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Tint Fluid temperature at the oil-gel interface, [K]
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ur Radial velocity, [m/s]

u Dimensionless radial velocity
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v Dimensionless axial velocity

V⃗ Velocity vector of the mixture fluid, [m/s]

x Weight fraction of solid wax in the gel layer
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Symbol Meaning
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µgel Dynamic viscosity of the deposit layer, [Nsm−2]

µoil Dynamic viscosity of waxy crude oil, [Nsm−2]

µwater Dynamic viscosity of water-in-oil emulsions, [Nsm−2]

µf Dynamic viscosity of the fluid phase, [Nsm−2]

µmix Dynamic viscosity of the mixture fluid, [Nsm−2]
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Greek Symbols
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ϕgel Volume fraction of gel layer

ϕoil Volume fraction of waxy crude oil

ϕwater Volume fraction of water-in-oil emulsions

Ψ Viscous dissipation function, [N/m2s]
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ρgel Density of the solid wax deposit, [kg/m3]
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ABSTRACT

The formation of solid wax crystals that interlock and form a gel-like layer on the inner
wall of the pipeline greatly influences the transportation of waxy crude oil through
pipeline systems. The deposited layer grows continuously and hardens during oil
transportation. This phenomenon reduces the effective internal diameter of the pipeline
and the flow rate. In extreme cases, the deposited layer may block the crude oil pipeline
leading to permanent pipeline shutdown and loss of capital investment. In this study,
wax deposition from multiphase flow in field-scale crude oil pipeline transport systems
has been investigated numerically. The novelty of this work is to develop a mathematical
model that incorporates water-in-oil emulsions, wax precipitation kinetics, molecular
diffusion, and shear dispersion to enable accurate predictions of both the wax deposit
growth rate and aging of the deposit. The coupled nonlinear partial differential equations
governing the flow are discretized in time by a second-order semi-implicit time
discretization scheme, which is based on the Adams-Bashforth and Crank-Nicolson
methods that completely decouple the computation of the governing equations. The
resulting temporal numerical schemes are discretized in space by the bivariate spectral
collocation method, which is based on Chebyshev-Gauss-Lobatto grid points. The
resulting numerical schemes are simulated in MATLAB® software to obtain the profiles of
the flow variables. The simulation results are presented in graphical and tabular forms
and also discussed. The model's predictive capabilities are evaluated by investigating the
impact of various flow parameters on the flow variables, wall shear stress, and heat and
mass fluxes. The key findings reveal that wax deposition is significantly influenced by
the intricate interplay of flow conditions, wax precipitation kinetics, and heat and mass
transfer phenomena. Notably, increasing Reynolds number from 2.2361 to 3.1361 leads
to at most 2.5% increase in wax deposition, while increasing mass Grashof number from
5 to 11 results in at most 2.0% reduction in wax accumulation. Moreover, increasing
Weber number from 1.0 to 2.5 tend to mitigate wax deposition by at most 7.0%. In
addition, the deposit thickness steadily increases during the initial phases of wax
deposition, after which it reaches a steady-state value of 0.2 and maintains that value
over time. A deposition model to predict the wax deposit growth and aging is proposed
in this study. The research findings can help in making informed decisions on the
planning of pigging operations, thermal insulation, and other remediation techniques to
be applied in controlling wax deposition in field-scale crude oil pipeline systems.
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CHAPTER ONE

INTRODUCTION

In this chapter, a background of the study is presented in Section 1.1, and the key terms
that are used in this study are defined and explained in Section 1.2. The statement of the
problem, justification, objectives, and scope of this study are presented in Sections 1.3,
1.5, 1.4, and 1.6 respectively.

1.1 Background Information

Pipeline is currently the most efficient means for transporting fluids such as crude oil.
The relative efficiency of crude oil pipeline depends on two fundamental requirements.
The first requirement is that the pipeline should continue to operate without any
interruption once it is commissioned, while the second requirement is that optimum
discharge must be obtained with the least capital investment and the lowest operating
costs. Crude oil pipelines are designed and constructed based on the above two
fundamental considerations. Nevertheless, the capital investment and operating costs are
often very high, especially for large diameter and long-distance crude oil transport
pipelines.

The increasing demand for energy has made the exploration of oil in Africa to extend from
onshore to offshore fields and to greater depