapple exporters in the world (Wangwe, 1995). Every year, tons of 

pineapples are cultivated, harvested, processed, and consumed all over the world. 

Pineapple planting and harvesting are done manually by humans using basic optical 

sensory mechanism. The harvested fruit are loaded to a lorry and ferried to the factory for 

processing. The fruits are first washed in flume, graded into various sizes and then 

processed through a Ginaca machine, where they are skinned and cored in a single 

operation. Ginaca is a machine that can peel and core pineapples automatically. It was 

invented by an American engineer, Henry Gabriel Ginaca at the direction of Hawaii 

pineapple magnate James Dole. The output of Ginaca operation are three products.  

First is pineapple cylinder which is then processed into pineapple slices through trimming, 

slicing, grading and sorting processes. Each pineapple cylinder produces 8-10 ring slices 

of about 2cm thick. These slices are then sorted and graded by a human operators using 

manual method based on conventional visual quality inspection performed. The method 

is time-consuming, slow, tedious and non-consistent. The research seek to automate this 

process and save the production cost and improve the quality standards.  
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Figure 1.1: Pineapple processing 
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The slices are then packed into cans, seamed, heat treated for preservation, cooled, 

palletized and then incubated in warehouses. Then the product is labelled according to 

customer specification and dispatched to its destination. Figure 1.1 shows canned 

pineapple process flow diagram. 

The second Ginaca product is core and eradicated fresh which are used for beverage juice 

production. The third Ginaca product skin and eradicated ends which are processed for 

mill juice production. 

From the demerit of manual method, it is important to look for the possibilities of adopting 

quicker systems, which will be more accurate and save time in grading and sorting of 

pineapple slices. Automated computer vision system for grading and sorting is one of such 

reliable method. Using computer vision technique, a consistent, superior speed, cost 

effective and accurate grading method can be achieved.  

To minimize the losses incurred during harvesting, production and marketing, 

manufacturing and processing sectors requires automated inspection and grading systems. 

Assisted grading and sorting of pineapple slices can be done based on colour, shape, 

appearance texture, and sizes. Recently machine vision systems have been broadly used 

to evaluate external quality of other fruits (Heinemann, Varghese, Morrow, Sommer III, 

& Crasswelle, 1995), (Zou, Zhao, & Li, 2010). However, the conventional systems can’t 

be applied directly to pineapple problem, because of the high uniqueness and complexity 

of the problem. The pineapple slices have a great similarity in term of colour, texture and 

shape. Also they have noticeable difference from one slices of one type of pineapple to 

another. This make the pineapple slices classification very unique. 

1.2 Background of food processing technology 

Computer Vision (CV) was first applied to food processing fields in 1989 for grain quality 

inspection (Zayas, Pomeranz, & Lai, 1989). One of the most important human senses is 

vision and hence the increase in dominance of computer vision. In recent years, the CV 

technique has gained popularity in fruit grading. For more than four decades, computer 

vision method has been a subject of research and application. This method is applied in 

many engineering fields such as industrial image processing, food processing, robotics 
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and other fields. Some of benefits in favour of application of computer vision to 

engineering problems include non-destructive evaluation possibilities, quickness, easy 

procedures for application and quantity of output per unit time.  

Large post-harvest losses in processing and handling, as well as rising demand for safe, 

high-quality food items, necessitate the expansion of objective, quick, and precise quality 

control of food and agricultural goods (Narendra & Hareesh, 2010). Main areas of 

application of computer vision technology in food industry include quality evaluation of 

fruits, food grains, vegetables and processed foods. The method had also been used for 

determination of blemishes in vegetables and fruits and insect infestation in grains.  

The fresh agricultural products-appearance is a main criterion in influencing purchasing 

decisions. Image processing techniques are regularly combined with instrumental and 

mechanical devices in order to make an automated system for food quality evaluation and 

to replace human manipulative effort in the carrying out a given process. In order to 

provide high-quality products to the customers, quality inspection is very significant.  

Currently in many industries, grading is performed mainly by visual inspection for a 

specific quality attribute. The application of image processing for sorting is being used to 

many products, such as carrots, green peppers, tomatoes oranges, potatoes, peaches, and 

apples. Modern guidance research includes harvesting tomatoes, mushrooms, oranges, 

apples, melons and cucumbers.  

1.3 Problem Statement 

Pineapple slices sorting and grading is done manually. This task is tiresome, labour 

intensive monotonous and repetitive task. This manual method can be automated using 

machine vision technology and save pineapple industries huge production cost. This 

research develop an algorithm to automated pineapple slices classification by solving the 

main challenges for real-time inspection and grading of fruit. 

1.4 Justification  

Pineapple slices classification has entirely employed costly traditional labour intensive 

manual method but due to its high cost, tiresome monotonous activity, low quality 
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products demanding close supervision and lack of overall consistency, industries have 

resulted in a search for automated solutions and this research seek to address the problem 

using computer vision based system addressing the main challenges for real-time 

inspection and grading of fruit which are to produce quality images that deliver clearly 

identifiable features and to have both efficient software and hardware to process the 

images quick enough for real-time implementation. The MWV SVM method chosen offer 

the following benefits: 

i). The CV method is reliable, quick, and objective inspection technology that has been 

used in a wide range of sectors. Its accuracy and speed satisfy ever-increasing quality 

and production requirements, hence helping in the growth of fully automated 

processes.  

ii). The traditional labour intensive method of grading the fruit has proved to be very 

expensive due to high labour cost and a lack of overall consistency. With automation 

the labour cost will be greatly reduced. 

iii). The automatic sorting and packing machine will increase throughput and productivity, 

improve quality and predictability of quality, improve consistency of the pineapple 

sorting processes and reduced direct human labour costs and expenses. This will lead 

to an exponential growth to commercial pineapple production and contribute greatly 

to the economy.  

iv). Support Vector Machines (SVMs) are a machine learning (ML)-based advanced 

classification technology (Patil, Shelokar, Jayaraman, & Kulkarni, Regression models 

using pattern search assisted least square support vector machines, 2005). SVMs have 

considerable advantages over other methods such as artificial neural networks, 

decision trees and Bayesian networks due of their exquisite mathematical tractability, 

direct geometric interpretation and high accuracy.  

v). Likewise, a hybrid feature extraction technique using colour moment, texture, colour 

histogram and shape features will produce better and identifiable features more 

effective than using any single feature in classification of pineapple slices. 
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1.5 Objectives 

1.5.1  Main Objectives 

The main objective is to develop an algorithm to automate the manual sorting and grading 

of pineapple slices using multiclass SVM and a hybrid feature extraction technique. 

1.5.2  Specific Objectives 

To achieve the main objective the following specific objective are done: 

1. To develop an image preprocessing Otsu’s algorithm and obtain a segmented 

output image. 

2. To extract 90 features from each output image and create a feature space, then 

reduce its dimensions using PCA. 

3. To build three multiclass-SVM classifiers and three kernels and tune parameters 

to achieve target accuracy of above 85%. 

4. To compare the three m-SVMs performance on pineapple slice classification and 

select the best method. 

5. Compare selected method for pineapple slice classification with J. I. Asnor, 2013, 

pineapple classification using RGB colour that achieved 75% accuracy.   

1.6  Scope of the Research 

This study will cover a pineapple slices classification in a canning industry. The study will 

include visiting the canning process at the floor of factory, observe and study the process 

of slices sorting and grading. 250 photos of actual sorted slices into five categories will be 

taken, each category containing 50 slices. Then develop an algorithm which will classifier 

these sample photos of slices taken in the actual cannery setup. The algorithm will be 

simulated, tested in MATLAB platform and results generated and documented. 

The study will not include building the real model or prototype and will not deal with legal 

issues raised on job losses as result of automation. Since the study was done using 

MATLAB algorithm simulation, the actual model implementation has not be covered as 
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it’s beyond the scope of this study. The study assumes the following effect of application 

of AI in pineapple will be pre addressed: 

i). Expected a cultural and skills shift  

In three to five years, organizational culture and employee skills will alter dramatically. 

Due to human nature's resistance to change, AI adoption must start with the CEO and 

permeate throughout the workforce. Management's leadership will promote cultural shift 

acceptability. 

ii). AI lacks an important human trait: Empathy 

AI replaces mundane, repetitive, and error-prone tasks so humans may focus on creative, 

flexible processes. Empathy and judgment are traits robots lack. 

1.7 Organization of thesis 

The thesis is organized into five chapters, which include Chapter 1, introduction, which 

introduces the thesis research area in Computer Vision. It then describe pineapple-

processing stages, identified problem, justify the method chosen to solve it and highlight 

objectives and scope 

Chapter 2 deals with Literature Review. The chapter covers an overview of related work, 

reviews the advancement of computer vision in the food processing and agricultural, an 

overview of the numerous characteristics and types of CV technology applications in the 

fruit sector. The motivation for employing computer vision algorithms, data driven control 

is covered in detail and its great relevance to the study as well as the advantages they 

provide, are examined, and a research gap is identified.  

Chapter 3 discusses methodology in details. It start with colleting of images of pineapple 

slices at Del Monte Kenya, preprocessing them to remove the background and only focus 

on the slices. Then extract features of the images and make a feature space which is used 

to train the SVM classifiers and automate the slices sorting and grading.  
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Chapter 4 presents the results obtained from the algorithm simulation. The performance 

of 3 types of multiclass SVMs: MWV-SVM, WTA-SVM and DAG-SVM is compared in 

terms of accuracy and computation time. Also, three kinds of kernels is used: linear kernel, 

Homogeneous Polynomial kernel and Gaussian Radial Basis kernel and proposed method 

justified. The result are discussed in details. 

Chapter 5 the study concludes that automation of the manual sorting of pineapple slices is 

possible using computer vision techniques. A hybrid feature extraction techniques is found 

reliable in producing the required features to sort the pineapple slices into five categories 

required. The study end by identifying some limitation that could not be solved and were 

beyond the scope of the study and they form the basis of future researches.  This section 

is followed by reference materials used in the development of the research thesis.  

1.8 Contribution of the thesis  

The key contribution made through this research is to automate the manual pineapple 

slices sorting and grading. The research develop an innovative classification method based 

on the Max-Wins-Voting SVM using Gaussian Radial Basis kernel with the desirable 

objective of fast and accurate classification for real-time automatic implementation. The 

automatic sorting and packing machine will increase throughput and productivity, 

improve quality, predictability of quality and consistency of the pineapple sorting 

processes. This is expected to directly reduced human labour costs and expenses. This will 

lead to an exponential growth to commercial pineapple production and contribute greatly 

to the economy.  
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 CHAPTER TWO 

2 LITERATURE REVIEW 

This chapter reviews and work on existing computer vision technique employed in fruit 

sorting and grading, highlight their merit and shortcoming and bring out the existing 

research gap which this work intends to fill. 

2.1 Overview 

 Manual grading and sorting techniques are based on conventional visual quality 

inspection performed by human operators, which is time-consuming, slow, non-consistent 

and tedious. Colour, appearance, texture and odor are the quality attributes frequently used 

for deciding on the harvest maturity (Sun & Brosnan, 2003). It is important to search the 

possibilities of adopting quicker methods that are more accurate and save time in grading 

and sorting of agricultural and food products, especially in large scale production. 

Automated computer vision system is one of such reliable method for grading and sorting. 

This research reviews the advancement of computer vision in the food processing and 

agricultural industry. A consistent, superior speed, cost effective and accurate grading and 

sorting can be done using computer vision technique. To minimize the losses incurred 

during harvesting, production and marketing, manufacturing and processing sectors 

requires automated inspection and grading systems. Grading and sorting of pineapple 

slices can be done based on colour, shape, appearance texture, and sizes. 

Computer Vision (CV) is a technique that uses cameras and image analysis tools to 

automate visual assessment and measurement operations. This section gives an overview 

of the different elements and types of CV technology applications in the fruit business. 

The motivation for employing computer vision algorithms, as well as the advantages they 

provide, are examined (Lind & Murhed, 2012) . 

2.1.1 Fruit Grading Systems 

Table 2.1 Summary of various fruits and their parameters (Rashmi, Sapan, & 

Roma M., 2013) 
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Image processing has been extensively used for grading of fruits into uniform categories 

(shape, colour, size and texture, bruises, calyx and stem). Grading has been applied to 

many vegetables and fruits including potatoes, carrots, green paper, peaches, apples, 

Fruit type  Various 

Parameters 

Percentage 

Accuracy  

 Reference  

Apples  

 

Colour  95 %  Kazuhiro N,1997  

Calyx, Colour, 

stem and defect  

78 % Leemans V, 2002  

Colour, shape, 

texture  

72 %  Leemans V, 2004  

Bruises , Stem end 

and calyx  

89%  Qiabao Xu, 2009  

 

94%  Zhang Dong, 2013  

Orange  

 

Colour  70%  Levi P,1988  

Shape  75%  Slaughter D,1987  

Colour  and 

Intensity  

80%  Juste F,1991  

Colour  87%  Dah-Jye L,2011  

Tomatoes  Shape  68%  Whitakers,1987  

84% 

88%  

Rokunuzzaman 

M,2013  Colour  

90%  Buemi F,1995  

95%  Dah-Jye L,2011  

FD (Fractal 

dimension) and 

Colour 

89% 85%  Zheng Hong,2012  
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oranges, tomatoes. In this subsection, review is made on how various parameters can be 

used for automatic fruit sorting and grading system. 

To sort and grade apples, neural network plays important role to classify apples into five 

quality classes (Nakano, 1997). Pixels are acquired from image based on colour and are 

fed to the neural network as an input. Mean colour of fruit is acquired from fruit image 

and sorting is done based on fruit mean colour, its availability and variability of diseased 

pixels and ratio of red colour of fruit image.  

Precision was attained up to 95%. Table 2.1 gives summary of various fruits with various 

parameters and their accuracy. 

2.1.2 Colour features extraction methods and algorithms  

Table 2.2 Colour feature extraction techniques and their percentage accuracy 

(Rashmi, Sapan, & Roma M., 2013) 

Fruit 

types 

 

Various 

Method 

Advantages Disadvantages % 

Accur

acy 

Reference  

Pineapple  Colour 

space 

RGB 

Better for colour 

display  

i). Require better 

preprocessing 

algorithm to improve 

accuracy of grading 

pineapple 

ii). Not best for 

colour image, due to 

the high correlation 

between R, G, and B 

component.  

 

75%  

 

J. I. 

Asnor,201

3  
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Apple  RGB 

colour 

space to 

Nine 

colour 

character

istic data  

 Classification 

judgment of 

95%.  

 

Poor Ability to 

recognize fruit in A-

grade.  

 

70.76

%  

 

Kazuhiro 

Nakano,19

97  

 

 

HSI 

colour 

space to 

17 colour 

features 

data  
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Most of the sorting and grading system depends on the colour extracted from the image. 

Colour is the most visually prominent feature of any image. Therefore, colour features 

mining plays an important role in developing sorting and grading system and also to 

detect defective fruits from normal fruits. In this subsection colour feature extraction 

techniques of fruit grading system are explained in table 2.2. 

2.2  Computer Vision 

Computer vision is a technology that uses cameras and image analysis tools to automate 

visual evaluation and measuring tasks. Image data is used by the computer to conduct pre-
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defined measuring tasks and to derive inferences based on the results. In most cases, a 

vision system works in four-step cycles as shown in Figure. 2.1:  

i). Take an image 

ii). Analyze the image 

iii). Report result 

iv). Take action 

 

Figure 2.1: A typical vision system operating in four-step cycles 

2.2.1 Reasons of using Computer Vision (CV) 

In situations where simpler technologies are inadequate, computer vision is employed to 

solve inspection and measuring jobs. The following are key reasons for investing CV 

technology in food business: 

i). Reduce labour: Monotonous manual chores can be avoided, and operating costs can be 

cut. A vision system, for example, can perform high-speed, uncomplicated jobs so that the 

operator may focus on activities that need complex judgements (Lind & Murhed, 2012). 

 ii). Reduce give-away: A CV system can help prevent the squandering of costly 

chemicals. The sprinkling process, for example, can be adjusted in a control feedback loop 

by counting sesame seeds on each hamburger bun and hence reducing the wastages. 

 

Analyze image 

Take image 

Send result 

Take action 

Wait for 
new object
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iii). Increase throughput: Throughput can be boosted by automating sorting, portioning, 

and packaging. A vision guided water jet, for example, can portion chicken nuggets at 

maximum production speed (Sun & Brosnan, 2003).  

 iv). Reduce waste. By automatically detecting faulty objects early in the process, loss can 

be avoided by recycling or rejecting them as garbage before any value is added. For 

example, the waste created by pouring chocolate over a damaged wafer can be eliminated, 

which would otherwise be discarded later in the process at a higher cost.  

 v). Improve quality: Food safety liability claims can be avoided and consequently brand 

reputation can be enhanced, and consumer complaints can be reduced if quality is 

improved. For example, computer vision technology may be used to ensure that the cap 

on juice bottles is properly tightened, improving hygiene standards. 

2.2.2 Successful investment in computer vision 

Because the vision system is more complex than basic sensors, the following financial 

considerations are critical when deciding whether or not to invest: 

• How long does it take to get your money back? 

• In the end, what will the entire return on investment be? 

• How long will the product last and how much will it cost to maintain? 

When each factor is quantified, it is typically possible to determine whether or not the 

expenditure is justified. Acceptable pay-back times in the food industry typically range 

from a few weeks to a year (Lind & Murhed, 2012). 

Computer vision systems are often sold with the notion that they can accomplish anything 

and that, once installed, they will work smoothly and require no maintenance. Practical 

experience has shown that these expectations are often incorrect. As a result, recognizing 

the technology's limitations is equally as vital as understanding its possibilities. Although 

judging each specific scenario requires experience, the following elements should be 

addressed in general when purchasing a vision system from an outside source: 

• Requirements and scope: Is it possible to document and agree on the application's 

requirements? Is it required to incorporate all of the scope's criteria, or are they included 
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merely because they are possible? Cost and complexity can be decreased by selecting 

where to draw the line when requirements are ordered in order of importance. 

• Testability and acceptance: It's frequently a lot easier to state a criteria than it is to verify 

that it's been accomplished. Are the specifications written in such a way that they can be 

tested? Unless the consultation is paid for by the hour, it is in the best interests of both the 

vendor and the buyer to include an acceptance test specification in the business model. 

This will need a little more effort from both parties in the beginning, but it will pay off in 

the long run. 

• Degree of innovation and risk: How new are the inspection concepts that must be 

established, especially when viewed through the lens of the integration resource's 

competence? Risk management should be considered, for example, by implementing a 

modest proof-of-concept prototype and using a project model with milestones. 

• Operating expenses: Investing in computer vision is frequently more than a one-time 

cost. To run and maintain the vision system, what skills and resources are required? These 

considerations should be factored into the overall financial planning and structure (Lind 

& Murhed, 2012). 

2.3 Basic techniques and their application 

The fundamental concepts and approaches are defined first, followed by a discussion of 

what may be accomplished and how CV (Computer Vision) technology can be 

implemented. 

2.3.1 Texture analysis 

The surface of an object is considered to have texture when it is rough, braided, or made 

up of many microscopic particles or strands. In such conditions, they form various 

intensity patterns with varying degrees of regularity and randomness. For more regular 

patterns, periodicity will be detectable, but it will vary significantly throughout the 

surface; they will also exhibit high directionality, which will manifest in multiple 

directions – similar to the weave of a fabric. A mound of sand or seeds will have a far 
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more random texture than a fabric, and it will not be directed (Davies, Computer and 

Machine Vision: Theory, Algorithms, Practicalities, 4th edition,, 2012). 

Because most textures have a certain amount of randomness, quantifying texture patterns 

poses statistical challenges, as a result, it's critical to average over a broad enough area to 

provide a good assessment of the surface texture. This is required for object recognition 

and delineation of object boundaries, as well as the detection of any flaws, defects, or 

foreign bodies (Sun & Brosnan, 2003). Because each pixel must be visited multiple times 

in order to test textural coherence over diverse distances and orientations, achieving a 

unique texture characterization could take a long time and effort. 

2.3.2 Thresholding and feature detection 

A simple technique to perform image processing is to take the pixel value at each pixel 

position and place a modified value at the corresponding point in an output picture space. 

In the thresholding approach, for example, each pixel whose intensity is darker than a 

specific threshold receives a binary value of 1, while other pixels receive a value of 0. 

Such a process is known as a pixel–pixel operation. The more sophisticated 'window–

pixel' processes look at the pixel values in a window enclosing each pixel position and 

compute a value to be placed at that point in the output image space. 

Convolutions are one of the most common and commonly utilized window–pixel 

processes, and for (2k + 1) × (2k + 1) windows, these are defined by the formula: 

 
𝑃ᇱሾ𝑖, 𝑗ሿ ൌ ෍ ෍ 𝑃ሾ𝑖 െ 𝑚, 𝑗 െ 𝑛ሿ𝑀ሾ𝑚, 𝑛ሿ

௞

௡ୀି௞

௞

௠ୀି௞

 (2.1)

where P is the original image, M is the applied convolution mask and P ′ is the output 

image. Local averaging to assist reduce noise, enhancing small holes, enhancing vertical 

and horizontal edges, and enhancing corners are all examples of this type of convolution. 

The following convolution masks can be used to perform these actions within 3x3 

windows: 
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Application: locating insects in cereals 

In the agri-food business, thresholding and feature detection have a variety of uses; for 

example, they can be used to detect the presence of insects in cereals. 

2.3.3 Thresholding  

Thresholding is one of the most prevalent (and fundamental) segmentation techniques in 

computer vision, allowing us to separate the foreground (i.e., the objects of interest) from 

the image's background. In instances where there are no transparent images and therefore 

no alpha channel mask, the image is thresholded to obtain the desired mask. Here's how 

thresholding works: a threshold value is applied to each pixel. If the pixel value is less 

than the threshold value T, it is set to zero; otherwise, it is set to the maximum value. We 

have three types of thresholding: 

 Simple thresholding: manually provide image segmentation parameters. This method 

works exceptionally well in controlled lighting conditions. Ensure a high contrast 

between the image's foreground and background. 

 Otsu's thresholding is more dynamic and computes automatically the optimal 

threshold value based on the input image. 

 Adaptive Thresholding: divides the image into smaller pieces and thresholds each of 

these pieces independently. 

2.3.3.1 Simple Thresholding 

Thresholding is the process of binarizing an image. In general, we aim to convert a 

grayscale image into a binary image in which pixels are either 0 or 255. A simple 
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thresholding example would involve selecting a threshold value T and setting all pixel 

intensities below T to zero and intensities above T to 255. We are able to create a binary 

representation of the image in this manner. 

This procedure requires human participation. The threshold value T must be specified. All 

intensities of pixels below T are set to 255. And all pixel intensities greater than T are set 

to 0 — this is known as thresholding in reverse. The majority of the time, you want your 

segmented objects to appear white on a black background, so we employ inverse 

thresholding. We could also reverse this binarization by setting all pixels with intensities 

greater than T to 255 and those with intensities less than T to 0. 

Simple Thresholding is effective for simple images under controlled lighting conditions, 

in which it may be possible to hardcode the Threshold value T. Since we must manually 

provide a thresholding value, there is no assurance that this threshold value T will work 

from one image to the next when lighting conditions change. The solution is to utilize 

techniques such as Otsu's method and adaptive thresholding to achieve better results. 

2.3.3.2 Otsu's method 

In actual conditions where we have no prior knowledge of the lighting conditions, Otsu's 

method (Bangare, Dubal, Bangare, & Patil, 2015) is used to automatically determine the 

optimal value of T. Assumption – The method of Otsu assumes that our image contains 

two classes of pixels: background and foreground. In addition, the Otsu method assumes 

that the grayscale histogram of our image's pixel intensities is bimodal, which simply 

means that the histogram has two peaks. 

Otsu's method computes an optimal threshold value T based on the grayscale histogram 

such that the variance between the background and foreground peaks is minimal. 

Importantly, Otsu's method is an example of global thresholding, meaning that a single T 

value is calculated for the entire image. In some instances, having a single T value for an 

entire image is acceptable; however, in others, this can result in subpar results. 



20 
   

We can save a great deal of time using Otsu's method to estimate and verify the optimal 

value of T (Sindhuri & Nallapareddy, 2022). The issue with Otsu's method is that it 

assumes our input image's grayscale pixel intensities have a bimodal distribution. If the 

grayscale image does not have a bimodal distribution, Otsu's method will still function, 

but it may not produce the desired outcomes. When the lighting conditions are not uniform 

for example, when different parts of the image are illuminated more than others we may 

encounter significant difficulties. And in such a case, we will have to employ adaptive 

thresholding. 

2.3.3.3 Adaptive thresholding 

In situations where the image's illumination is not uniform, having only a single value of 

T can severely impair our thresholding performance. Having only one value of T may not 

be sufficient. To solve this issue, we can employ adaptive thresholding, which considers 

pixels' small neighbors and then determines the optimal threshold value T for each 

neighbor. This method allows us to handle instances in which pixel intensities may vary 

dramatically and the optimal value of T may vary across the image. The objective of 

adaptive thresholding, also known as local thresholding, is to statistically examine the 

pixel intensity values surrounding a given pixel p. All adaptive and local thresholding 

methods are based on the general premise that smaller regions of an image are more likely 

to have approximately uniform illumination. This implies that the lighting conditions in 

adjacent regions of an image will be comparable. 

Choosing the neighborhood size for local thresholding is absolutely essential. The 

surrounding area must be large enough to encompass sufficient background and 

foreground pixels; otherwise, the value of T will be largely irrelevant. Nevertheless, if the 

neighborhood value is set too high, the assumption that local regions of an image will have 

approximately uniform illumination is completely violated. Adaptive thresholding's 

objective is to statistically examine local regions of our image and determine an optimal 

value of T for each region, which begs the question: which statistic do we use to compute 

the threshold value T for each region? The arithmetic or Gaussian mean.  Adaptive 
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thresholding typically yields good results but is more computationally intensive than 

Otsu's method or simple thresholding; however, in instances where illumination 

conditions are not uniform, adaptive thresholding is a very useful tool. 

2.3.4 Shape analysis 

Shape analysis is one of the most significant methods for people to distinguish and 

recognize objects, and it is just as vital for computers. Any input photos are believed to 

have been thresholded to produce binary images with the objects appearing as 1s against 

a background of 0s. At this point, the computer must figure out how many objects are in 

the image and which regions they cover. A human seeing the image would see all of this 

as "obvious," but the computer must figure it out using "connected components analysis." 

This is not an easy technique for the following reasons. When using a forward raster scan 

on an analogue TV screen, one object appears first, then another, and then the first one 

again, so labeling the pixels in order will not offer separate labels for the objects.  While 

it's true that combining scans (for example, forward raster scans followed by reverse raster 

scans) can aid in the creation of unique labeling, it's more reliable and efficient to review 

the initial set of labels and create a "clash table" that shows which labels co-exist. After 

that, a thorough iterative study of the collision table will reveal how to accomplish 

optimum labeling. After that, the objects must be enumerated, and their areas, 

circumferences, and linear measures can be easily tabulated. Clearly, connected 

components analysis allows for numerous more size and form measurements to be taken 

and recorded. 

2.3.5 Object location based on point features 

When the objects being sought are characterized by sets of point features such as corners 

or holes, a separate approach known as graph matching is typically used (Davies, 

Computer and Machine Vision: Theory, Algorithms, Practicalities, 4th edition,, 2012). In 

such circumstances, subsets of the observed point features must be searched for that 

exactly match subsets in the object template. The solution with the largest subset of precise 

matches is rated the most plausible. It can be seen that this is a voting scheme in which 
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the best option is the one that receives the most votes.  Unfortunately, rigidly following 

this concept results in a computing load that grows exponentially with the number of 

features to match. Because the concept of a subset is so broad, all subsets of all sizes and 

compositions must be tested. Fortunately, using a specific variant of the Hough transform, 

this problem may be easily solved for 2-D interpretation (Davies, Computer and Machine 

Vision: Theory, Algorithms, Practicalities, 4th edition,, 2012). 

2.3.6 Robust object location 

A radical new strategy is required to achieve a high level of robustness: it becomes 

necessary to infer the presence of objects from partial information. The Hough transform 

method does this using a voting process that counts only positive evidence for objects. 

The recognition of circular objects is the most basic example of this. All edge points in 

the picture are made to vote for a circle center by traversing a distance equal to the 

presumed radius along the edge normal and casting a vote in a separate image space 

termed a parameter space. If only p pixels are recognized on the circle's edge, p votes will 

be cast at the circle's center, resulting in a peak in the parameter space. As a result, even 

if most of the circle's boundary is misplaced, the circle may be reliably located  (Davies, 

Design of cost-effective systems for the inspection of certain food products during 

manufacture, 1984). Furthermore, the problem of an unknown circle radius can be solved 

in a variety of ways, for as by trying a series of radius values. This approach may be used 

to identify straight lines and ellipses, as well as other shapes made from of these shapes. 

It can also be used to find arbitrary shapes if they are described appropriately. As 

previously stated, the effectiveness of the technique is contingent on the accumulation of 

good evidence; false material must be removed because it will simply skew the results. 

2.3.7  Morphological analysis 

While morphology and shape analysis are fundamentally the same, they evolved from a 

distinct approach: the use of simple window operations to modify shapes so that they 

might be filtered to locate certain structures. Eroding objects to remove the outermost 

layer of pixels or dilation of objects to add an additional boundary layer were the 
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beginning points (Sun & Brosnan, 2003): both methods may be employed isotropically or 

directionally – for example, parallel to the image's x-axis. The aim of these activities 

becomes clear when a succession of vertical striations on a smooth surface must be 

located. The striations would be erased by horizontally eroding the image, and then 

dilation would return the image to its same condition, but without the striations. By 

subtracting the final image from the original image, the striations that had been erased 

would be visible. For example, a technique like this would reveal any scratches on a 

computer disc or a polished metal surface.  

2.4 Colour Moments 

Colour moments are measures that can be used to distinguish images based on their colour 

characteristics (Noah, 2005). Once calculated, these moments provide a colour similarity 

measurement between images. These similarity values can then be compared to the values 

of images indexed in a database for image retrieval tasks. The assumption underlying 

colour moments is that the colour distribution in an image can be interpreted as a 

probability distribution. Probability distributions are distinguished by a number of 

distinctive moments (e.g. Normal distributions are differentiated by their mean and 

variance). If the colour in an image follows a particular probability distribution, then the 

moments of that distribution can be used as features to identify the image based on its 

colour.  

Researchers (Noah, 2005) have utilized three central moments of the colour distribution 

of an image. Mean, standard deviation, and skewness are the three. A colour is defined by 

at least three values. Here, we will limit ourselves to the hue, saturation, and brightness 

(HSV) colour scheme (Diwash, Ankit, P., & S., 2022). Moments are computed for each 

of these image channels. Consequently, nine moments define an image. Three moments 

for each of the three colour channels. The ith colour channel at the jth image pixel will be 

denoted as pij. The three colour moments can be described as follows: 
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MOMENT 1 – Mean: Mean can be understood as the image's average colour value. 
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MOMENT 2 Standard Deviation: The square root of the distribution's variance. 
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MOMENT 3 – Skewness: The skewness of a distribution is a measurement of its degree 

of asymmetry. 
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A function of the similarity between two image distributions is defined as the sum of the 

moments' weighted differences. Specifically, it is: 
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where: 

ሺ𝐻, 𝐼ሻ compares two image distributions, 𝑖 represents the current channel index (1 = H, 2 

= S, 3 = V, etc.), 𝑟  is the quantity of channels (e.g. 3),  𝐸௜
ଵ, 𝐸௜

ଶ  represents the initial 

moments (mean) of the two image distributions, 𝜎௜
ଵ, 𝜎௜

ଶ are the standard deviations (std) 

of the images' second moments, 𝑠௜
ଵ, 𝑠௜

ଶ  are the third moments (skewness) of the 

distributions of the two images,  𝑊௜ is the weights for every second. 

(2.3) 
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2.5 Data-Driven Control (DDC) 

2.5.1 The growth of control theory 

Throughout the history of system control, control theory has evolved from model-free 

tuning methods, such as PID control, to Model Based Control (MBC)  theories, such as 

transfer function model-based classical control and state space model-based modern 

control, and finally to knowledge or rule-based intelligent control. This pattern of 

development can be pictured as a helix that flows from model-free to model-based to 

deviation from. The Data Driven Control (DDC) is logically the next thing we can 

imagine. 

Based on the validity of control theory, the existing control methods can be categorized 

into three groups: 

a). Control methods designed based on the model of the system, including aerospace 

control, optimal control, linear and nonlinear control, large-scale system decomposition 

and coordination control, and pole placement. 

b) Control methods, such as robust control, sliding-mode variable-structure control, 

adaptive control, fuzzy control, expert systems, neural network control, and intelligent 

control that are designed partially based on the system model. 

(c) Control methods based on system I/O data, such as PID and MFAC control.  

DDC enhances control theory's validity. In MBC theory, the problems of unmodeled 

dynamics and robustness are inevitable from the perspective of control theory research. 

This can result in unsafe controllers and enormous gaps between theoretical results and 

applications, thereby impeding the development of MBC theory. Modeling more precise 

high-order and complex nonlinear dynamic systems may result in yet another paradox. 

Controlled systems with a high order and a high degree of nonlinearity inherit controllers 

with a high order and a high degree of nonlinearity. These controllers are challenging to 

develop, operate, and maintain. Typically, either model reduction or controller reduction 

is required to reduce the control system's complexity. The DDC theory could be an 

alternative strategy for addressing these paradoxes. Many industrial processes prioritize 
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low-cost, simple-to-install control techniques and automation equipment from the 

perspective of practical applications. 

However, modeling a plant requires particular abilities and mathematical procedures. This 

type of work is beyond the capabilities of the majority of engineers, so high-level experts 

or researchers are required. Using the batch process as an example, modeling all batches 

for all products is impossible. A global model cannot be constructed for complex systems 

due to internal complexities and external disturbances. Even locally accurate modeling is 

difficult. Occasionally it is impossible. MBC theory is rarely applicable to industrial 

processes. In complex system control and management, large volumes of data and a 

paucity of knowledge are typical obstacles. The inability of the majority of control 

engineers in the majority of fields to deal with complex mathematics and identification 

theory is yet another barrier to the application of MBC theory. DDC theory and techniques 

are demanded by real-world needs. 

2.5.2 Introduction to DDC 

A model of the controlled system is frequently used to begin control design. The use of 

PID control and model-free adaptive control techniques are notable exceptions. It may be 

able to write down a model for a moderate-dimensional mechanical system (e.g., using 

the Lagrangian, Hamiltonian, or Newtonian formalism) and linearize the dynamics around 

a periodic orbit or fixed point. However, for modern systems of interest, such as finance, 

epidemiology, turbulence, climate, and neuroscience, there are often no simple models 

suited for control design.  

Linear control theory provides ways for finding control oriented reduced order models for 

high-dimensional systems from data, however these techniques are confined to systems. 

Practical systems are frequently nonlinear, and linear approaches are ineffective for 

achieving the control goal. Nonlinear control remains an optimization problem with a non-

convex, high-dimensional cost function landscape with several local minima. Machine 

learning is complimentary because it encompasses a growing collection of approaches that 

can be broadly characterized as nonlinear optimization in a high-dimensional space using 

data (Gill, Khalaf, Alotaibi, Alghamdi, & Alassery, 2022).  Using the rising availability 
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of high-quality measurement data, developing strategies that apply machine learning to 

regulate and characterize highly high-dimensional, multi-scale, and nonlinear systems 

were detailed in Section 2.3. Machine learning techniques can be used in a variety of 

situations. The below figure 2.2 show data driven approaches: 

a) Model-based control can be used to characterize a system for subsequent usage,  

b) Define a control law that interacts with a system in a direct manner.  

The SVM model was used in the research to look at how machine learning may be 

used to directly identify controllers from input-output data and to discover nonlinear input-

output models for control. Iterative learning control and reinforcement learning are two 

powerful strategies in this rapidly emerging subject.  

The figure 2.2 show three ways data driven modeling approaches are used in control 

systems design and implementation: 

1. Data Driven Model 

2. Learn Controller 

3. Sensor/Actuator placement 

Figure 2.2: Data driven approaches 

2.5.3 Model based control theory 

Modern control theory, also known as model-based control, was born with the 

introduction of the parametric state-space model by Kalman in 1960, in conjunction with 

System 

𝑋ሶ ൌ 𝑓ሺ𝑥, 𝑢ሻ 

Controller 

𝑈 ൌ 𝑘ሺ𝑦ሻ 

Disturbance  Goal

3 

1

2

𝑈  𝑦 



28 
   

optimal control (MBC) (Hou & Wang, From model-based control to data-driven control: 

Survey, classification and perspective, 2013). There (Tang & Daoutidis, 2022) were 

numerous successful applications, particularly in the aerospace industry where precise 

models were available. Modern control theory includes both linear and nonlinear control 

theory. Typical methods for designing linear control systems include zero-pole 

assignment, LQR design, and robust control. Typical controller design methods for 

nonlinear systems include Lyapunov-based controller designs, back stepping controller 

designs, feedback linearization, etc. These methods of controller design are regarded as 

typical MBC system design. 

In applications of MBC theory, the first step is modeling the plant or identifying the plant 

model, followed by the design of the controller based on the plant model obtained by 

applying the certainty equivalence principle in the belief that the plant model represents 

the actual system. MBC theory therefore requires the modeling and identification of the 

plant. 

In order to model a plant using first principles, the parameters must be calibrated on-line 

or offline with measured data. Identification theory can be used to create a plant model 

within a set of models that either encompasses the actual system or approximates it in 

terms of bias and variance error on the identified model. Whether based on first principles 

or identification from data, modeling is an approximation of the real system, and error is 

inevitable. There are always unmodeled dynamics in the modeling process. Due to these 

unmodeled dynamics, the closed loop control system, which is based on supposedly 

unchangeable MBC approaches, is inherently less safe and less robust. To preserve the 

obvious benefits of MBC design while enhancing its robustness against model errors, 

significant effort has been devoted to the development of robust control theory.  

A number of methods for describing model errors in the configuration of closed loop 

systems have been analyzed. These include additive and multiplicative descriptions and a 

priori noise or modeling error or uncertainty bounds. However, the model uncertainty 

descriptions upon which robust control design methods are based do not align with the 
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methods delivered by physical mathematical modeling and identification modeling. 

Modeling by first principles and identification from data offer little in the way of explicit 

error quantification. Lack of adequate, practical uncertainty descriptions is the most 

significant obstacle to the application of model-based robust control design techniques. 

Obtaining a highly accurate model (including a model uncertainty set) for an unknown 

system through mechanism modeling or identification techniques, and then deriving a 

model-based robust controller from this model and its uncertainty set, is quite natural. To 

establish the ideal control theory, researchers must overcome both practical and theoretical 

obstacles. First, unmodeled dynamics and robustness are twin-born problems that cannot 

be solved simultaneously within the conventional MBC framework. 

Second, the design of the control system requires more effort or expense the more precise 

the model. Up until now, there was no efficient way to create an accurate model of a plant. 

Control system design can be more challenging than accurate modeling. In addition, there 

are no widely accepted methods for addressing specific types of complexity, such as that 

observed in plants whose parameters vary rapidly or whose structures change over time.If 

the system dynamics are too complex, we cannot use it as a design model for a control 

system. Even if utilized as a design model for control systems, this would typically result 

in a controller with an excessively high order. In practice, high-order controllers are 

inapplicable, necessitating a reduction in model or controller order. Modeling an accurate 

high-order model to achieve high performance in a control system design, and then 

reducing the controller order or simplifying the model for a low order controller, seems 

paradoxical. Last but not least is the modeling condition of persistent excitation or 

persistently exciting inputs. Without the persistently exciting inputs, it is impossible to 

create an accurate model. Most model-based theoretical results of a closed loop control 

system scheme, such as stability and convergence, cannot be guaranteed when applied in 

practice without an accurate model. 
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2.5.4 Data-driven control theory and related topics 

Chemical industry, metallurgy, machinery, electronics, electricity, transportation, and 

logistics processes have undergone significant changes as a result of the advancement of 

information science and technology. These industries have large-scale production 

technologies and equipment, and their production processes have become more intricate. 

Using first principles or identification to model processes has become more difficult. For 

this reason, traditional MBC theory is no longer applicable to control issues in 

organizations of this type. Moreover, numerous industrial processes generate and store 

vast quantities of process data at each and every second of each and every day, containing 

all the valuable state information of process operations and equipments. Using these data, 

both on-line and off-line, to directly design controllers, predict and assess system states, 

evaluate performance, make decisions, or even diagnose faults would be extremely 

important, particularly in the absence of accurate process models. For this reason, the 

theoretical and practical establishment and advancement of data-driven control theory 

(DDC) are urgent concerns (Tang & Daoutidis, 2022). 

The term "data-driven" originated in computer science and has only recently entered the 

control community's lexicon. There have been a few DDC methods in the past, but they 

have different names, such as data-driven control, data-based control, modeless control, 

(Tang & Daoutidis, 2022)MFAC (model-free adaptive control), IFT (iterative feedback 

tuning), VRFT (virtual reference feedback tuning), and ILC (integrated linear control) 

(iterative learning control) (Hou & Wang, Information Sciences-2013 From model-based 

control to data-driven control., 2016). There are distinct distinctions between the terms 

data-driven control and data-based control. Data-driven control implies that the process is 

a closed loop control in which the starting point and final destination are both data, 

whereas data-based control indicates that the process is an open loop control in which the 

starting point is the only data-driven variable. 
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2.5.5 Control objects of Data Driven Control (DDC) 

Data-driven control encompasses all control theories and methods in which the controller 

is designed by directly using on-line or off-line I/O data of the controlled system or 

knowledge from data processing, rather than explicit information from a mathematical 

model of the controlled process, and whose stability, convergence, and robustness are 

guaranteed by rigorous mathematical analysis under certain reasonable assumptions. 

This definition emphasizes three key points. They include the direct use of measurement 

I/O data, data modeling as opposed to modeling from first principles or identified 

modeling, and the assurance of theoretical analysis results (Hou & Wang, From model-

based control to data-driven control: Survey, classification and perspective, 2013). Simply 

put, it is a type of method that connects data to controller input. 

The two primary components of a control system are the controlled object and the 

controller. Real-world controlled plants can be classified into four categories: First, those 

for which there are precise mathematical models derived from first principles or 

identification. Secondly, those for which first principles or identification-based 

mathematical models are approximatively precise with moderate uncertainty. Thirdly, 

those for which first principles or identification-based mathematical models are overly 

complex in terms of order and nonlinearity. Finally, those for which establishing first 

principles or identification-based mathematical models is difficult or impossible. 

2.5.6 Fundamental differences between MBC and DDC approaches 

MBC control and DDC control are the two components of control theory, and their 

ultimate goal should be the same, i.e., to design a controller that drives the output of the 

controlled plant to track the desired signal or meet the target (Hou & Wang, From model-

based control to data-driven control: Survey, classification and perspective, 2013). The 

primary distinction between MBC and DDC is that one is a model-based control system 

design approach because a reliable mathematical model is available, whereas the other is 

a data-driven control system design approach because there is no such model. Due to this 

primary distinction, the DDC has many inherent characteristics: 
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In DDC approaches, the controller does not explicitly include any portion or the entire 

plant model. It has therefore eliminated the dependence on the plant model for the design 

of control systems. The stability and convergence conclusions of DDC approaches do not 

depend on the accuracy of the model, with the exception of the DDC control methods that 

implicitly use system dynamics and structure information, such as direct adaptive control, 

sub-space predictive control, etc., which is the primary obstacle for the applications of the 

MBC theory. The most remarkable aspect of DDC approaches is that the twinborn 

problem of un-modeled dynamics and robustness in conventional MBC theory does not 

exist within the DDC framework. The primary distinction between MBC and DDC is 

whether the controller is designed based on the system model or I/O data alone, or, 

alternatively, whether the system dynamic model is utilized in the controller design (Hou 

& Wang, From model-based control to data-driven control: Survey, classification and 

perspective, 2013). If the system model is involved in the controller, the method is MBC; 

otherwise, it is DDC. From this perspective, we can conclude that some neural-network-

based control methods, fuzzy control methods, and many other intelligent control methods 

are DDC methods, such as the NN-based control methods in which the neural network 

serves as a controller directly approximating the system's inverse. Some are not, in which 

the neural network, fuzzy rule, or knowledge describing the system functions as a system 

model, and the neural network, fuzzy rule, or knowledge is involved in the controller. 

2.6 Support Vector Machine (SVM) 

The SVM is one of the most effective classification algorithms that has demonstrated 

current effectiveness in a variety of classification applications (Xu, Li, Li, & Deng, 2013). 

SVM is a classification algorithm that may be used on both linear and nonlinear data 

(Jiawei & Kamber,, 2006). SVM uses kernel functions to nonlinearly map information to 

a high-dimensional space (Mathar, Alirezaei, Balda, & Behboodi, 2020). Then next, in 

that high-dimensional space SVM tries to find the linear optimal hyper plane that separates 

information with maximum margin. Originally SVM was put forward for only 2-class 

problems, but for multi-class problem can be extended SVM using near-against-one or 

one-against-all strategies (Gosselin, Kleynen, Leemans, Destain, & Unay, 2010). 
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The LS-SVM solves a series of linear equations rather than a quadratic programming 

problem. LS-SVM was used for the automatic detection of browning degree on mango 

fruits in (Zheng & Lu, 2012). Suitable kernel function and optimal kernel parameters are 

of importance in LS-SVM classifier and hence, RBF kernel was applied as the kernel 

function due to its success and speed in training process.  

Support Vector Machines (SVMs) are advanced classification technique based on 

Machine Learning (ML) theory (Patil, Shelokar, Jayaraman, & Kulkarni, Regression 

models using pattern search assisted least square support vector machines, 2005). SVMs 

have considerable advantages over other methods such as artificial neural networks, 

decision trees and Bayesian networks due of their exquisite mathematical tractability, 

direct geometric interpretation and high accuracy. 

Further, they do not need a big number of samples for training to avoid over fitting (Li, 

Yang, & Wang, 2010). SVM makes the give and take between model complexity and 

generalization in order to realize the best generalization.  

Table 2.3 Advantages and Disadvantages of Machine Learning Techniques 

(Rashmi, Sapan, & Roma M., 2013) 

Machine learning 

methods 

Advantages Disadvantages 

LDA  

(Linear 

Discriminant 

Analysis) (Gagan, 

2022) (Jiménez 

Carvelo, Cruz, 

Cuadros-

Rodríguez, & 

Koidis, 2022) 

LDA are suitable for the 

development of linear 

classification models.  

i). Assumes Gaussian 

distribution of data. 

ii)..data over fitting problem  
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Likened to other traditional learning methods, SVM can overcome convectional learning 

flaws, such as driven to local minimum and less-learning and over-learning. 

For the situations when input samples cannot be separated in a linear space, SVM 

performs a nonlinear transform and modify this inseparable problem into a divisible 

question in a high dimensioned space and work out its optimal classification surface in 

KNN  

(K- Nearest 

Neighbor) (Jiménez 

Carvelo, Cruz, 

Cuadros-Rodríguez, 

& Koidis, 2022)  

i). Limited parameters to tune 

(distance metric and k) and is 

robust 

ii). Simple implementation.  

iii). Classes don’t have to be 

linearly separable.  

i). Sensitive to irrelevant or 

noisy data.  

ii). Long testing time because 

of calculation of distance to 

all known instances.  

ANN  

(Artificial Neural 

Network) 

i). User friendliness, robust and 

can handle noisy data.  

ii). Suitable to analyze complex 

data.  

i). Difficult scalability.  

ii). Large number training 

samples.  

iii). Long processing time  

 Rule Based System 

(RBS) fuzzy system  

i). Robust.  

ii). Little memory 

requirement. 

iii). Insensitive to the 

changing environment.  

Problem with determination 

of membership function. 

 

SVM  

(Support Vector 

Machines) (Mathar, 

Alirezaei, Balda, & 

Behboodi, 2020) 

i). High classification accuracy 

compared to other traditional 

classification techniques.  

ii). Very robust, even with 

distorted training samples.  

iii). Suited to work with high 

dimensional data.  

i). Difficult selection of 

kernel function and kernel 

parameters  

ii). Time consuming learning 

process.  
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this space. Without computation complexity increasing, classification can be done through 

inner product computation with SVM core function in a high dimensioned space. Table 

2.3 enumerates the benefits and drawbacks of machine learning approaches 

2.7 Research Gap 

The purpose of the literature review was to give an overview of available computer vision 

methodology for food processing: the key principles are mainly image processing and 

abstract pattern recognition, which must function together in order to build entire 

computer vision systems. The techniques discussed above may have one or more of the 

following weaknesses:  

i). Low accuracy and require better preprocessing algorithm  

ii). Not best for colour image, due to the high correlation between R, G, and B 

component,  

iii). Slow process and require high computation time,  

iv).  Methods use single feature extraction like colour, reducing their classification 

accuracy,  

v). The techniques did not extend to sliced fruit classification,  

vi). The recognition systems are not robust, require large number training samples, 

difficult scalability and are sensitive to irrelevant and noisy data. 

With this background, the present work aims to advance a computer vision knowledge by 

developing an algorithm for automating a manual grading of pineapple slices based on 

colour, shape and texture. The choice of methodology is unique and addresses the 

challenge of unique feature extraction of almost similar pineapple slices. 

Support Vector Machines (SVMs) have considerable advantages over other methods such 

as artificial neural networks, decision trees and Bayesian networks due of their exquisite 

mathematical tractability, direct geometric interpretation and high accuracy. Likewise, a 

hybrid feature extraction technique using texture, colour moment, colour histogram and 

shape features is better and more effective than using any single feature in classification 

of fruits. This hybrid technique improves the recognition performance. Colour histograms 

and colour moment are reasonably invariant with rotation and translation about the 
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viewing axis. To reduce the number of features, PCA is used, by eliminating irrelevant 

features and preserving over 99% energy. This increases classification accuracy, reduce 

computation time and accelerate the algorithm remarkably. In addition, three different 

multiclass SVMs (DAG, MWV & WTA) are used for multiclass classification for 

performance validation.  
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CHAPTER THREE 

3 METHODOLOGY 

This chapter presents the approach adopted in developing the computer vision algorithm 

with the proposed method to solve the problem of pineapple slices sorting and grading 

problem. 

3.1 Overview 

In this study, a unique method for automating the manual grading of pineapple slices is 

developed using machine vision and the MWV-SVM with GRB kernel.  Various 

pineapple slices images are taken with a camera at Del Monte cannery packing tables, and 

then the background of each image is removed using an Otsu’s segmentation procedure. 

To create a feature space, colour moments, texture, colour histogram, and shape features 

of each pineapple slice image are retrieved. The dimension of the feature space is reduced 

when PCA is used; lastly, build three types of multiclass SVMs: MWV-SVM, WTA- 

SVM and DAG-SVM for performance comparison and validation. Also, three kinds of 

kernels are used: linear kernel, Homogeneous Polynomial kernel and Gaussian Radial 

Basis kernel. Then used 5-fold stratified cross validation to train the SVMs with the 

reduced feature space vector as input.  

The methodology used is shown in flow chart in figure 3.1 below. The images taken are 

first preprocessed to remove the background and focus on slice image only. This form a 

data set of images. There are five categories of pineapple slices, fancy ¾, fancy ½, choice, 

broken and reject. Each category is made of 50 image, equally not to skew data in any 

way. Using a unique feature extraction technique developed, features are extracted from 

each image to form a feature space. Using PCA method, the features are ordered in the 

priority order and the most important one selected. The classifiers are trained using the 

reduced features space and performance validated. 
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Figure 3.1: Methodology flow diagram 

3.2 Image Segmentation by the Otsu’s Method 

The process of separating foreground and background pixels is known as thresholding. 

There are numerous methods for achieving optimal thresholding, one of which is called 

Otsu's method. The method is a variance-based technique for determining the threshold 

value with the smallest weighted variance between the foreground and background pixels. 

The key concept here is to iterate through all possible threshold values and measure the 

distance between pixels in the background and foreground. Then, identify the threshold 

with the smallest spread. 

3.2.1 Otsu’s method implementation 

The algorithm seeks iteratively the threshold that minimizes the within-class variance, 

which is defined as the weighted sum of the variances of the two classes (background and 

foreground). Typically, grayscale colours range between 0 and 255. (0-1 in case of float). 

FEATURES  REDUCED 
PCA 

Training set 

Test set

Multi‐class 

Kernel SVM

Confusion 
Matrix 

Output 

Classifier 

5‐Fold Cross 

Validation

Performance 

Colour Histogram

Colour moments 

GLCM texture 

Shape feature 
Input 

Image

P
re
‐

p
ro
ce
ss
in
g 

Dataset 



39 
   

Therefore, if we select a threshold of 100, all pixels with values less than 100 will become 

the image's background, while all pixels with values greater than or equal to 100 will 

become the image's foreground. 

The formula for calculating the within-class variance at any given threshold t is: 

𝜎ଶሺ𝑡ሻ ൌ 𝜔௕௚ሺ𝑡ሻ𝜎௕௚
ଶ ሺ𝑡ሻ ൅ 𝜔௙௚ሺ𝑡ሻ𝜎௙௚

ଶ ሺ𝑡ሻ 

Where 𝜔௕௚ሺ𝑡ሻ and 𝜔௙௚ሺ𝑡ሻ represent the probability of the number of pixels for each class 

at the threshold t and 𝜎ଶ represents the colour value variance. To grasp the significance 

of this probability, let's, 𝑃௔௟௟ consist of the total number of pixels in an image,  𝑃஻ீሺ𝑡ሻ Be 

the number of background pixels at the threshold value t, 𝑃ிீሺ𝑡ሻ  Be the number of 

foreground pixels at the threshold value t. 

Thus, the weights are determined by 

𝜔௕௚ሺ𝑡ሻ ൌ
𝑃஻ீሺ𝑡ሻ 

𝑃௔௟௟
 

𝜔௙௚ሺ𝑡ሻ ൌ
𝑃ிீሺ𝑡ሻ 

𝑃௔௟௟
 

The variance can be computed using the formula below: 

𝜎ଶሺ𝑡ሻ ൌ
∑ሺ𝑥௜ െ 𝑥̅ሻଶ 

𝑁 െ 1
 

where 

𝑥௜ is the pixel value at position I in the group (bg or fg), 𝑥̅ is the average pixel value 

within the group (bg or fg), 𝑁 represents the number of pixels. 

3.3 Feature Extraction and Reduction 

The research used a hybrid classification algorithm based on colour histogram, colour 

moment, texture and shape i.e. appearance features of pineapple slices. Here, research 

(3.2) 

(3.3) 

(3.4) 

(3.1) 
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supposes the pineapple slice images have been produced by Otsu’s segmentation 

procedure (Juliana, Florencia, & Laura, 2020), (Nnamdi, Vincent, Eneh, Ogechukwu, & 

Ijeoma, 2022). 

 

Figure 3.2: Feature Extraction overview 

The figure below show the hybrid feature extraction technique employed by the thesis. A 

total of 90 features are extracted every single image of slice for the entire 250 image 

dataset to form the feature database. The features are them combined and reduced in 

dimension using PCA. Three multiclass SVM classifier are then employed for 

performance comparison.  
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The figure 3.2 below shows the feature extraction overview. From the image data base, 

four methods are used to extract the features and form a features vector. Features are then 

ordered using PCA and eliminate the irrelevant ones. The reduced feature vector is used 

to train the classifiers. By so doing, the algorithm is accelerated and high accuracy 

achieved.  

3.3.1 Colour Histogram 

The colour histogram is currently used to represent the colour distribution in an image 

(Siang & Mat, 2011). The amount of pixels with colour in a fixed list of colour ranges that 

span the image's colour space is defined as the colour histogram (Maitra & Chatterjee, 

2008). 

In the case of monochromatic photos, the set of possible colour values is sufficiently small 

that each of these colours may be placed on a single range; thus, the histogram is simply 

defined as the number of pixels that have each conceivable colour. For RGB colour 

images, the space is divided into a reasonable number of ranges, which are often organized 

as a regular grid and contain multiple similar colour values. 

Pineapple slice image with RGB values from 0 to 255, so it will have a total of 256 × 256 

× 256 = 224 colour. The research chose to use four boxes to represent each colour 

component, Boxes 0, 1,2, 3 indicate intensities 0 to 63, 64 to 127, 128 to 191, 192 to 255, 

correspondingly, so there are in total 4 × 4 × 4 = 64 colour. The four bins are chosen as 

found in literature as good representative reduction and summary. 

The histogram offers a compact summary of the distributions of data in an image. An 

image's colour histogram is fairly rotation and translation invariant around the viewing 

axis. By matching the colour content of one image with the colour content of the other 

and equating the histogram signatures of two photos, the colour histogram is ideally suited 

to the task of recognizing an item of uncertain location and rotation inside a scene. 

3.3.2 Colour moments 

Colour moments are used to distinguish images based on their colour characteristics. This 

moment is used to determine the degree of colour similarity between two images. The 
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assumption underlying colour moments is that the colour distribution in an image can be 

interpreted as a probability distribution. If the colour in an image follows a particular 

probability distribution, the moments of that distribution can be used to identify the image 

based on its colour. 

Stricker and Orengo (Senthilkumaran & Rajesh, 2009) utilize three central points of the 

colour distribution of an image. Mean, standard deviation, and skewness are the three. A 

colour can be characterized by three or more values (Red, Green, and Blue). Moments are 

computed for each of these image channels. Therefore, an image is comprised of nine 

moments, three for each of the three colour channels. The i-th colour channel at the j-th 

image pixel will be denoted as Pij. The three colour moments can then be defined as: 

MOMENT 1 - Mean 

MOMENT 2 - Standard Deviation 

MOMENT 3 – Skewness 

In this research the first 6 colour moment were used as follow: 

3.3.2.1 Moments of Colour Feature Extraction 

Step1: open the image file. 

Step 2: We calculate the mean using the following function. 

𝐸௜ ൌ ෍ 𝑃௜௝

ே

௝ୀଵ

 

Step 3: The following function yields the Standard Deviation value. 

𝜎௜ ൌ ඩ
1
𝑁

ቌ෍൫𝑃௜௝ െ 𝐸௜൯
ଶ

ே

௝ୀଵ

ቍ 

Step 4: The final step is to store the mean and standard deviation values in a 1D array. 

(3.5) 

(3.6) 
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Step 5: Repeat steps 1-3 for each image in the database. 

3.3.3  Texture feature 

Local binary pattern and Unser’s texture are very good texture descriptors, but are 

complicated to implement.  In this research, the Gray level co-occurrence matrix (GLCM) 

is chosen as it shows better results for simple situations where the textures are visually 

easily separable. Furthermore, the GLCM algorithm is easy to implement and has been 

shown to give very good results in a large fields of applications. Texture is an important 

characteristic for the analysis of many types of images because it provides a rich source 

of information about the image. Also it provides a key to understand basic mechanisms 

that underlie human visual perception. 

The GLCM is created from a gray-scale image. The GLCM determines how frequently a 

pixel with gray-level (grayscale intensity or Tone) value i appears horizontally, vertically, 

or diagonally to adjacent pixels with value j. 

Several texture metrics that contain spatial information are based on the co-occurrence 

matrix, they also known as the spatial gray-level dependence matrix. Forming the co-

occurrence matrices is an initial step that compiles spatial as well as statistical information 

for computing the texture metrics. The spatial information considered is the relative 

position of pairs of pixels, defined with distance d and orientation θ that describe the 

second pixel's position in relation to the first. A co-occurrence matrix is formed for each 

such position. In this manner, each co-occurrence matrix prepares the data to emphasize 

primarily structure or streaks in a given direction and a grain size that is at least as large 

as the selected distance. Typically, four values of θ, namely 0◦, 45◦, 90◦, and 135◦, cover 

the orientations, and the most common choice of distance is d = 1 when θ is 0◦ or 90◦, and  

𝑑 ൌ √2 when θ is 45◦ or 135◦. The spatial relationships of pixels established by the array 

of offsets are shown in Figure-3.3, where D indicates the distance from the pixel of interest 

(Norton, Ozkan, Mert, & Senturk, 2008), (Benazir & Vijayakumar, 2012). 

In 1973, Haralick (Haralick, Shanmugam, & Dinstein, 1973) introduced 14 statistical 

features. In the table 3.1 the 10 Haralick features are highlighted. These features are 

generated by calculating the features for each one of the co-occurrence matrices obtained 
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by using the directions 0◦, 45◦, 90◦, and 135◦, then averaging these four values. The distance 

parameter can be selected as one or higher. A vector of these 14 statistical features is used 

for characterizing the co-occurrence matrix contents (Eleyan & Irel, 2011), only ten of 

them are defined here. The following notation are used: G is the number of gray levels 

used, μ is the mean value of P, 𝜎௫ ,𝜎௬,  𝜇௫ 𝑎𝑛𝑑 𝜇௬  are the standard deviations and means 

of 𝑃௫𝑎𝑛𝑑 𝑃௬. 𝑃௫ሺ𝑖ሻ is the ith entry in the marginal probability matrix attained by summing 

the rows of 𝑃ሺ𝑖, 𝑗ሻ. The table 3.1 below show Haralick features: 

 

 

Figure 3.3: Spatial relationships of pixels 

  



45 
   

Table 3.1: Haralick Features (Haralick, Shanmugam, & Dinstein, 1973). 

 
Measure Formula 

Mean  
෍ 𝑖𝑃௫ା௬ሺ𝑖ሻ

ଶீିଶ

௜ୀ଴

 

Contrast 
෍ 𝑛ଶ ቐ෍ ෍ 𝑃ሺ𝑖, 𝑗ሻ

ீ

௝ୀଵ

ீ

௜ୀଵ

ቑ , |𝑖 െ 𝑗|
ீିଵ

௡ୀ଴

ൌ 𝑛 

Homogeneity  
෍ ෍

1
1 ൅ ሺ𝑖 െ 𝑗ሻଶ

ீିଵ

௝ୀ଴

𝑃ሺ𝑖, 𝑗ሻ

ீିଵ

௜ୀ଴

 

Energy  
෍ ෍ሼ𝑃ሺ𝑖, 𝑗ሻሽଶ

ீିଵ

௝ୀ଴

ீିଵ

௜ୀ଴

 

Variance  
෍ ෍ሺ𝑖 െ 𝜇ሻଶ

ீିଵ

௝ୀ଴

𝑃ሺ𝑖, 𝑗ሻ

ீିଵ

௜ୀ଴

 

Correlation  
෍ ෍

ሼ𝑖 ൈ 𝑗ሽ ൈ 𝑃ሺ𝑖, 𝑗ሻ െ ൛𝜇௫ ൈ 𝜇௬ൟ
𝜎௫ ൈ 𝜎௬

ீିଵ

௝ୀ଴

 

ீିଵ

௜ୀ଴

 

Entropy  
െ ෍ ෍ 𝑃ሺ𝑖, 𝑗ሻ ൈ logሺ

ீିଵ

௝ୀ଴

𝑃ሺ𝑖, 𝑗ሻ
ீିଵ

௜ୀ଴

ሻ 

RMS  
μ ൌ ෍ ሼ𝑖. ℎ௜ሽ

ீ೘ೌೣ

௜ୀଵ

 

Kurtosis 
k ൌ

1
𝜎ସ ෍ ሼሺ𝑖 െ 𝜇ሻସ. ℎ௜ሽ െ 3

ீ೘ೌೣ

௜ୀଵ

 

Skewness 
S ൌ

1
𝜎ଷ ෍ ሼሺ𝑖 െ 𝜇ሻଷ. ℎ௜ሽ

ீ೘ೌೣ

௜ୀଵ
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3.3.4 Shape Features 

Table 3.2: The Morphology based Measures (Lou, Jiang, & Scott, 2012). 

 

Based on mathematical morphology, ten measures were chosen in this research, which are 

listed in Table 3.2. There are five groups of measures to consider:  

i). The object's area, Euler number, and perimeter can all be calculated directly; 

ii). Then, using the Graham Scan method, create a convex hull. Make the smallest 

convex polygon that covers the item to extract the convex area and solidity 

properties;  

iii). Then, using the same second moments as the object, create an ellipse. 

iv). After that, derive the major length, minor length, and eccentricity characteristics. 

v). Finally we derive extent and orientation of the image 

The figure 3.4 below show the illustration of the morphology measures (Lou, Jiang, & 

Scott, 2012). 

Measure Meaning 

Area ሺ𝑨𝒓ሻ The number of pixels included within the object. 

Perimeter ሺ𝑷𝒓ሻ surrounding the object boundary distance 

Euler ሺ𝑬𝒍ሻ The Euler number of an object 

Convex ሺ𝑪𝒏ሻ The number of pixels in a convex hull 

Solidity ሺ𝑺𝒍ሻ percentage of area to convex hull 

Minor length ሺ𝑴𝒏ሻ minor axis length  of the ellipse   

Major length ൫𝑴𝒋൯ major axis length of the ellipse 

Eccentricity ሺ𝑬𝒄ሻ Ellipse  eccentricity 

Extent (E) minimum bounding rectangles that are within specified 

parameters 

Orientation (O) the relative arrangements of points after a transformation 
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(a) Original Image(s) (b) Convex Hull (c) Ellipse 

Figure 3.4: Illustration of the morphology measures. 

3.3.5 PCA (Principal Component Analysis) 

A total of 90 features (64 colour features, 6 color moment, 10 shape features, and 10 

texture features) were retrieved from a single image. Unnecessary features increase the 

amount of memory used for storage and the amount of time it takes to compute, which 

occasionally causes the classification process to decrease the classifier performance and 

even become more complicated (Kwak, 2008). A strategy to reduce the features number 

used in classification is essential. PCA is a useful approach for reducing the 

dimensionality of a data set with many interconnected variables while keeping the most 

essential changes (Kwak, 2008). It is accomplished by converting the data set into a new 

set of ordered variables based on the relevance or variance of the variables. This method 

has 3 effects: 

i). The input vectors' components are orthogonalized in order to make them 

uncorrelated with one another, 

ii). The orthogonal components that result are then sorted in order of biggest variation 

to smallest variation, 

iii). The data set's components that contribute the least variation are subsequently 

deleted (Lipovetsky, 2009). 

The figure 3.5 shown below shows using normalization before PCA. Before performing 

PCA, the input vectors are standardized to have unity variance and zero mean, which is 

shown in Figure 3.5. The process of standardization is a standard statistical procedure. An 
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eigenvalues decomposition of the covariance matrix is used to perform principal 

component analysis. It can, however, be done using SVD (singular value decomposition) 

of the data matrix X (Jackson, 1991). 

 

 

Figure 3.5: Normalization is used before PCA. 

3.4 Multiclass Kernel SVMs 

3.4.1 Kernel SVM 

Convectional linear SVMs cannot separate complex distributed practical data. The kernel 

method is applied to SVMs so as to generalize it to nonlinear hyper plane (Acevedo, 

Maldonado, Lafuente, Siegmann, & López, 2009). The resulting method is formally 

identical since every dot product is replaced by a nonlinear kernel function. The kernel 

SVMs are used to fit the greatest margin hyperplane in a converted feature space. The 

transition could be nonlinear and have an altered higher dimensional space. The classifier 

may be nonlinear in the original input space even if it is a hyperplane in the higher 

dimensional feature space. Four mostly used kernels (Deris, Zain, & Sallehuddin, 2011) 

are listed in Table 3.3. For every kernel, there should be at least one adjusting parameter 

thus to make the kernel flexible and tailor itself to practical data. 

SVMs were initially intended for binary classification. Many methods have been proposed 

for multi-class SVMs, and the prominent approach is to reduce the single multiclass 

64 Colour Histogram 

10 Texture Features 

10 Shape Features 

Standardize PCA SVM 

6 Colour Moment Features 
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problem into multiple binary classification problems (Maddipati, Nandigam, Kim,, & 

Venkatasubramanian, 2011). Four widely used types of methods are shown as follow. 

Table 3.3:  Popular Kernels (Deris, Zain, & Sallehuddin, 2011). 

3.4.2 Winner-Takes-All (WTA) SVM 

Given, there are totally C classes; where C > 2. A winner takes all strategy is used in the 

one versus all technique to classify new cases (Lingras & Butz, 2007). It is first trains c 

different binary support vector machine, each one was taught to distinguish data from a 

single class from data from all the other classes. All of the C classifiers are run on new 

test data, and the classifier with the highest value is picked. If two yield values are 

identical, WTA-SVM chooses the class with the smallest index. The following is the 

mathematical formula . Assume the following N-size p-dimensional training dataset: 

 ሼሺ𝑥௡ , 𝑦௡ ሻ|𝑥௡ ∈ 𝑅௣, 𝑦௡ ∈ ሼ1,2, … , 𝐶ሽ, 𝑛 ൌ 1,2, … , 𝑁ሽ  

 

 

where 𝑥௡ is a 𝜌-dimensional vector, and 𝑦௡ ∈ ሼ1,2, … , 𝐶ሽis the class label of each 𝑥௡ . The 

classification function for ith individual binary WTA-SVM (Yudong & Lenan, 2012) can 

be defined as:  

Names Formula (s) Parameter 

(s) 

Homogenous Polynomial 

(HPOL) 
𝑘൫𝑥௜, 𝑥௝൯ ൌ ൫𝑥௜ ∙ 𝑥௝൯

ௗ
 𝑑 

Inhomogeneous Polynomial  𝑘൫𝑥௜, 𝑥௝൯ ൌ ൫𝑥௜ ∙ 𝑥௝ ൅ 1൯
ௗ

 𝑑 

Gaussian Radial Basis (GRB) 𝑘൫𝑥௜, 𝑥௝൯ ൌ exp ቀെ𝛾ฮ𝑥௜ െ 𝑥௝ฮ
ଶ

ቁ 𝛾 

Hyperbolic Tangent 𝑘൫𝑥௜, 𝑥௝൯ ൌ tanh൫𝑘𝑥௜ ∙ 𝑥௝ ൅ 𝑐൯ 𝑘, 𝑐 

(3.7) 
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 𝑓௜ሺ𝑥ሻ ൌ ෍ 𝑦௡
௜ 𝛼௡

௜

ே

௡ୀଵ

𝑘ሺ𝑥௡, 𝑥ሻ െ 𝑏௜, 𝑖 ൌ 1,2, … , 𝐶 (3.8)

 𝑦௡
௜ ൌ ቄ൅1 𝑖𝑓 𝑥௡ ∈ 𝑖𝑡ℎ 𝑐𝑙𝑎𝑠𝑠

െ1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.9)

Where N is the number of training data; C is the number of total classes; 𝑦௡
௜ ∈ ሼ൅1, െ1ሽ 

depends on the class label of 𝑥௡, if 𝑥௡belongs to the ith class, 𝑦௡
௜ ൌ ൅1, otherwise 𝑦௡

௜ ൌ

െ1; 𝑘ሺሻis the predefined kernel function; 𝛼௡
௜ is the Lagrange coefficient; and 𝑏௜is the bias 

term. 𝛼௡
௜  and 𝑏௜ are obtained by training the i-th individual SVM. The i-th SVM-output is 

the sign function of its decision function, namely: 

 𝑂௜ሺ𝑥ሻ ൌ 𝑠𝑔𝑛൫𝑓௜ሺ𝑥ሻ൯ (4.0)

If 𝑓௜ሺ𝑥ሻ ൐ 0, then the output 𝑂௜ሺ𝑥ሻ 𝑖𝑠 ൅ 1, denoting 𝑥 belongs to i-th class; otherwise 

output is -1, denoting 𝑥belongs to other classes. 

3.4.3 Max Wins Voting (MWV) SVM 

For the one vs one technique, a MWV strategy is used for classification. After generating 

a binary SVM for each pair of classes, you'll end up with C(C-1)/2 binary Support Vector 

Machines in total (Yudong & Lenan, 2012). When applied to fresh test data, each Support 

Vector Machine provides the winning class one vote, and the test data is labeled with the 

class with the most labels. If there are two identical votes, Max-Win-voting selects the 

class with the smallest index. The following is the mathematical formula.  The ij-th (i = 

1,2, …, C-1, j = i + 1, …, C) individual binary Support. To identify i-th class from j-th 

class, Vector Machine is trained with all data in the i-th class with +1 label and all data in 

the j-th class with 1 label. The decision function of ij-th SVM is: 

 
𝑓௜௝ሺ𝑥ሻ ൌ ෍ 𝑦௡

௜௝𝛼௡
௜௝

ேభାேೕ

௡ୀଵ

𝑘൫𝑥௡
௜௝, 𝑥൯ െ 𝑏௜௝, 𝑖 ൌ 1,2, … , 𝐶 െ 1, 𝑗

ൌ 𝑖 ൅ 1, 𝑖 ൅ 2, … , 𝐶 

(4.1)
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 𝑦௡
௜௝ ൌ ቊ

൅1 𝑥௡
௜௝ ∈ 𝑖𝑡ℎ 𝑐𝑙𝑎𝑠𝑠

െ1 𝑥௡
௜௝ ∈ 𝑗𝑡ℎ 𝑐𝑙𝑎𝑠𝑠

 (4.2)

Where 𝑁௜  and 𝑁௝  represents the total number of i-th class and j-th class, 

respectively. 𝑦௡
௜௝ ∈ ሼ൅1, െ1ሽ depends on the class label of  𝑥௡

௜௝. If  𝑥௡
௜௝ belongs to ith class, 

𝑦௡
௜௝ ൌ ൅1; otherwise  𝑥௡

௜௝ belongs to jth class, 𝑦௡
௜௝ ൌ െ1. 𝛼௡

௜௝ is the Lagrange coefficient; 

and 𝑏௜௝ is the bias term. 𝛼௡
௜௝ and 𝑏௜௝ are attained by training the ijth individual Support 

Vector Machines. The output of ijth Support Vector Machines is the sign function of its 

decision function, namely: 

 𝑂௜௝ሺ𝑥ሻ ൌ 𝑠𝑔𝑛 ቀ𝑓௜௝ሺ𝑥ሻቁ (4.3) 

if 𝑓௜௝ሺ𝑥ሻ ൐ 0, then the output 𝑂௜௝ሺ𝑥ሻ 𝑖𝑠 ൅ 1, denoting 𝑥 belongs to i-th class; otherwise 

output is -1, denoting 𝑥belongs to j-th class. 

3.4.4  Directed Acyclic Graph (DAG) SVM 

A directed acyclic graph is one in which all of the edges have the same orientation and 

there are no cycles. Though the two methods create the individual SVM in the same way, 

the output of each individual Support Vector Machine in DAG (Yudong & Lenan, 2012) 

is explained differently than that of MWV-SVM. When Oij(x) is -1, it means x does not 

belong to the ith class, and when it is +1, it means x does not belong to the jth class. As a 

result, the ultimate decision cannot be made until the leaf node has been reached (Platt, 

Cristianini, Shawe, & Large, 2000). Figure 3.6 shows the Directed Acyclic Graph SVM 

for finding the best class out of 5 given classes. Here, the intermediate nodes and root 

node denotes the individual binary SVM, while the leaf nodes denote the output label. 

Individual binary Support Vector Machines are evaluated given a test sample x starting at 

the root node. The node is then exited to the right or left edge based on the evaluation 

outcome. The function of the following SVM is calculated until the leaf node is reached. 

Consequently, DAG-SVM faster in terms of computation time compared to MWV-SVM. 

In this case, the DAG-SVM only requires evaluating only four individual SVMs whereas 
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the MWV-SVM requires covering all nodes of 10 individual SVMs, yet. The figure 3.6 

below shows: The DAG-SVM for calculating out of five classes the best one. 

 

Figure 3.6: The DAG-SVM for calculating out of five classes the best one. 

3.5 Stratified cross validation 

Normally, a statistical model that works with intrinsic data variability is inferred from the 

training set database and used automatically by statistical learning machines to build 

classifiers (Yudong & Lenan, 2012). A model has a set of changeable parameters that are 

estimated using a set of examples during the learning phase. However, in order to achieve 

effective generalization, the learning machine must ensure that the parameters are 

accurately estimated. Generalization refers to the ability to respond correctly to unknown 

examples, such as correctly classifying new photos. As a result, the learning device must 

strike an efficient balance between its complexity, which is measured by several variables 

such as the feature input space dimension and the effective number of free parameters of 

the classifier, and the problem information provided by the training set, which is 
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measured, for example, by the number of samples. Cross validation methods are 

frequently used to evaluate the statistical relevance of classifiers. It comprises of four 

types: K-fold cross validation, Random subsampling, Monte Carlo Cross-Validation and 

leave-one-out validation (Pereira, Reis, Saraiva, & Marques, 2011).  

The K-fold cross validation is used for training and validation because of its basic and 

straightforward features. Making a K-fold partition of the entire dataset, repeating K times 

using K-1 folds for training and a left fold for validation, and then averaging the error 

rates of K experiments is the technique (Yudong & Lenan, 2012). The schematic figure 

below depicts the 5-fold cross validation, figure 3.7: 

When K folds is purely random partitioned; some folds may have distributions that are 

significantly different from those of other folds. To avoid this, stratified K-fold cross 

validation is utilized, in which each fold's class distributions are almost identical (May, 

Maier, & Dandy, 2010). The mean response value in all of the folds is about equal in this 

procedure. In the case of a dichotomous classification, the fold contains nearly equal 

proportions of the two types of class labels. 

Another difficulty encountered is determining the amount of folds. If K is set too high, the 

true error rate estimator's bias will be minor, but the estimator's variance will be big, 

making calculation time consuming. Alternatively, if K is set too small, the variance of 

the estimator will be modest, but the bias of the estimator will be considerable, and the 

calculation time will be reduced (Armand, Watelain, Roux, & Lepoutre, 2007). K was 

empirically determined to be 5 in this study using the trial-and-error method. 
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Experiment 1      

 

Experiment 2      

 

Experiment 3      

 

Experiment 4      

   

Experiment 5      

 

Figure 3.7: A 5-fold complexity cross Validation 

3.6 Methodology implementation steps 

The goal of this section is to develop methodology of the study step by step. The research 

was conducted using an HP 15 laptop with a core i7 1.8GHz base clock and 8GB of RAM 

running Microsoft Windows 10 64-bit (operating system). The algorithm is developed on 

the MATLAB 2018a software platform. The program can be tested or run on any 

computer/laptop platforms where MATLAB software version 2018a or newer is available. 

3.6.1 The MATLAB experiment simulation  

The experiment is done as follows: Assorted 332 photos of pineapple slices are taken at 

Del Monte cannery packing tables. The photos with distortion, blurred and pineapple 

slices image not centered are eliminated. The best 250 photos are selected for the 

 Training 

 Validation 

Total Number of Dataset
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experiment, 50 photos for each of five categories. The photos are then cropped to center 

the pineapple slices and then down sized to 256x256 pixel size using MS Paint.  

The MATLAB script code is programmed as follows: The Otsu’s code was built and tested 

with a photo dataset, and it was discovered to effectively remove the background. The 

feature extraction function code is then programmed and tested to be effective. The 

database of training features and training labels is then created. PCA algorithm is then 

used to reduce the feature space and it is found that at 12 principal components do 

preserved 99%. Various PCA plot are analyzed. The three multiclass SVMs algorithms 

are created and tested with the three kernel function and found to classify the images 

effectively.  The SVM classifier weights are adjusted as the performance is validated 

through 5-fold cross validation. A Graphical User Interface GUI is then created to present 

the system working effectively. 

To run the script, one open MATLAB software, open the folder named code in the CD 

and double click on PineappleSorting_GUI.m file, then click run. Once the GUI is 

running, one then load the image from the database by clicking on load image command, 

double click on database folder, double click on one of five folders and select one image. 

Once the image is loaded, one can click segment command, wait for 30 second on first 

run and 0.1 sec on subsequent run, to generate segmented output image. Two more figures 

are also generated. Then one click feature extraction command to generate the 90 features 

and displayed in GUI. Secondly, one chose the classifier, selects both the SVM and kernel, 

to use and then click the classification command. The system classifies the image and give 

the, a dialog box, computation time, class and the voting score. Thirdly, there is an 

optional command to show various PCA plot where further analysis can be done. Lastly, 

click accuracy command, wait for iteration to run, where 5-fold cross validation run to test 

accuracy of the classifiers. The classifier iterations correct rate, specificity, sensitivity, 

Positive Predictive Value and Negative Predictive Value are displayed in command 

window. Confusion matrix and best correct rate are shown for in the GUI. 
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3.6.2 Pineapple slices classification System 

Below points is an explanation of the flowchart of the developed system shown in Figure 

3.8. Numbers in this figure are achieved by experiments as follows: The input data is a 

database of 250 images consisting of 5 categories of pineapple slices, and each image is 

of size 256 × 256. The ninety features are extracted from each image of size 256 × 256. 

These ninety features contain six (6) colour moment features, ten (10) texture features, 

sixty four (64) colour histogram features and ten (10) shape features.  

 

 

                  

The ninety (90) features are reduced to ten (12) features through PCA, and preserve 99% 

energy as the selection standard. The images are divided into two sets i.e. training set 

(200) and test set (50) in the ratio of 4:1. The training set is subsequently put through a -

fold cross validation process. The training set is used to train the multiclass kSVM. The 

Input Dataset 

256x256x3x250 

FEATURES 

90X250

REDUCED 

FEATURES 

12X250

PCA
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Test set 10x50

Multi‐class 
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Confusion 
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Output

Classifier 
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Performance 

T
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Colour moments

GLCM texture 
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Figure 3.8: The flowchart of the developed pineapple slices classification algorithm. 



57 
   

weights for kSVM are changed to achieve the minimum possible 5-fold cross validation 

average error. The test dataset is created by picking each group at random, and it is used 

to evaluate the classifier's performance and calculate the Confusion Matrix. If the 

classifier is sufficient, output it; otherwise, return to step 5 to retrain the SVM weights. 
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CHAPTER FOUR 

4 RESULT AND DISCUSSION 

The goal of this chapter is to present analysis and discussion of the results obtained from 

the study.  The developed pineapple slices classification algorithm using a multi-class 

SVM and hybrid feature extraction technique is tested by simulation in MATLAB 

Software. 

4.1 Dataset 
Table 4.1: Pineapple slices images database 

Pineapple from both types i.e. Smooth Caen and MD2 
NO# Pineapple slice category Quantity 
1 Fancy ¾ and full yellow 50 
2 Fancy ½ 50 
3 Choice 50 
4 Broken 50 
5 Reject 50 

In total, there will be 250 images 
 

The dataset of pineapple slice images below was result of on-site data collecting, at Del 

Monte, via mobile phone and digital camera. Background areas are removed using the 

Otsu’s method, then the photos are cropped to leave the pineapple slice in the middle, and 

then down sampled to 256x256 pixels using MS Paint. All five categories were given 

equal 50 images so that the classification is not skewed in either way. The table 4.1 shows 

dataset comprises of five different categories of pineapple slices with each 50 samples.  

The table 4.2 shows the samples of different types of slices images in the dataset. The 

sample of each of five categories is given. The striking similarities of the categories is 

shown and a unique method is required to extract the features that show the small 

differences to enable automatic classifications. The database of features is created by 

extracting 90 feature of each 250 images. A table of 250 rows (instances) and 90 columns 

(features) is made by using a creating algorithm below: 
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Table 4.2: Samples of pineapple slices dataset of five different categories 

 
 
Features database creating algorithm below: 
 
function DB_creating(Feature_Vector) 
class=input('Enter the Class(Number from 1-5)'); 
try  
    load Training_Data; 
    Train_Feat=[Train_Feat; Feature_Vector]; 
    Train_Label=[Train_Label,class]; 
    save Training_Data.mat  Train_Feat Train_Label 
catch  
    helpdlg(' Error: Array mismatch for CAT or the first input'); 
    disp(' Error: Array mismatch for CAT or the first input'); 
  
    Train_Feat=[Feature_Vector]; 
    Train_Label=[class]; 
    save Training_Data2.mat  Train_Feat Train_Label 
end 
end 

Pineapple types Image Sample Pineapple types Image Sample 

Fancy ¾ and 
full yellow 

Broken 

Fancy ½ Reject 

Choice   
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The function DB_creating (Feature_Vector) has an input argument  Feature_Vector which 

contains 90 features extracted from the image loaded. [Feature_Vector]= 

Extract_FeaturesofSlices (bin_Image, RGB_Imag). The first 64 columns store histogram 

data, the next 6 columns store colour moment features, the next 10 columns store the 

texture features and the last 10 columns store shape features. All 250 images’ features are 

stored in the database 250 rows. The first 50 rows form the fancy ¾ group, next 50 rows 

are from fancy ½ and it followed by choice, broken and reject in that order. 

4.1.1 The MATLAB experiment Graphical User Interface 

The figure 4.1 shows the GUI (Graphical User Interface) used to implement the pineapple 

slices classification system. A load command button is used to query the image from 

database, the image is then segmented using Otsu thresholding. The 90 features are then 

extracted and used to classify and automate the manual method of sorting pineapple slices. 

The performance of each classifies is validated and compared 

Figure 4.1: Pineapple Slices Classification GUI 
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4.2 Image segmentation result 

The result of the segmentation is to remove the background and remain with the pineapple 

slice image. This will enable the features extracted to be form the pineapple slices only 

and not the background. Image preprocessing are the steps taken to format images before 

they are used by model training and inference. This includes, but is not limited to, resizing, 

orienting, and colour corrections. The actual step include read image, resize image, 

remove noise (denoise), segmentation and morphology (smoothing edges). 

Contrast enhancement of colour images is typically done by converting the image to a 

colour space that has image luminosity as one of its components, such as the L*a*b* 

colour space. Contrast adjustment is performed on the luminosity layer L* only, and then 

the image is converted back to the RGB colour space. The first hole-filling step is used to 

fill in the holes in the depth image captured from camera. Hence a hole is an area of dark 

pixels surrounded by light pixels in gray images and black pixels surrounded by white 

pixels in binary image.  

The figure 4.2 shows the segmented image and background removing. Otsu’s method is 

used to perform automatic image thresholding. In the simplest form, the algorithm returns 

a single intensity threshold that separate pixels into two classes, foreground and 

background. 

Opening and Closing are dual operations used in Digital Image Processing for restoring 

an eroded image. Opening is generally used to restore or recover the original image to the 

maximum possible extent. The background is removed by image masking. This is using 

masks or selective adjustments to isolate where an adjustment is taking place. The 

following steps are implemented using the following algorithm: 
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Figure 4.2: Background removing result 

function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 clc 
[filename, pathname] = uigetfile({'*.*';'*.bmp';'*.jpg';'*.gif'}, 'Pick a Pineapple slice 
Image File'); 
I = imread([pathname,filename]); 
% I = imresize(I,[256,256]); 
% I2 = imresize(I,[300,400]); 
axes(handles.axes1); 
imshow(I);title('Query Image'); 
ss = ones(300,400); 
axes(handles.axes2); 
imshow(ss); 
axes(handles.axes3); 
imshow(ss); 
handles.ImgData1 = I; 
% Update GUI 
guidata(hObject,handles); 
% --- Executes on button press in pushbutton3. 
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function pushbutton3_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Enhance Contrast 
I2 = handles.ImgData1; 
I3 = imadjust(I2,stretchlim(I2)); 
% splitting RGB colour space 
 rmat=I3(:,:,1); 
 gmat=I3(:,:,2); 
 bmat=I3(:,:,3); 
 figure, 
subplot(2,2,1),imshow(I3), title('Enhanced Image') 
subplot(2,2,2),imhist(rmat), title('Red channel Histogram'); 
subplot(2,2,3),imhist(gmat), title('Green channel Histogram'); 
subplot(2,2,4),imhist(bmat), title('Blue channel Histogram'); 
% Otsu Segmentation 
I_Otsu = im2bw(rmat,graythresh(I3)); 
%holes filling 
Icfilled=imfill(~I_Otsu,'holes'); 
I_fill=~Icfilled; 
% opening 
se=strel('disk', 4); 
I_open=imopen(I_fill,se); 
% Create masked image. 
maskedImage = I2; 
%removing background 
maskedImage(repmat(~I_open,[1 1 3])) = 0; 
%  displaying otsu thresholding and Segmentation 
figure, 
subplot(2,3,1),imshow(I2), title('Original Image') 
subplot(2,3,2),imshow(I3), title('Contrast Enhanced'); 
subplot(2,3,3),imshow(I_fill), title('Holes filling'); 
subplot(2,3,4),imshow(I_Otsu), title('Otsu Thresholding'); 
subplot(2,3,5),imshow(I_open), title('image openening'); 
subplot(2,3,6),imshow(maskedImage), title('Image Background removed'); 
%binary image 
bin_Image=I_open; 
handles.ImgData2=bin_Image; 
%RGB image 
RGB_Image=maskedImage; 
handles.ImgData3=RGB_Image; 
axes(handles.axes2); 
imshow(bin_Image);title(' Binary Segmented Image '); 
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% Update GUI 
guidata(hObject,handles); 
% --- Executes on button press in pushbutton8. 

4.3 Implementation of feature extraction: 

The unique hybrid feature extraction method is extract the 90 features. The features are 

generated in a 1x90 vector and the classifier used the stored feature vector to classify the 

image and assig then appropriate class. The following algorithm was used to implement 

the feature extraction: 

function feat_V = Extract_FeaturesofSlices(bin_I,RGB_I) 
% Evaluate 90 pineapple slice features 
colourFeat_64=rgbhist(RGB_I); 
colourMoments_6=colourMoments(RGB_I); 
textureFeat_10=textfeat(bin_I, RGB_I); 
shapeFeat_10=shapefeat(bin_I); 
feat_V= [colourFeat_64, colourMoments_6, textureFeat_10, shapeFeat_10]; 
 

4.3.1 Extracting the 64 colour features: 

A colour histogram result show a unique signature of each image that can be used to 

classify the image uniquely. The code is used to split the image colour space into four bin 

and a colour histogram of 64 colour information generated. A colour histogram is a 

representation of the distribution of colours in an image in photography and image 

processing. A colour histogram is the number of pixels in a digital image that contain 

colours from a preset set of colour ranges that span the image's colour space, or the set of 

all possible colours. The following algorithm is used to implement the colour extraction: 

%% RGBHIST: colour Histogram of an RGB image. 
%Evaluate 64 colour features 
  function H = rgbhist(I)   
if (size(I, 3) ~= 3) 
    error('rgbhist:numberOfSamples', 'Input image must be RGB.') 
end 
% nBins=4 
nBins=4; 
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H=zeros([nBins nBins nBins]); 
for i=1:size(I,1) 
    for j=1:size(I,2) 
        p=double(reshape(I(i,j,:),[1 3])); 
        p=floor(p/(256/nBins))+1; 
        H(p(1),p(2),p(3))=H(p(1),p(2),p(3))+1; 
    end 
end 
% Un-Normalized histogram 
H=H(:); 
% return  
 H=H.';  
figure, 
bar (H), title('Colour Histogram'); 
 end 
 
The figure 4.3 below show the 64 colour histogram 

 
Figure 4.3: Colour histogram result 
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4.3.2 Colour moment 

The first six colour moment result are show below. This features are unique for every 

image and are used in classification. Colour moments characterize the colour distribution 

in an image in the same way as moments of central tendency characterize a probability 

distribution. Colour moments are predominantly utilized for colour indexing as features 

in image retrieval applications to compare the similarity of two images based on colour. 

Typically, one image is compared to a database of digital photos with precomputed 

attributes to locate and get a comparable Image. Each image comparison yields a similarity 

score; the lower this value, the more similar the two photos are expected to be. 

Colour moments are scale- and rotation-invariant. In image retrieval applications, 

typically only the first three colour moments are employed as features, as the majority of 

colour distribution information is stored in the low-order moments. Due to the fact that 

colour moments carry both shape and colour information, they are a useful feature under 

varying illumination conditions, but they cannot effectively handle occlusion. Moments 

of colour can be calculated for any colour model. Every channel, three colour moments 

are computed (e.g. 9 moments if the colour model is RGB). Moments of colour are 

computed in the same manner as moments of probability distributions. The below 

algorithm implement the colour moment extraction: 

%% output: 1x6 vector containing the 2 first color momenst from each R,G,B channel 
function colorMoments = colorMoments(image) 
% input: image to be analyzed and extract 2 first moments from each R,G,B  
% extract color channels 
R = double(image(:, :, 1)); 
G = double(image(:, :, 2)); 
B = double(image(:, :, 3)); 
% compute 2 first color moments from each channel 
meanR = mean( R(:) ); 
stdR  = std( R(:) ); 
meanG = mean( G(:) ); 
stdG  = std( G(:) ); 
meanB = mean( B(:) ); 
stdB  = std( B(:) );  
% construct output vector 
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colorMoments = zeros(1, 6); 
colorMoments(1, :) = [meanR stdR meanG stdG meanB stdB]; 
% clear workspace 
%clear('R', 'G', 'B', 'meanR', 'stdR', 'meanG', 'stdG', 'meanB', 'stdB');  
end 
The below figure 4.4 show a sample 6 colour moment features results: 

 

Figure 4.4: colour moment result 

4.3.3 Extracting the 10 texture features 

GLCM is a statistical texture analysis approach of the second order. It analyzes the spatial 

relationship between pixels and defines the frequency with which a specific pixel 

combination appears in a picture along a given direction Θ and distance d. glcms = 

graycomatrix(I) generates a gray-level co-occurrence matrix (GLCM) from the given 

image. A gray-level co-occurrence matrix is also known as a gray-level spatial 

dependence matrix. Graycomatrix generates the GLCM by calculating the frequency with 

which a pixel with gray-level (grayscale intensity) value I is horizontally adjacent to a 

pixel with value j. Each element (i,j) in glcm specifies the number of occurrences of pixel 

I horizontally adjacent to pixel j. 

The ten texture features are extracted to form the feature space: The mean gives one an 

idea of what pixel colour to choose to summarize the colour of the complete image. The 

mean has the same dimension as your data (in case of pixels, think of intensity), while the 

variance has the dimension of your data squared (so intensity^2). Contrast is the difference 

in luminance or colour that makes an object (or its representation in an image or display) 

distinguishable. In visual perception of the real world, contrast is determined by the 



68 
   

difference in the colour and brightness of the object and other objects within the same 

field of view. The homogeneity of a region of an image depends on the intensities of the 

considered pixels. Any permutation of that pixels has the same gray values, but in different 

order, so the homogeneity should be the same. The energy is a measure of the image's 

localized change. The energy is referred to by a variety of names and in a variety of 

circumstances, but it all refers to the same entity. It's the pace at which the colour, 

brightness, and magnitude of pixels change over time in a given area. An image is a 

collection of data points on light intensity, variance of the image implies a gross measure 

of the imprecision/variation about the target value. variance has the dimension of your 

data squared (so intensity^2). Correlation is the process of moving a filter mask often 

referred to as kernel over the image and computing the sum of products at each location. 

Correlation is the function of displacement of the filter. The degree of randomness in an 

image is measured by its entropy, or average information. The entropy is useful in image 

coding because it sets a lower limit on the average coding length in bits per pixel that an 

optimal coding scheme can achieve without losing any information. The RMS value is 

defined as the square root of the squared function's mean value. Kurtosis is a measurement 

of the cumulative weight of a distribution's tails in relation to its center.  Skewness is a 

measure of the asymmetry of the probability distribution around the mean of a real-valued 

random variable. 

The below code is used to extract the 10 texture features: 

%% Evaluate 10 texture features 
function T =textfeat(I_b,I_r) 
% Create the Gray Level Cooccurance Matrices (GLCMs) 
glcms = graycomatrix(I_b);  
%Evaluate 10 texture features  
% Derive Statistics from GLCM 
stats = graycoprops(glcms,'Contrast Correlation Energy Homogeneity'); 
Contrast = stats.Contrast; 
Correlation = stats.Correlation; 
Energy = stats.Energy; 
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Homogeneity = stats.Homogeneity; 
Mean = mean2(I_r); 
Entropy = entropy(I_r); 
Variance = mean2(var(double(I_r))); 
% a = sum(double(I_r(:))); 
% Smoothness = 1-(1/(1+a)); 
RMS = mean2(rms(I_r)); 
Kurtosis = kurtosis(double(I_r(:))); 
Skewness = skewness(double(I_r(:))); 
 T=[Mean, Contrast, Homogeneity, Energy, Variance, Correlation, Entropy, RMS, 
Kurtosis, Skewness]; 
end 
 
The below figure 4.5 show a sample texture features results 

 
Figure 4.5: Texture features 

4.3.4  Extracting the 10 shape features 

STATS = regionprops(L,properties) quantifies a collection of properties for each labeled 

region in the label matrix L. Positive integer elements of L represent several regions. For 

instance, the set of L elements equal to 1 belongs to area 1, the set of L elements equal to 

2 refers to region 2, etc. STATS is a structural array with a length of max(L(:)). According 

to the characteristics, the fields of the structure array imply distinct measurements for each 

zone. Properties can be a comma-separated list of strings, a cell array of strings, the string 
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'all', or the string 'basic'. This table contains the valid property string values. There is no 

case sensitivity for property strings, and they can be truncated. Stats = regionprops ( BW 

, properties ) returns measurements for the set of properties for each 8-connected 

component (object) in the binary image, BW. The ten shape features are extracted to form 

the feature space. The table 4.3 shows regionprop properties.  

The area of the objects in binary image is a scalar whose value corresponds roughly to the 

total number of on pixels in the image, however, because different patterns of pixels are 

weighted differently, they may not be precisely the same. Perimeter is the count of pixels 

of objects in the input image around it. The Euler number is a measure of the topology of 

an image. It is defined as the total number of objects in the image minus the number of 

holes in those objects. You can use either 4- or 8-connected neighborhoods. The research 

uses the later method. A binary image's convex hull is the set of pixels included in the 

smallest convex polygon that surrounds all white pixels in the input. Solidity (convexity) 

is image object area divided by its convex hull area. The two axes of the fitted ellipse to 

your object are major-/minor-length. 

Table 4.3: Regionprop properties 

 

 

 

Feret-Diameter is linked to an angle for an ellipse. You can calculate it either for an angle 

or for Min-/Max-Feret-Diameter. Eccentricity measures the shortest length  of the paths 

from a given vertex v to reach any other vertex w of a connected graph. For a connected 

region of a digital image it is defined through its neighbourhood graph and the given 

metric. In mathematics, the eccentricity of a conic section is a non-negative real number 

that uniquely characterizes its shape. One can think of the eccentricity as a measure of 

how much a conic section deviates from being circular. In particular: The eccentricity of 

'Area' 'EquivDiameter' 'MajorAxisLength'
'BoundingBox' 'EulerNumber' 'MinorAxisLength' 
'Centroid' 'Extent' 'Orientation' 
'ConvexArea' 'Extrema' 'PixelIdxList' 
'ConvexHull' 'FilledArea' 'PixelList' 
'ConvexImage' 'FilledImage' 'Solidity' 
'Eccentricity' 'Image' 'SubarrayIdx' 
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a circle is zero. The extent of a feature is also known as its envelope. It is defined as a 

minimum bounding rectangle with a width (x-value) and height (y-value). Orientation is 

the relative arrangements of points after a transformation or after traveling around a 

geometric figure. The following algorithm was used to extract 10 shape features: 

%% Evaluate 10 Shape features 

function S =shapefeat(I_b) 
   bw=I_b; 
 stats = regionprops('table',bw,'Area','Perimeter','EulerNumber','ConvexArea','Solidity',' 
MinorAxisLength', 'MajorAxisLength','Eccentricity','Orientation','Extent' ); 
  % Get shape features 
     area=stats.Area; 
     perimeter=stats.Perimeter; 
     euler=stats.EulerNumber; 
     convex=stats.ConvexArea; 
     solidity=stats.Solidity; 
     minor=stats.MinorAxisLength; 
     major=stats.MajorAxisLength; 
     eccentricity=stats.Eccentricity; 
     orientation=stats.Orientation; 
     extent=stats.Extent; 
    Vectors=[area, perimeter, euler, convex, solidity, minor, major, eccentricity, 
orientation, extent];  
 if(size(Vectors,1))>=2 
    S=sum(Vectors);  
 else 
     S=Vectors; 
 end 
end 
 
The below figure 4.6 show a sample shape features results 
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Figure 4.6: Shape features 

4.4 Implementing multiclass kernel SVMs 

The three SVMs are implemented as follows: 

4.4.1 WTA-SVM 

The Winner Take All SVM has only one vote for the winning class (see 4.1). The one vs 

all SVM algorithm evaluate whether the test sample fall in class 1 or the rest 4 classes. If 

the sample does not fall in the class 1, fancy ¾, the vote is zero for the class else the vote 

is one and loop terminate. In case of the zero vote, the first class is eliminated and the 

algorithm compare if the test sample fall in second class or the remaining 3 classes. The 

voting continue until the fourth class. If the sample fails the first 4 classes testing the 

algorithm assign it to fifth class, reject, by default. The figure 4.7 below shows the 4th 

class, broken, is chosen after scoring one votes. Classes 1, 2 and 3 fails and assigned zero 

score. The fifth class is not evaluated, as the algorithm run until a class win and the loop 

terminates. The following algorithm was developed to implement the WTA-SVM:  

Winner-Takes-All SVM (WTA-SVM) algorithm 
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function [itrfin,votes] = multisvm_WTA( T,C,test,kernel ) 
%Inputs: T=Training Matrix, C=Group, test=Testing matrix, kernel=kernelfunction 
Outputs: itrfin=Resultant class 
% classification by a winner-takes-all (WTA) strategy i.e. one-versus-All approach.  
kernel_fxn=kernel; 
c4=[]; 
c3=[]; 
T=Tb; 
Tb=T; 
tst=test; 
Cb=C; 
C=Cb; 
u=unique(C); 
N=length(u); 
votes=[]; 
    j=1; 
    k=1; 
    if(N>2)%testing (C > 2) classes. 
        itr=1; 
        classes=0; 
        cond=max(C)-min(C); 
        while((classes~=1)&&(itr<=length(u))&& size(C,2)>1 && cond>0) 
        %This while loop is the winner-takes-all (WTA) strategy 
            c1=(C==u(itr)); 
            newClass=c1; 
            if kernel_fxn==1 
            svmStruct = fitcsvm(T,newClass,'KernelFunction','linear','BoxConstraint',6.7);   
% I am using linear kernel function 
            classes = predict(svmStruct,tst);%return 0 0 1 for choice 
            elseif kernel_fxn == 2 
            svmStruct = 
fitcsvm(T,newClass,'KernelFunction','polynomial','PolynomialOrder',1,'BoxConstraint',6
.7);   % I am using polynomial kernel function, polyorder =1     
 classes = predict(svmStruct,tst); 
elseif kernel_fxn == 3 
   svmStruct = fitcsvm(T,newClass,'KernelFunction','rbf','KernelScale','auto', 
'KernelScale',4.2,'BoxConstraint',6.7);    
% I am using rbf kernel function 
            classes = predict(svmStruct,tst); 
            end 
            % This is the loop for Reduction of Training Set 
            for i=1:size(newClass,2)  
  if newClass(1,i)==0; 
                    c3(k,:)=T(i,:); 
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                    k=k+1; 
                end 
            end 
        T=c3; 
        c3=[]; 
        k=1; 
            % This is the loop for reduction of group 
            for i=1:size(newClass,2) 
                if newClass(1,i)==0; 
                    c4(1,j)=C(1,i); 
                    j=j+1; 
                end 
            end 
        C=c4; 
        c4=[]; 
        j=1; 
        cond=max(C)-min(C); % Condition for avoiding group  
                            %to contain similar type of values  
                            %and the reduce them to process 
            % This condition can select the particular value of iteration 
            % base on classes 
            votes(itr)=classes; 
            if classes~=1 
                itr=itr+1; 
            end     
        end 
    end 
itrfin=u(itr);  
end 
%----------------------------------------------------------------------------% 
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The figure 4.7 below show a sample classification results and voting 

 

Figure 4.7: WTA-SVM classification result 

4.4.2 MWV-SVM 

The Max Wins Voting SVM chooses the class with maximum votes. The one vs one SVM 

algorithm evaluate in which class the test sample fall in and give one vote to the wining 

class in the following 10 voting contest: 1v2, 1v3, 1v4, 1v5, 2v3, 2v4, 2v5, 3v4, 3v5 and 

4v5. The algorithm is similar to group stages of soccer game. If the leading two classes 

have same voting score, the class with smaller index is chosen. The figure 4.8 shows the 

fourth class is chosen after scoring 4 votes, which is the maximum votes. The total votes 

are 10 (1+0+3+4+2=10), as they are result of ten contests. There is no tie in the first 

position. The following below algorithm to implement the MWV-SVM.  

Max-Wins-Voting SVM (MWV-SVM) algorithm 

function [itrfin,votes] = multisvm_MWV( T,C,test,kernel ) 
%Inputs: T=Training Matrix, C=Group, test=Testing matrix  kernel=kernel function 
Outputs: itrfin=Resultant class 
% Max-Wins-Voting SVM by one-versus-one approach 
kernel_fxn=kernel; 
Cb=C; 
i=1; 
Tb=T; 
tst=test; 



76 
   

m=2; 
u=unique(C); 
k=1; 
N=length(u); 
p=1; 
c3=[]; 
votes=[0 0 0 0 0]; 
valt=[]; 
classes=0;        
for p=1:(N-1)%for m=1:4  
             
    for m=p+1:N%for m=p+1:5  
        valt=Cb==u(p)|Cb==u(m);%selecting labels for two classes 
        label=Cb(valt==1);%100 labels of actual labels 
    
        %selecting training dataset for respective two classes 
            for i=1:size(valt,2)%for i:250 
                if valt(1,i)==1; 
                    c3(k,:)=Tb(i,:); 
                    k=k+1; 
                end 
            end 
        training=c3; 
        c3=[]; 
        k=1; 
            if kernel_fxn==1 
             svmStruct = fitcsvm(training,label,'KernelFunction','linear','BoxConstraint',6.7);   
% I am using linear kernel function 
             classes = predict(svmStruct,tst); 
            elseif kernel_fxn == 2 
            svmStruct = 
fitcsvm(training,label,'KernelFunction','polynomial','PolynomialOrder',1,'BoxConstraint'
,6.7);   % I am using polynomial kernel function, polyorder =1 
             classes = predict(svmStruct,tst); 
            elseif kernel_fxn == 3 
            svmStruct = fitcsvm(training,label,'KernelFunction','rbf', 'KernelScale', 
7.02229,'BoxConstraint',1);   % I am using rbf kernel function, sigma=4.2 
             classes = predict(svmStruct,tst); 
            end 
% max-wins voting (MWV) strategy 
  if classes==p 
      votes(p)=votes(p)+1; 
  else 
      votes(m)=votes(m)+1; 
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  end 
      m=m+1; 
    end 
     p=p+1; 
end  
     itrfin=min(u(votes==max(votes)));%min() for selecting class with the smallest index 
                                     %max() for labelling test with class 
                                     %with most labels 
end 
%----------------------------------------------------------------------------% 

 

The figure 4.8 below show a sample classification results and voting by MWV-SVM 

 

Figure 4.8: MWV-SVM classification results 

4.4.3 DAG-SVM 

As MWV-SVM, the Directed Acyclic Graph SVM chooses the class with maximum votes. 

The one vs one SVM algorithm evaluates in which class the test sample fall in and give 

one vote to the wining class and the losing class is marked as failed and is eliminated and 

not tested again. The algorithm is similar to knock out stage of a soccer game. The path 

only takes four contest to arrive at conclusion. If leading two classes have same voting 

score, the class with smaller index is chosen. The figure 4.9 shows the fourth class is 

chosen after scoring 3 votes, which is the maximum votes. The total votes are 4 

(1+0+0+3+0=4), as they are result of four contests i.e: 1v5, 1v4, 2v4, 3v4. Always the 

contest starts with the 1v5 contest; and in this case class 1 wins and class 5 fails and it is 
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eliminated. In 1v4 contest, class 4 win and get 1 vote while class 1 fails and eliminated. 

In 2v4 and 3v4 contests, class 4 win and get a total of 3 votes. There is no tie in the first 

position. The below algorithm implemented the DAG-SVM: 

Direct Acyclic Graph SVM (DAG-SVM) algorithm 

function  [itrfin,votes] = multisvm_DAG( T,C,test,kernel ) 
%Inputs: T=Training Matrix, C=Group, test=Testing matrix  kernel=kernelfunction 
Outputs: itrfin=Resultant class 
% Max-Wins-Voting SVM 
% A Directed Acyclic Graph (DAG) by one-versus-one approach with elimination.  
kernel_fxn=kernel; 
Cb=C; 
i=1; 
Tb=T; 
tst=test; 
k=1; 
u=unique(C); 
p=1; 
N=length(u); 
m=5; 
c3=[]; 
votes=[0 0 0 0 0]; 
valt=[]; 
classes=0; 
itr=1;        
while(itr<=(N-1)&&p~=m)%Directed Acyclic Graph (DAG) strategy 
        valt=Cb==u(p)|Cb==u(m);%selecting labels for two classes 
        label=Cb(valt==1);%100 labels of actual labels 
    
        %selecting training dataset for respective two classes 
            for i=1:size(valt,2)%for i:250 
                if valt(1,i)==1; 
                    c3(k,:)=Tb(i,:); 
                    k=k+1; 
                end 
            end 
        training=c3; 
        c3=[]; 
        k=1; 
  
            if kernel_fxn==1 
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             svmStruct = fitcsvm(training,label,'KernelFunction','linear');   % I am using 
linear kernel function 
             classes = predict(svmStruct,tst);%return 0 0 1 for choice 
            elseif kernel_fxn == 2 
            svmStruct = 
fitcsvm(training,label,'KernelFunction','polynomial','PolynomialOrder',1);   % I am 
using polynomial kernel function, polyorder =1 
             classes = predict(svmStruct,tst);%return 0 0 1 for choice 
            elseif kernel_fxn == 3 
            svmStruct = 
fitcsvm(training,label,'KernelFunction','rbf','KernelScale','auto','KernelScale',4.2,'BoxCo
nstraint',6.7);   % I am using rbf kernel function, sigma=4.2 
             classes = predict(svmStruct,tst);%return 0 0 1 for choice 
            end 
 
 itr=itr+1;  
  
  if classes==p 
      votes(p)=votes(p)+1; 
      m=m-1; 
  else 
      votes(m)=votes(m)+1; 
      p=p+1; 
  end 
end  
    itrfin=min(u(votes==max(votes)));%min() for selecting class with the smallest index 
                                     %max() for labelling test with class 
                                     %with most labels  
end 
The figure 4.9 below show a sample classification results and voting by DAG-SVM 

Figure 4.9: DAG-SVM classification results 
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4.5 PCA Results 

Figure 4.10 shows a graph of cumulative sum of variance vs. number of reduced vectors 

via PCA. The figure shows the findings of the comprehensive data analysis of cumulative 

variance. It demonstrates that only twelve features can preserve 99 percent of energy. The 

reduced features cost only 13.3 percent (12/90) of the RAM required for the original 90 

features. Subsequently, the algorithm can be accelerated significantly. Ninety (90) 

features are not a problem to the latest computers. But by working with 12 features, one 

can accelerate the test and training speed, and at the same time removing extra features 

will improve the classification accuracy. 

.  

Figure 4.10: Feature selection through PCA (threshold at 99%). 

 

The table 4.4 below, show the PCA cumulative variances of transformed new features. 

The percentage of variance accounted for by the first n components is given in the 

Cumulative percentage column. The sum of the percentages of variation for the first and 
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second components, for example, is the cumulative percentage for the second component. 

The first 12 PCs explain 99% of variance 

Table 4.4: The PCA cumulative variances of transformed new features 

Dimension 1  2 3 4 5  6  7

Variance 
(%) 

43.8491
7 

62.4193
1

73.3966
3

81.8664
4

88.1070
5 

91.0744
4 

93.4809
2

Dimension 8  9 10 11 12  13  14

Variance 
(%) 

95.8085
2 

96.8622
3

97.7784
6

98.4654
5

98.9966
4 

99.3449
2 

99.5828
2

Dimension 15  16 17 18 19  20  21

Variance 
(%) 

99.7751
4 

99.8900
2

99.9779
5

99.9898
3

99.9934
1 

99.9957
5 

99.9975
8

Dimension 22  23 24 25 26  27  28

Variance 
(%) 

99.9992
6 

99.9996
6

99.9997
9

99.9999 99.9999
7 

99.9999
8 

99.9999
9

Dimension 29  30 31 32 33  34  35

Variance 
(%) 

99.9999
9 

100 100 100 100  100  100

Dimension 36  37 38 39 40  41  42

Variance 
(%) 

100  100 100 100 100  100  100

Dimension 43  44 45 46 47  48  49

Variance 
(%) 

100  100 100 100 100  100  100

Dimension 50  51 52 53 54  55  56

Variance 
(%) 

100  100 100 100 100  100  100

Dimension 57  58 59 60 61  62  63

Variance 
(%) 

100  100 100 100 100  100  100

Dimension 64  65 66 67 68  69  70

Variance 
(%) 

100  100 100 100 100  100  100

Dimension 71  72 73 74 75  76  77

Variance 
(%) 

100  100 100 100 100  100  100

Dimension 78  79 80 81 82  83  84

Variance 
(%) 

100  100 100 100 100  100  100

Dimension 85  86 87 88 89  90 
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Variance 
(%) 

100  100 100 100 100  100 

 

In multivariate statistics, a scree plot is a line plot of the eigenvalues of factors or principal 

components in an analysis. Figure 4.11 depicts a scree plot that is used to assess how many 

factors to keep in an exploratory factor analysis (FA) or how many principal components 

to keep in a principal component analysis (PCA) (principal component analysis).  

A scree plot depicts the amount of variance captured by each principal component in the 

data. The scree plot is a sharp curve that bends fast and flattens out if the first two or three 

PCs are sufficient to capture the substance of the data. It's a diagnostic tool for determining 

whether PCA works well with your data.PC1 records the most variation, PC2 the second, 

and so on.  

 

Figure 4.11: Scree Plot of the first 40 principal components 



83 
   

Each one adds to the data's information, and there are as many principal components as 

there are features in a PCA. Information is lost when PCs are left out.The loading plot on 

first two principal component is shown in Figure 4.12, from which one can evaluate the 

subsequent role of 90 features for classification. This will lead to identification of the 

relationship between samples and features and to select features more effectively. 

 

 

Figure 4.12: The biplot of two principal components (lines represent the 90 original 
features and dots represent the samples). 

A PCA biplot displays both variable loadings (vectors) and sample PC scores (dots). The 

greater the influence of these vectors on a PC, the further they are from its origin. Loading 

plots also reveal how variables are related to one another: a big angle indicates negative 

correlation, a small angle shows positive connection, and a 90° angle indicates no 

association. The biplot in figure 4.12 shows  two principal components PC1 with 43.85% 

contribution and PC2 with 18.57% contribution. 



84 
   

The PCA result are generated through a MATLAB code as follows: 

% --- Executes on button press in pushbutton8. 
function pushbutton8_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton8 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% --- Executes on button press in pushbutton9. 
Train_Feat=handles.ImgData7; 
Train_Label=handles.ImgData8; 
groups=Train_Label.'; 
labels = {'F1' 'F2' 'F3' 'F4' 'F5' 'F6' 'F7' 'F8' 'F9' 'F10' 'F11' 'F12' 'F13' 'F14' 'F15' 'F16' 
'F17' 'F18' 'F19' 'F20' 'F21' 'F22' 'F23' 'F24' 'F25' 'F26' 'F27' 'F28' 'F29' 'F30' 'F31' 'F32' 
'F33' 'F34' 'F35' 'F36' 'F37' 'F38' 'F39' 'F40' 'F41' 'F42' 'F43' 'F44' 'F45' 'F46' 'F47' 'F48' 
'F49' 'F50' 'F51' 'F52' 'F53' 'F54' 'F55' 'F56' 'F57' 'F58' 'F59'  'F60' 'F61' 'F62' 'F63' 'F64' 
'F65' 'F66' 'F67' 'F68' 'F69' 'F70' 'F71' 'F72' 'F73' 'F74' 'F75' 'F76' 'F77' 'F78' 'F79' 'F80' 
'F81' 'F82' 'F83' 'F84' 'F85' 'F86' 'F87' 'F88' 'F89' 'F90'}; 
[COEFF, SCORE, LATENT, TSQUARED, EXPLAINED] = pca(Train_Feat); 
% figure, cdfplot(EXPLAINED); 
% Display an empirical cumulative distribution function. 
 figure, plot(cumsum(EXPLAINED),'--
bs','MarkerFaceColor','g','MarkerSize',4,'MarkerEdgeColor','k'), ylabel('Cumulative 
Variance'), xlabel('No. of Principal component'); 
 title('Feature selection via PCA (threshold is set as 99%)'); 
 hold on 
 plot([12 12],[0 99],'--r'); 
 hold on 
 plot([0 90],[99 99],'--b'); 
% xlswrite('PCA.xlsx', cumsum(EXPLAINED)); 
figure; 
%  biplotG(loadings, scores, 'Groups', groups, 'VarLabels', labels) 
biplotG(COEFF, SCORE,'Groups', groups, 'VarLabels', labels); 
title('The biplot of two pricipal components PC1(43.85%) and PC2(18.57%)'); 
grid on; 
figure; 
bar(EXPLAINED(1:40,:), 0.8); 
title('scree plot'); 
clc; 
% Update GUI 
guidata(hObject,handles); 
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4.6 SVM Results 

The multiclass SVMs (WTA, MWV, and DAG) is used to classify the pineapples slice 

into five categories as follows: fancy ¾, fancy ½, choice, broken and reject. The classifies 

are first tuned with the parameter the give the highest accuracy. An IF function is used to 

choose the result of classification. The code used is as follows: 

% --- Executes on button press in pushbutton6. 
function pushbutton6_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB handles    
structure with handles and user data (see GUIDATA) 
  
% Load Test Features 
Feature_Vector=handles.ImgData4; 
% Load All The Features 
load('Training_Data.mat') 
handles.ImgData7 = Train_Feat; 
handles.ImgData8=Train_Label;  
% cat the matrixes 
Train_Feat=[Train_Feat; Feature_Vector]; 
% standardize to have unity variance and zero mean  
Train_Feat=zscore(Train_Feat); 
% reducing dimesionality 
[COEFF, SCORE] = pca(Train_Feat); 
% retaining atleast 99% energy 
Train_Feat=SCORE(:,1:12);     
% Put the test features into variable 'test' 
test=Train_Feat(end,:);  
% Put the training features into variable 'Train_Feat' 
Train_Feat=Train_Feat(1:end-1,:); 
kernel=handles.ImgData5; 
svm=handles.ImgData6; 
if svm==1 
tic 
[result,votes] = multisvm_WTA(Train_Feat,Train_Label,test,kernel); 
exec_time=toc; 
elseif svm==2 
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 tic 
[result,votes] = multisvm_MWV(Train_Feat,Train_Label,test,kernel); 
exec_time=toc; 
elseif svm==3 
    tic 
[result,votes] = multisvm_DAG(Train_Feat,Train_Label,test,kernel); 
exec_time=toc; 
end 
% display execution time 
set(handles.edit3,'string',exec_time); 
set(handles.edit21,'string',result); 
set(handles.uitable1,'data',votes);  
% disp(result); 
% Visualize Results  
if result == 1 
     R1 = 'FANCY FULL YELLOW/(3/4) '; 
    set(handles.edit2,'string',R1); 
    helpdlg(' FANCY FULL YELLOW/(3/4) '); 
    disp(' FANCY FULL YELLOW SLICE'); 
elseif result == 2 
    R2 = 'FANCY HALF YELLOW'; 
    set(handles.edit2,'string',R2); 
    helpdlg(' FANCY HALF YELLOW '); 
    disp('FANCY HALF YELLOW SLICE'); 
elseif result == 3 
    R3 = 'CHOICE'; 
    set(handles.edit2,'string',R3); 
    helpdlg(' CHOICE '); 
    disp('CHOICE SLICE  '); 
elseif result == 4 
    R5 = 'BROKEN'; 
    set(handles.edit2,'string',R5); 
    helpdlg(' BROKEN '); 
    disp(' BROKEN SLICE'); 
elseif result == 5 
    R6 = 'REJECT'; 
    set(handles.edit2,'string',R6); 
    helpdlg('REJECT '); 
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    disp(' REJECT SLICE '); 
 end 
% Update GUI 
guidata(hObject,handles); 
 

The classification of the images is displayed in a dialog box and text box as shown in 

figure below. Three multiclass SVMs (WTA, MWV, and DAG) are trained and tested 

using 5-fold cross validation and using the reduced feature vectors. Then, one choses the 

GRB (Gaussian Radial Basis) kernel, (HPOL) dth Homogeneous Polynomial kernel, and 

LIN (Linear) kernel as listed in Table 3.3. Hundreds of simulations are performed to 

determine the best kernel function parameters, such as the scaling factor γ in the GRB 

kernel and the order d in the HPOL kernel. The figure 4.13 show SVM classification 

results. 

 

Figure 4.13: SVM classification Results in dialog box 

The code used for 5-fold cross validation for performance is as follows: 

% --- Executes on button press in pushbutton5. 
function pushbutton5_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 



88 
   

% handles    structure with handles and user data (see GUIDATA) 
%% Evaluate Accuracy 
% clear all; 
load('Training_Data.mat')  
label=Train_Label.'; 
Train_Feat=zscore(Train_Feat); 
[COEFF, SCORE] = pca(Train_Feat); 
Train_Feat=SCORE(:,1:12); 
itr = 5; 
hWaitBar = waitbar(0,'Evaluating Max Accuracy using 5-Fold cross validation and 5 
iterations'); 
for k = 1:itr 
    indices = crossvalind('Kfold',label,5); 
    cp = classperf(label); 
    for i = 1:5 
        test = (indices == i); 
        TestingFoldSample = Train_Feat(test,:); 
        N=size(TestingFoldSample,1); 
        TrainingFoldSample = Train_Feat(indices ~= i,:); 
        TrainingFoldLabel=label(indices ~= i,:); 
        TrainingFoldLabel_R=TrainingFoldLabel.'; 
        kernel=handles.ImgData5; 
        svm=handles.ImgData6; 
        for j=1:N 
            if svm==1 
                [result,votes] = 
multisvm_WTA(TrainingFoldSample,TrainingFoldLabel_R,TestingFoldSample(j,:),ker
nel); 
                class(j,:)=result; 
                %             set(handles.uitable1,'data',votes); 
            elseif svm==2 
                [result,votes] = 
multisvm_MWV(TrainingFoldSample,TrainingFoldLabel_R,TestingFoldSample(j,:),ker
nel); 
                class(j,:)=result; 
                %             set(handles.uitable1,'data',votes); 
            elseif svm==3 
                [result,votes] = 
multisvm_DAG(TrainingFoldSample,TrainingFoldLabel_R,TestingFoldSample(j,:),kern
el); 
                class(j,:)=result; 
                %             set(handles.uitable1,'data',votes); 
            end 
        end 
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        outlabel(indices==i,1)= class; 
        classperf(cp,class,test);   
    end 
    % cp.ErrorRate 
    class=[]; 
    waitbar(k/itr); 
    Acc_F=cp.CorrectRate*100; 
    Acc(k)=Acc_F; 
    if Acc_F>=max(Acc) 
        outlabel_max=outlabel; 
    end 
end 
% Max_Acc2=sum(grp2idx(outlabel)==grp2idx(label))/length(label) 
fold_correct_rate=Acc 
Max_Acc=max(Acc); 
set(handles.edit4,'string',Max_Acc); 
C = confusionmat(outlabel_max,label); 
set(handles.uitable2,'data',C); 
outlabel_max=[]; 
delete(hWaitBar); 
Sensitivity=cp.Sensitivity 
Specificity=cp.Specificity 
PPV=cp.PositivePredictiveValue 
NPV=cp.NegativePredictiveValue 
guidata(hObject,handles); 

The performance of nine set of m-SVMs is tested and result tabulated as below in table 

4.5 and 4.6. The two tables show the accuracy for classification and computation time in 

5-fold cross-validation for those SVMs with optimized parameters, respectively. The 

research main objective accuracy is above 85%.  Both MWV and WTA did achieve the 

objective and therefore recommended for use. MWV performed much better in all the 

kernels, and therefore the best method. The classification accuracies for both WTA SVM 

and MWV SVM, using LIN kernel, are above 85%, higher than the DAG SVM of 60.8%. 

WTA SVM and MWV SVM using the HPOL kernel have a classification accuracy of 

above 85%, compared to 60.4% for DAG SVM. 

Finally, the classification accuracy of MWV SVM, using the GRB kernel, is 92.8%, 

slightly higher than WTA SVM of 88% and much higher than DAG SVM of 55.2%. 
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Therefore, the best results are attained using the Gaussian Radial Basis kernel MWV SVM 

with a classification accuracy of 92.8%. 

Table 4.5: Classification Accuracy of SVMs 

 LIN HPOL GRB 
WTA-SVM 85.6% 85.2% 88% 
MWV-SVM 87.2% 87.6% 92.8% 
DAG-SVM 60.8% 60.4% 55.2% 

 

Table 4.6: Computation Time of SVMs 

 LIN HPOL GRB 
WTA-SVM 0.0788 0.0968 0.0493 
MWV-SVM 0.0721 0.0668 0.0457 
DAG-SVM 0.0202 0.0234 0.0210 

 
The WTA SVM is the slowest in term of classification speed, the dataset needed for 

training is relatively large since it uses one-versus-all strategy. Since MWV SVM uses 

one-versus-one strategy, it is faster than WTA-SVM, for in MWV it is that every 

individual binary SVM only takes about 2/5 portion of the data. The DAG SVM is yet 

twice faster than MWV SVM. This is due to the fact that the MWV SVM requires all 10 

individual SVMs to achieve a final conclusion, whereas the DAG SVM only requires 4 

binary SVMs to perform the same task. 

4.7 Confusion Matrix 

Figure 4.14 shows the MWV SVM confusion matrix using the GRB kernel. Each column 

of the matrix represents the instances in the target class, whereas each row represents the 

instances in the output class (predicted class) (actual class). Samples whose target is the 

jth class that is classified as ith class are represented by the number in the ith row and jth 

column. Highlighted in yellow are all the misclassification cases. 
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Figure 4.14: MWV-GRB-SVM Confusion matrix with total classification accuracy 

of 92.8%. 

By observing at the bottom line of Figure 4.14, one finds that none of the class is all 

recognized successfully. Nevertheless, only a few types of pineapple slices are 

misclassified. The SVM classification for the broken performs the worst i.e. 86%. In the 

database, there are 50 different pictures of Fancy ¾ class, however, two of them are 

misclassified as Fancy ½ class, two as Broken class and another one of them is 

misclassified as Reject class, so the rest 45 are classified correctly leading to a 90% correct 

rate. There are fifty samples in the database for the Fancy ½ class, but one are misclassified 

as Fancy ¾ class and one is misclassified as reject class, leaving 48 samples correctly 

classified, resulting in an 96% accuracy rate. There are fifty samples in the database for 

the Choice class, one of which is incorrectly classified as Broken class, leaving a 98% 

accuracy rating. In the Broken class, there are fifty samples in the test dataset, two of 

which are misclassified as Reject class and five of which are misclassified as Fancy ¾ 

class, resulting in an 86% accurate rate. With fifty samples in the database for the Reject 

class, one is misclassified as Fancy ½ class, one is misclassified as Fancy ¾ class, and 

another is misclassified as Broken class, resulting in a 94% accurate rate. A motivation 

for our future work is to solve above misclassification as all classes are observed not 

distinct in the view of SVM. 
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Table 4.7: The confusion matrices for the nine SVM models 

LINEAR KERNEL  
WTA-LIN-SVM CONFUSION MATRIX 

(85.6%) 

 

39 7 0 2 1 
 

8 37 0 2 1 
 

0 4 48 1 1 
 

2 1 1 44 1 
 

1 1 1 1 46 
 

    
MWV-LIN-SVM CONFUSION MATRIX 

(87.2%) 
37 8 0 3 1 
8 42 1 1 1 
0 0 48 1 0 
4 0 1 45 2 
1 0 0 0 46 

    
DAG-LIN-SVM CONFUSION MATRIX 

(60.8%) 
45 40 18 5 1 
1 10 18 0 2 
0 0 12 0 0 
4 0 2 39 1 
0 0 0 6 46 

 

   

4.7 (a): Linear Kernel           
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HOMOGENEOUS POLYNOMIAL KERNEL 
WTA-HPOL-SVM CONFUSION MATRIX (85.2%) 

37 4 0 2 1 
10 41 0 1 3 
0 4 49 2 1 
3 1 0 44 3 
0 0 1 1 42 

    
MWV-HPOL-SVM CONFUSION MATRIX 

(87.6%) 
38 4 0 7 2 

6 45 1 0 0 
0 0 48 1 1 
5 0 1 42 1 
1 1 0 0 46 

    
DAG-HPOL-SVM CONFUSION MATRIX (60.4%) 

45 41 21 3 2 
1 8 13 0 0 
0 0 13 0 0 
2 0 3 39 2 
2 1 0 8 46 

 4.7 (b): Homogenous Kernel 

The table 4.7 shows the confusion matrices for the 9 SVM models. The leading diagonal 

gives the accuracy of the class. i.e 92.8% for MWV-GRB-SVM as 

(45+48+49+43+47)/250  
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GAUSSIAN RADIAL BASIS KERNEL 
WTA-GRB-SVM CONFUSION MATRIX 

(88%) 
39 5 0 2 1
6 43 1 2 1
0 1 48 0 1
4 0 1 44 1
1 1 0 2 46

  
 

  
MWV-GRB-SVM CONFUSION MATRIX 

(92.8%) 
45 1 0 5 1
2 48 0 0 1
0 0 49 0 0
2 0 1 43 1
1 1 0 2 47

    
DAG-GRB-SVM CONFUSION MATRIX 

(55.2%) 
45 40 32 4 0
2 9 13 0 1
0 0 2 0 0
1 0 3 33 0
2 1 0 13 49

  

 4.7 (c): Gaussian Radial Basis Kernel 
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CHAPTER FIVE 

5 CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

The main goal of the research is to develop a pineapple slices classification algorithm 

using a multi-class SVM and hybrid feature extraction technique to automate the manual 

of sorting and grading of slices. At the end of the research work, through experiments, the 

following conclusions arrived at: 

i). An Otsu’s segmentation algorithm has been developed and preprocessed high 

quality images for classification. The images delivered clearly identifiable features 

to the SVMs classify and enabled classification of the pineapple slices into five 

categories. 

ii). An improved SVM recognition performance has been achieved by use of a hybrid 

feature extraction method. The combination of colour moment, shape, colour 

histogram and GLCM texture features, are found to be more effective than any 

single kind of feature in classification of pineapple slices. 

iii). PCA algorithm has been used to reduce dimension of feature space from 90 

features to 12 features and maintain 99% energy as selection standard. By working 

with 12 features, the test and training speed are accelerated and at the same time 

removing irrelevant extra features improved the classification accuracy. 

iv). Using PCA reduced features, three different multiclass SVMs (DAG-SVM, 

MWV-SVM, and WTA-SVM) have been built and tested through 5-fold cross 

validation and with three kernels; Gaussian Radial Basis, dth Homogeneous 

Polynomial, and linear in the database of 250 pineapple slice images. The highest 

overall classification accuracy results of about 93% was achieved. 
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v). The pineapple slices grading and sorting method develop achieved accuracy of 

about 93% which is a higher accuracy than J. I. Asnor, 2013, pineapple 

classification using RGB colour that achieved 75% accuracy.   

In summary, a pineapple slices classification algorithm with accuracy of above 85% 

is developed and tested. The experimental results showed that the MWV-GRB-SVM 

achieves classification accuracy of about 93% which is the highest accuracy overall. 

5.2 Recommendations 

The research recommends the following:  

i). Take in additional features to increase the classification accuracy, fractal 

dimension (FD), more textures and many more;  

ii). Refine algorithm to find distinguishable features for Fancy ¾ and broken;  

iii). Build hardware prototype to implement the algorithm;  

iv). Find ways to accelerate the algorithm, like using modified Gaussian kernel that 

run fast hence accelerating algorithm.  

v). Extending this research to multiple fruits sale at supermarket. 

vi). From the research it was found that it’s challenging to calibrate the classifier daily 

to capture daily variabilities of pineapple slices received from plantation. From 

this a paper was published to solve the problem. 

  



97 
   

6 REFERENCES 
Acevedo, J. R., Maldonado, S. B., Lafuente, S. A., Siegmann, P., & López, F. F. (2009). 

Computational load reduction in decision functions using support vector 

Machines. Signal Process, 89, 2066–2071. 

Armand, S., Watelain, E., Roux, E. M., & Lepoutre, F.-X. (2007). Linking clinical 

measurements and kinematic gait patterns of toe-walking using fuzzy decision 

trees. Gait Posture, 25, 475–484. 

Bangare, S., Dubal, A., Bangare, P., & Patil, S. (2015). Reviewing Otsu’s Method For 

Image Thresholding. International Journal of Applied Engineering Research, 10. 

21777-21783. 

Benazir, K., & Vijayakumar. (2012). Fingerprint Matching by Extracting GLCM 

Features. International Conference & Workshop on Recent Trends in Technology 

(TCET), International Journal of Computer Applications (IJCA) (pp. 30-34). 

New York: Association for Computing Machinery. 

Davies, E. R. (1984). Design of cost-effective systems for the inspection of certain food 

products during manufacture. Proceedings of the 4th Conference on Robot Vision 

and Sensory Controls, 9–11 October (pp. 4. 37–46). London: In Pugh, A. (ed.). 

Davies, E. R. (2012). Computer and Machine Vision: Theory, Algorithms, Practicalities, 

4th edition,. Oxford, UK: Academic Press. 

Deris, A. M., Zain, A. M., & Sallehuddin, R. (2011). Overview of Support Vector 

Machine in Modeling-Machining Performances. Procedia Eng.,, 24, 308–312. 

Diwash, P., Ankit, B., P., S., & S., Y. (2022, September 1). HSV Selector for Stickers 

and Crown Detection. Retrieved from researchgate: 

https://www.researchgate.net/publication/363539471_HSV_Selector_for_Sticker

s_and_Crown_Detection 



98 
   

Eleyan, A., & Irel, H. D. (2011). Co-occurrence matrix and its statistical features as a 

new approach for face recognition. Turk J Elec Eng & Comp Sci, 19(1):97-107. 

Gagan, B. (2022). Topic modeling by using lda. Interantional Journal of scientific 

research in engineering and management, 06. 

Gill, H., Khalaf, O., Alotaibi, Y., Alghamdi, S., & Alassery, F. (2022). Fruit Image 

Classification Using Deep Learning. Computers, Materials & Continua, 71. 

5135-5150. 

Gosselin, B., Kleynen, O., Leemans, V., Destain, M. F., & Unay, O. D. (2010). 

Automatic grading of Bi-coloured apples by multispectral machine vision. 

Computers and Electronics in Agriculture. 

Haralick, R., Shanmugam, K., & Dinstein, I. (1973). Textural Features for Image 

Classification. IEEE Transactions On Systems, Man and Cybernetics, SMC-

3(6):610-21. 

Heinemann, P., Varghese, Z. A., Morrow, C. T., Sommer III, H. J., & Crasswelle, R. 

(1995). Machine Vision Inspection of 'Golden Delicious' Apples. Applied 

Engineering in Agriculture, 11(6),901-906. 

Hou, Z., & Wang, Z. (2013). From model-based control to data-driven control: Survey, 

classification and perspective. Information Sciences, 235. 3–35. 

Hou, Z., & Wang, Z. (2016, September 1). Information Sciences-2013 From model-

based control to data-driven control. Retrieved from Researchgate: 

https://www.researchgate.net/publication/307959874_Information_Sciences-

2013_From_model-based_control_to_data-driven_control 

Jackson, J. E. (1991). A User’s Guide to Principal Components. Hoboken, NJ, USA: 

John Wiley & Sons. 



99 
   

Jiawei, H., & K. M. (2006). Data mining: concepts and techniques. morgan kaufmann, 

54. 

Jiménez Carvelo, A., Cruz, C., Cuadros-Rodríguez, L., & Koidis, T. (2022). Machine 

learning techniques in food processing. In A. P. Ayon Tarafdar, Current 

Developments in Biotechnology and Bioengineering: Advances in Food (pp. 333-

351). Amsterdam : Elsevier. 

Juliana, G., Florencia, V., & Laura, C. (2020). OTSU's thresholding. Retrieved from 

Researchgate: 

https://www.researchgate.net/publication/345685905_OTSU%27s_thresholding 

Kwak, N. (2008). Principal Component Analysis Based on L1-Norm Maximization. 

IEEE Trans. Patt. Anal. Mach. Int, 30, 1672–1680. 

Li, D., Yang, W., & Wang, S. (2010). Classification of foreign fibers in cotton lint using 

machine vision and multi-class support vector machine. Comput. Electron. Agric, 

74, 274–279. 

Lind, R., & Murhed, A. (2012). Computer vision in food processing: an overview. 

Computer vision technology in the food and beverage industries, 130-149. 

Lingras, P., & Butz, C. (2007). Rough set based one-v-one and one-v-r approaches to 

support vector machine multi-classification. Inform. Sci., 177, 3782–3798. 

Lipovetsky, S. (2009). PCA and SVD with nonnegative loadings. Pattern Recognit. 

Lett., , 42, 68–76. 

Lou, S., Jiang, X., & Scott, P. (2012). Algorithms for morphological profile filters and 

their comparison. Precis. Eng., 36, 414–423. 

Maddipati, S., Nandigam, R., K. S., & Venkatasubramanian, V. (2011). Learning 

patterns in combinatorial-protein libraries by Support Vector Machines. Comput. 

Chem.Eng., 35, 1143–1151. 



100 
   

Maitra, M., & Chatterjee, A. (2008). A hybrid cooperative comprehensive learning 

based PSO algorithm for image segmentation using multilevel thresholding. 

Expert Syst. Appl., 34, 1341–1350. 

Mathar, R., Alirezaei, G., Balda, E., & Behboodi, A. (2020). Support Vector Machines. 

In R. Mathar, Fundamentals of Data Analytics, With a View to Machine 

Learning (pp. 83-105). Cologne: Springer; 1st ed. 2020 edition. 

May, R., Maier, H., & Dandy, G. (2010). Data splitting for artificial neural networks 

using SOM-based stratified sampling. Neural Netw, 23, 283–294. 

Nakano, V. (1997). Application of neural networks to the colour grading of apples. 

Computers and Electronics in Agriculture, Elsevier, 105-116. 

Narendra, V. .., & Hareesh, K. S. (2010). Prospects of computer vision automated 

grading and sorting systems in agricultural and food products for quality 

evaluation. Int J Comp App, 1: 0975 – 8887. 

Nnamdi, E., Vincent, C., Eneh, N., Ogechukwu, I., & Ijeoma, E. A. (2022). 

Segmentation of Lung Nodules in Computed Tomography Images Using Modi 

ed Otsu's Technique. SUSTAINABLE ENGINEERING AND INDUSTRIAL 

TECHNOLOGY (pp. J9,1-6). NSUKKA NIGERIA: UNIVERSITY OF 

NIGERIA. 

Noah, K. (2005). Colour moments. School Of Informatics, University Of Edinburgh, 3-6. 

Norton, O. I., Ozkan, D., Mert, U. Y., & Senturk, O. (2008). Estimation of tree size 

diversity using object–oriented texture analysis and ASTER imagery. sensors, 

8:4709-4724. 

Patil, N. S., Shelokar, P. S., Jayaraman, V. K., & Kulkarni, B. D. (2005). Regression 

models using pattern search assisted least square support vector machines. Chem. 

Eng. Res. Des., 83, 1030–1037. 



101 
   

Patil, N. S., Shelokar, P. S., Jayaraman, V. K., & Kulkarni, B. D. (2005). Regression 

models using pattern search assisted least square support vector machines. Chem. 

Eng. Res. Des., 83, 1030–1037. 

Pereira, A., Reis, M., Saraiva, P., & Marques, J. (2011). Madeira wine ageing prediction 

based on different analytical techniques. UV–vis, GC-MS, HPLC-DAD. 

Chemometr. Intel. Lab. Syst., 105, 43–55. 

Platt, J. C., Cristianini, N., Shawe, J. T., & Large, M. (2000). DAGs for multiclass 

classification. Adv. Neural. Inform. Process. Syst., 12, 547–553. 

Rashmi, P., Sapan, N., & Roma M. (2013). Image Processing and Machine Learning for 

Automated Fruit Grading System: A Technical Review. International Journal of 

Computer Applications, 0975 – 8887. 

Senthilkumaran, N., & Rajesh, R. (2009). Edge Detection Techniques for Image 

Segmentation – A Survey of Soft Computing Approaches. International Journal 

of Recent Trends in Engineering, Vol. 1, No. 2, May. 

Siang, K. T., & Mat, N. A. (2011). Colour image segmentation using histogram 

thresholding—Fuzzy C-means hybrid approach. Pattern Recognit. Lett, 44, 1–15. 

Sindhuri, M., & Nallapareddy, A. (2022). Text Separation in Document Images through 

Otsu's Method. EEE WiSPNET 2016 conference (pp. 2395-2399). Chennai : 

Anusha Nallapareddy. 

Sun, D. W., & Brosnan, T. (2003). Improving quality inspection of food products by 

computer vision: a review. J Food Engineering, 61: 3-16. 

Tang, W., & Daoutidis, P. (2022). Data-Driven Control: Overview and Perspectives. 

American Control Conference (ACC) (pp. 1048-1064). Atlanta: IEEE. 

Wangwe, S. (1995). Exporting Africa: technology, trade and industrialization in Sub-

Saharan Africa. New York: United Nations University/Routledge. 



102 
   

Xu, Y., Li, L., Li, X., & Deng, Y. H. (2013). A feature-selection algorithm based on 

Support Vector Machine-Multiclass for hyperspectral visible spectral analysis. 

Journal of Food Engineering. 

Yudong, Z., & Lenan, W. (2012). Classification of Fruits Using Computer Vision and a 

Multiclass Support Vector Machine. Sensors, 1424-8220. 

Zayas, I., Pomeranz, Y., & Lai, F. S. (1989). Discrimination of wheat and non-wheat 

components in grain samples by image analysis. Cereal Chemistry, 66: 233- 237. 

Zheng, H., & Lu, H. (2012). A least-squares Support Vector Machine (LS-SVM) based 

on fractal analysis and CIELab parameters for the detection of browning degree 

on mango. Computers and Electronics in Agriculture, 83: 47-51. 

Zou, X. B., Zhao, J. W., & Li, Y. M. (2010). In-line detection of apple defects using 

three colour cameras system. Computers and Electronics in Agriculture, 

Vol.70:129-134. 

 

  



103 
   

APPENDICES 
 

Appendix 1: List of Journal Publications and Conference Papers 

 
1. John N. Kamau, “A Step-By-Step Approach to Retrofit and Automation of PCB 

Machines Using PLC”, European International Journal of Science and 

Technology, Vol. 7, No. 3, May 2018. 

2. J.N. Kamau, “A Step-By-Step Approach to Retrofit and Automation of PCB 

Machines Using PLC”, Proceedings of the Sustainable Research and Innovation 

Conference, held at JKUAT Main Campus, Kenya, on 2 - 4 May, 2018 

3. J.N. Kamau, P.K. Hinga, S.I. Kamau, “Support Vector Machine Kernel Model 

Calibration for Optimal Accuracy in Automatic Pineapple Slices Classification” 

Published in International Research Journal of Innovations in Engineering and 

Technology - IRJIET, Volume 6, Issue 9, pp 1-8, September 2022. Article DOI 



International Research Journal of Innovations in Engineering and Technology (IRJIET) 

ISSN (online): 2581-3048 

Volume 6, Issue 9, pp 1-8, September-2022 

https://doi.org/10.47001/IRJIET/2022.609001  

© 2022-2017 IRJIET All Rights Reserved                     www.irjiet.com                                            1                                                                    
 

Support Vector Machine Kernel Model Calibration for 

Optimal Accuracy in Automatic Pineapple Slices 

Classification 
1
*J.N. Kamau, 

2
P.K. Hinga, 

3
S.I. Kamau 

1,2,3Department of Electrical and Electronic Engineering, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 

62000 – 00200 Nairobi, Kenya 

Authors Email: 1*jnyutu@gmail.com, 2pkhinga@gmail.com, 3skamau@eng.jkuat.ac.ke  

Abstract - Sorting pineapple can be automated with use of 

computer vision. The unique challenge with the pineapple 

slices is variability of the fruit slices color, ripeness and 

texture due to varying environmental parameters and fruit 

types. The most common types of pineapple fruit are 

smooth Caen and MD2. Currently the pineapple industries 

sort the slices manually using casual workers. Before 

commencement of a typical production shift, there is start-

up shift where machine are cleaned, prepared and 

calibrated for the production. Fruit slices are also sampled 

and processed to simulated actual production. A mock 

sorting is done to help guide the worker for the expected 

sorting for the five categories i.e: fancy ¾, fancy ½, choice, 

broken and reject. To achieve a fully automated sorting 

process there is a need to calibrate machine model and 

capture the day to day variability of fruit color, ripeness 

and texture. In this paper we propose to use an analytical 

method to calibrate the Support Vector Machine (SVM) 

with Gaussian radial basis function (RBF) for optimal 

sigma and box constraint (C). A compelling feature of the 

proposed algorithm is that it does not require an 

optimization search, making the selection process simpler 

and more computationally efficient. The proposed 

algorithm achieves the highest accuracy when used with the 

Gaussian multiclass SVM, as demonstrated by 

experimental results on three real-world datasets. 

Keywords: Gaussian Radial Basis Function, Sigma, Support 

Vector Machine, Class Separability, Computer Vision, Box 

Constraint. 

I. DEFINITIONS 

Notation  Meaning 

C Box contraint/ regularization parameter in SVM 

ω the weight vector in two dimensions for W and B 

κ(xi,xj) the kernel function 

Φ(xi) the kernel-space instance 

W, B separability within and between classes, accordingly 

W’, B’ The mean distance inside and between classes, 
respectively. 

σ Sigma parameter for kernel function 

II. INTRODUCTION 

Calibration is the process of configuring an instrument to 

produce acceptable results for a sample. Fundamental to the 

design of instruments is the elimination or minimization of 

factors that lead to inaccurate measurements. The purpose of 

pineapple classifier calibration is to reduce classification error 

by ensuring the precision of test equipment. Calibration 

quantifies and controls classification process errors and 

uncertainties to an acceptable level. 

A human operator sorts the sample of pineapple slices into 

five categories i.e. fancy ¾, fancy ½, choice, broken and reject. 

The sample size holds at least 50 slices of each category.  The 

samples are then passed into a machine to capture the day’s 

pineapple slices variability. The machine is designed to accept 

the first 50 slices as the fancy ¾, the second 50 slices as fancy 

½, then choice, broken and reject in that order. The machines 

then run the proposed algorithm to determine the optimal 

sigma and regularization parameters for the day. Here we 

describe how to develop the calibration algorithm. 

The evaluation of SVM performance is a crucial step in 

ML design: precision, CPU time, and consistency. The kernel 

parameter is crucial for maintaining the SVM's high 

performance. Since's domain of definition ranges from zero to 

infinity, exhaustive search for parameter selection of is 

intractable. For instance, if the parameter is close to zero, SVM 

tends to over fit because all training instances are used as 

support vectors. Under-fitting occurs in SVM if the parameter 

tends toward infinity because all training instances are treated 

as a single instance. The vast majority of prior research on this 

topic is based on optimization search algorithms that result in a 

high computational load and are extremely slow. A simple but 

effective analytical algorithm is proposed for locating a good 

value of σ.  

In the field of machine learning, the support vector 

machine (SVM) is a critical technique for supervised learning. 

SVM utilizes the principle of structural risk minimization to 

mailto:1*jnyutu@gmail.com
mailto:2pkhinga@gmail.com
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locate an optimal hyper plane in which training instances of 

distinct classes are linearly separable. Due to its numerous 

desirable properties and promising empirical performance [i, 

ii], SVM quickly gained attention from researchers who 

applied it to a variety of fields, including science and 

engineering, such as condition monitoring and fault diagnosis 

[iii,iv]. Among the kernels available in SVM, the RBF kernel 

is the most widely used due to its attractive properties [1, 2], 

e.g. the property of structure-preserving. The Gaussian RBF 

kernel has a structure similar to that of  𝑘(𝑋𝑖 , 𝑋𝑗 ) =

exp⁡(−
 𝑋𝑖−𝑋𝑗  

2

2𝜎2 ) where σ is the only parameter named by width 

of features. 

We propose an algorithm for determining the optimal σ 

based on the maximization of between-class separability and 

minimization of within-class separability, and calibrate our 

classifier for optimal pineapple classification. An attractive 

feature of the proposed algorithm is that it does not require an 

optimization search, making the selection procedure simpler 

and more computationally efficient. Since the maximizer can 

be derived analytically, the proposed method avoids the 

optimization search process, resulting in a significant 

improvement in computation load for parameter selection. 

After the optimal σ has been determined, searching for the box 

constraint parameter is a simple iterative process. The 

experimental results on three real-world datasets indicate that 

the proposed algorithm provides the highest accuracy for the 

Gaussian multiclass SVM. 

III. REPORTED WORK 

3.1 Manufacturing Calibration 

Manufacturing calibration ensures the precision and 

consistency of measuring/classification instruments by 

comparing them to reference calibrating equipment and 

making any necessary adjustments. The primary significance 

of calibration is that it preserves classification precision, 

standardization, and repeatability, thereby ensuring the 

reliability of benchmarks and results. 

Without regular calibration, equipment can deviate from 

specifications, provide inaccurate classification, and jeopardize 

quality, safety, and longevity[v] 

In terms of the quality and performance of a procedure or 

finished product, manufacturing precision is a crucial metric. 

If the pineapple slices are not classified to the customer's 

required specifications, which are determined by the product's 

intended use, there will likely be negative consequences. 

The significance of precision in manufacturing highlights 

the significance of calibration, as manufacturing equipment 

must be properly calibrated to meet specifications. Without 

properly calibrated equipment, it is impossible to meet ISO 

quality standards and achieve the required level of accuracy. 

The quality and safety of the finished product is the most 

essential reason why precision is a crucial manufacturing 

standard. Inaccurate components, or those that fall outside of 

the required tolerance, cannot be used because their likelihood 

of functioning properly is extremely low. 

Calibration plays a significant role in preventing the 

production of inaccurate products; therefore, the benefits of 

calibrating your machinery and measuring equipment cannot 

be overstated. 

There are numerous facets of calibration in the 

manufacturing industry, but calibration is generally significant 

in these two key areas: 

 Calibration of classification equipment ensures that your 

quality control processes are precise and that you do not 

accept defective slices. 

 Calibration creates a more efficient manufacturing 

process by ensuring that equipment is operating as 

expected. Inadequately calibrated equipment will lead to 

unpredictable manufacturing outcomes and inaccurate 

slices classification. 

Here the SVM classifier is a virtual machine, developed to 

sort pineapple slices into five categories. The two parameters 

of Gaussian kernel required to be calibrated are sigma and 

regularization parameter. In this paper we propose to use 

method that entirely uses derived formulae to arrive to optimal 

parameter without rigorous iterative process. 

3.2 Gaussian radial basis function (RBF) kernel 

Without knowing the mapping function Φ explicitly, 

kernel methods map data from the feature space to the kernel 

space. 

Using the kernel method, SVM can locate a hyper plane in 

the kernel space, resulting in a non-linear separation of features 

in the feature space.  

The Gaussian radial basis function (RBF) kernel is one of 

the most widely used kernels in SVM due to its attractive 

characteristics, such as the structure-preserving property. The 

kernel of the Gaussian RBF has the form 𝑘(𝑋𝑖 ,𝑋𝑗 ) =

exp⁡(−
 𝑋𝑖−𝑋𝑗  

2

2𝜎2
)where σ is the only specified parameter by 

width of features. Sigma (σ) is determined by a default value, 

such as σ=1.It has been reported, however, that is crucial for 

the robust performance of SVM, whereas an arbitrary value of 
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σ cannot guarantee performance.  Grid search is a simple and 

intuitive method. By defining a finite set, grid search applies a 

criterion to each possible solution (node) within the set. As the 

optimal value of σ, the node with the highest score on the 

criterion is selected. The grid search strategy is adopted, and 

the Support Vector Machine's (SVM) classification accuracy is 

typically used as the selection criterion. Grid search has two 

shortcomings;  

1. CPU time increases exponentially with the number of 

nodes in the set, making it a time-consuming operation;  

2. The optimal σ cannot be determined if the set is 

improperly defined.  

This could occur due to a lack of prior knowledge. To 

determine the optimal value σ of, intelligent optimization 

techniques such as simulated annealing algorithm[vi], genetic 

algorithm [vii],gradient descent algorithm[viii]and particles 

warm optimization algorithm were utilized[ix]. Typically, 

classification accuracy is regarded as the objective function. 

However, the classification accuracy of SVM is affected by 

other parameters, such as the regularization parameter, in 

addition to σ. Li's method [x] identifies the optimal σ using 

gradient search. Using intelligent optimization search 

algorithms, the reviewed parameter selection methods may 

require less computation time than grid search. Nevertheless, 

they increase the complexity of selection algorithms, which is 

likely why the parameter σ in numerous applications is 

frequently set to a default value. To improve the efficiency of 

the selection procedure, a simple but effective analytical 

algorithm for determining a good value σ of is proposed in the 

present work. Introducing both within-class and between-class 

separability, we define the objective function of class 

separability. This class separability measure is in fact a 

function with respect to the parameter σ [xi]. 

3.3 Max Wins Voting (MWV) SVM 

Initially, SVMs were designed for binary classification. 

Numerous methods for multi-class SVMs have been proposed, 

the most prevalent of which is to divide the multiclass problem 

into multiple binary classification problems [xii]. Three types 

of methods are frequently used: Winner-Takes-All (WTA) 

SVM, Max-Wins-Voting (MWV) SVM, and Directed Acyclic 

Graph (DAG) SVM. MWV has the highest accuracy in image 

classification among the three methods [xiii] and we select this 

method to optimize its accuracy. 

Classification is accomplished using a strategy for the one 

versus one method in max wins voting (MWV). After 

constructing a binary SVM for each pair of classes, one will 

obtain C(C-1)/2 binary SVMs in total. When applied to new 

test data, each SVM assigns one vote to the winning class, and 

the test data is labeled with the class with the most labels. If 

there are two identical votes, MWV chooses the class with the 

smallest index. The following is the mathematical formula.  

The ijth (i= 1,2, …, C-1, j = i+ 1, …, C) individual binary 

SVM is trained with all data in the ith class with +1 label plus 

all data of the jth class with −1 label, so as to distinguish ith 

class from jth class. The decision function of ijth SVM is: 

𝑓𝑖𝑗  𝑥 =  𝑦𝑛
𝑖𝑗𝛼𝑛

𝑖𝑗

𝑁1+𝑁𝑗

𝑛=1

𝑘 𝑥𝑛
𝑖𝑗 , 𝑥 − 𝑏𝑖𝑗 , 𝑖 = 1,2, … , 𝐶 − 1, 𝑗

= 𝑖 + 1, 𝑖 + 2,… , 𝐶 

𝑦𝑛
𝑖𝑗

=  
+1     𝑥𝑛

𝑖𝑗 ∈ 𝑖𝑡𝑕 𝑐𝑙𝑎𝑠𝑠

−1     𝑥𝑛
𝑖𝑗 ∈ 𝑗𝑡𝑕 𝑐𝑙𝑎𝑠𝑠

  

Where𝑁𝑖 and 𝑁𝑗  denotes the total number of ith class and 

jth class, respectively.𝑦𝑛
𝑖𝑗

∈  +1, −1  depends on the class 

label of 𝑥𝑛
𝑖𝑗

. If 𝑥𝑛
𝑖𝑗

 belongs toith class, 𝑦𝑛
𝑖𝑗

= +1; otherwise 𝑥𝑛
𝑖𝑗

 

belongs to jth class, 𝑦𝑛
𝑖𝑗

= −1. 𝛼𝑛
𝑖𝑗

is the Lagrange coefficient; 

and 𝑏𝑖𝑗  is the bias term. 𝛼𝑛
𝑖𝑗

and 𝑏𝑖𝑗  are obtained by training the 

ijth individual SVM. The output of ijth SVM is the sign 

function of its decision function, namely: 

𝑂𝑖𝑗  𝑥 = 𝑠𝑔𝑛  𝑓𝑖𝑗  𝑥   

if 𝑓𝑖𝑗  𝑥 > 0, then the output 𝑂𝑖𝑗  𝑥  𝑖𝑠 + 1, denoting 𝑥 

belongs to ith class; otherwise output is     -1, denoting 

𝑥belongs to jth class. 

IV. METHODOLOGY 

To develop an analytical algorithm to determine the 

optimal σ and C and achieve the best calibration accuracy for 

Gaussian m-SVM, the following steps are used: 

 Define the objective function, which is a class 

separability function with respect to the parameter σ. 

 Analytically define the maximizer of the objective 

function 

 Select the weight vector through intuitive and simple 

method. 

 Develop a MATLAB algorithm implementing the 

maximizer function with selected weights. 

 Test the code on three real world datasets and evaluate 

their prediction performance through 5-fold cross 

validation 

4.1 Defining the objective function 

Gramian matrix (also known as kernel matrix) is a matrix 

that contains all the dot product values of a training subset. 

SVM training relies on the dot product. In other words, the 

Gramian matrix contains all information that the SVM can 

learn about training instances, along with the label information. 
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Given a data set U and a kernel function, the Gramian matrix is 

denoted by  

𝐺 =  

𝐾11 …𝐾1𝐿

⋮      ⋱     ⋮
𝐾𝐿1 …𝐾𝐿𝐿

 = exp⁡ −
12

𝜎2
𝐷 ,𝐷 =

 
 
 
 
 𝐾11

′
…𝐾

1𝐿

′

⋮      ⋱     ⋮

𝐾
𝐿1

′
…𝐾𝐿𝐿

′

 
 
 
 
 

 

         D is known as the Euclidean distance matrix. The 

Gramian matrix has a relationship with both σ and D. Since D 

is fixed for a dataset, the only parameter that can be modified 

is σ. Class separability is a traditional concept for describing 

the scattering of instances in the feature space. Class 

separability takes the following two principles into account:  

1. Principle I: Instances of the same class ought to be as 
comparable as possible;  

2. Principle II: Different class instances should be as 

dissimilar as possible.  

Typically, the within class separability (W) and the 

between-class separability (B) are used to evaluate adherence 

to these two principles. We first define two distance-based 

scalars to estimate W and B in the feature space. The 

relationship between the distance similarity in the feature space 

and that in the kernel space is depicted in the following 

equation [7].  

 Φ 𝑋𝑖 −Φ 𝑋𝑗   
2

= 2 − 2exp⁡ −
 𝑋𝑖 −𝑋𝑗  

2

2𝜎2
  

Given this relationship, two corresponding scalars are 

derived to estimate W and B in the kernel space. The optimal σ 

is the one that simultaneously minimizes W and maximizes B 

in the kernel space. It is assumed that datasets are Gaussian 

distributed so that the mean distance can be used to accurately 

estimate class separability. The following relationship exists 

between the within-class mean distance (W'), the between-class 

mean distance (B'), and the total mean distance (T') in the 

feature space: 

𝑇′ =   𝑁𝑖
2

/𝑁2

𝐿

𝑖=1

 𝑊′ +  1 − 𝑁𝑖
2

/𝑁2

𝐿

𝑖=1

 𝐵′  

W and B in the kernel space can be estimated respectively 

using: 

𝑊 = 2 − 2exp⁡ −
12

𝜎2
𝑊′  

𝐵 = 2 − 2exp −
12

𝜎2
𝐵′  

The objective function of class separability is established by 

𝐽 𝜎 = 𝜔𝑇  
−𝑊
𝐵

 

= 𝜔𝑤  2 exp −
12

𝜎2
𝑊′ − 2 

+ 𝜔𝐵  2 − 2𝑒𝑥𝑝 −
12

𝜎2
𝐵,   

Where ω, ω = [ωW, ωB]T, is the weight vector with a 

constraint of ωW+ ωB= 1. And we consider cases of W’ < B’ to 

be distinguishable while the other case is not. 

4.2 Defining the maximizer of objective function 

The optimal is the one that maximizes class separability, 

or the maximizer of the objective function that is twice 

differentiable. If the first derivative of J(σ) is equal to zero and 

the second derivative is negative, the maximizer is determined. 

The stationary point in the following equation is the maximizer 

and optimal σ we are seeking. 

𝜎∗ =  
𝐵′ −𝑊′

2 × 𝑙𝑜𝑔 𝜔𝐵𝐵′/𝜔𝑊𝑊′ 
 

4.3 Selecting the weight vector 

The proposed method proposes that the Gramian matrix is 

obtained by transforming the Euclidean matrix. A dataset's 

Euclidean matrix is fixed. The only factor that determines this 

transformation is the parameter σ. The selection of weight ω 

depends on the situation. 

In this section, we provide two simple and intuitive 

options for selecting the weight vector. First, we must identify 

the constraints of ω in maximize Eq. Because of the application 

condition of W’< B’, the denominator in the square root must 

be positive. In addition to the constraint ωW + ωB = 1, the 

constraints for two elements ω of are as follows: 

0 < 𝜔𝑤 <
𝐵′

𝐵′+𝑊′
   

𝐵′

𝐵′+𝑊′
< 𝜔𝑏 < 1 

If we choose ωW= ωB= 0.5, it is clear that the two 

conditions hold. Under this selection, the optimal σ is 

calculated by: 

𝜎
1
∗ =  

𝐵′ −𝑊′

2 × 𝑙𝑜𝑔 𝐵′/𝑊′ 
 

If we choose ωW= W’/(W’ + B’) and ωB= B’/(W’ + B’), the 

two conditions are also satisfied. The optimal σ is calculated 

by: 

𝜎
2
∗ =  

𝐵′ −𝑊′

4 × 𝑙𝑜𝑔  
𝐵′

𝑊′
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4.4 Developing a MATLAB algorithm 

The algorithm was developed on the MATLAB 2018a 

(The Mathworks ©) platform. A function is coded using 

Euclidean Matrix Sum to return as follows: 

function [optSigma, B_bar, W_bar] 

=OptimalSigma(feaVal,species,method) 

The code is then tested on three real world datasets and 

evaluate their prediction performance through 5-fold cross 

validation to get optimal values for calibrating the classifier. 

Optimal parameters are extracted with following steps: 

Our first step on optimal accuracy selection is to select the 

database and load it in to the memory. There are three dataset 

to select: Ionosphere, Fisher iris and Pineapple Slices. The 

database details i.e. Number of classes, number of features and 

numbers of instances are displayed. 

Our second step is to selected method of approach. Chose 

mode between default, proposed method 1 and proposed 

method 2. The method chosen is displayed on the text box. 

Our third step is to run the objective function and generate 

the optimal parameters. These are sigma, between class 

separability (B), within class separability (W) and ration of 

B/W which supposed to be above one if classes are separable. 

Our final step is to test for accuracy where test and training 

accuracy are evaluated through 5 fold cross validation and the 

best box constraint evaluated. The algorithm also output 

confusion matrix for the best class that yielded optimal box 

constraint using the optimal sigma. 

The last step is to click Exit command or run for another 

database where from first to final steps. 

After obtaining optimal parameter, the figure 1 below 

shows system overview. 

 

Figure 1: System flow diagram 

The figure 2 below is the Graphical User Interface (GUI) 

of the experiment. 

 

Figure 2: The Experiment GUI 

V. RESULT AND DISCUSSION 

This section compares the classification accuracy of two 

selection methods, the default and proposed method. Following 

is a description of the two approaches. The first method 

specifies σ and C with their default values, σ= C = 1. The 
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proposed method represents the second strategy. Using two 

distinct subsets, we assess the proposed method of ω: ω1 = 

[0.5, 0.5]T; ω2 = [W’/(W’ +B’), B’/(W’ + B’)]T.A SVM 

classifier is used to evaluate the performance of the two 

approaches. Three real-world datasets were used to evaluate 

the two approaches. 

Table 1: Summary of the three Datasets 

No Dataset Number 
of 

Classes 

Number 
of 

Features 

Number 
of 

Instances 

1 Ionosphere 2 34 351 

2 Fisheriris 3 4 150 

3 Pineapple Slices 5 79 250 

The classification accuracy is used to compare the 

performance of the two approaches. The classification 

accuracy is defined as Nc/(Nc+Nf)100%, where Nc represents 

the number of instances correctly classified and Nf represents 

the number of instances incorrectly classified. The most 

important performance indicator is accuracy. Due to the fact 

that the parameter C (box constraint) affects classification 

accuracy, it is necessary to select C in order to evaluate the two 

approaches accurately. In the first approach, the default value 

C is specified. 

The second method for C selection combines grid search 

with σ selection. Table 2 summarizes the selected values of σ 

and C. 

Table 2: Selected parameters for three datasets 

Dataset Approach 𝜎 C B’ W’ B’/W’ 

Ionosphere Default 1 1 78.1863 55.2614 1.41484 

The proposed 
Method 

𝜔 = 𝜔1 5.74727  10 

𝜔 = 𝜔2 4.06393 10 

Fisheriris Default 1 1 10.8171 2.20571 4.90416 

The proposed 
Method 

𝜔 = 𝜔1 1.64556 1 

𝜔 = 𝜔2 1.16358 1 

Pineapple 
Slices 

Default 1 1 90.0723 67.9907 1.32477 

The proposed 

Method 
𝜔 = 𝜔1 6.26557 7 

𝜔 = 𝜔2 4.43043 10 

Once the optimal values for σ and C have been determined, the SVM model is trained on the training subset and hence 

calibrated for optimal performance. Each dataset is subjected to twenty independent iterations of each methodology. Using K-fold 

cross-validation (K = 5), the training and test accuracy for every run is estimated. The results are provided in Table 3. 

Table 3: Experimental results of the three Dataset 

Dataset Method Test Accuracy 
Training 
Accuracy 

Ionosphere Default 68.5714 77.1429 

The proposed Method 𝜔 = 𝜔1 94.2857 94.4857 

𝜔 = 𝜔2 87.1429 94.8857 

Fisheriris Default 93.3333 95.3333 

The proposed Method 𝜔 = 𝜔1 93.333 96 

𝜔 = 𝜔2 100 96 

Pineapple Slices Default 50 53.6 

The proposed Method 𝜔 = 𝜔1 88 88.6857 

𝜔 = 𝜔2 88 89.08 

     

As demonstrated in Table 3, training accuracy is typically 

higher than test accuracy for two approaches. This 

demonstrates that both approaches are effective at empirically 

minimizing risk in SVM. 

We must evaluate the test accuracy generalizability of the 

two approaches. The first method, which utilizes default 

values for C and σ, is the least efficient of the three. In other 

words, the first method is often associated with low test 

accuracy. The second strategy has the potential to significantly 

improve test accuracy for the vast majority of datasets. The 

test accuracy of the first approach varies substantially across 

datasets, indicating a lack of generalization ability. Only when 

the optimal value of σ is close to the default value of σ, as is 

the case with the Fisheriris dataset, is the first method 

comparable to the others. 

The ionosphere dataset demonstrates that the first 

approach's test accuracy suffers significantly and even tends 

toward over fitting otherwise. As a result, it is strongly 

advised that the Gaussian SVM not be executed with the 

default value of σ. 

The proposed method has a high degree of generalization, 

allowing it to achieve a high level of test precision and best 
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calibration parameters. On the pineapple slices dataset, the 

approach performs slightly worse than the default method. 

This is primarily due to the fact that when training with a 

small sample size, class separability is underestimated. 

VI. CONCLUSIONS 

The algorithm developed was used to calibrate the SVM 

classifier and the result from the three dataset showed higher 

accuracy in proposed calibration method than using default 

method. The accuracy achieved in the three dataset used were 

above 85% which is suitable for an online classification 

implementation as it exceed human accuracy based on 75%. 

The analytical method developed in the paper is shown to 

be a fast, consistent and robust in parameter selection for 

calibrating the Gaussian radial basis kernel. The method 

resulted to test and training accuracies above the default. This 

will ensure the slices classification achieves optimal accuracy 

every time and capture the daily fruits variability in terms of 

color, ripeness and texture. 
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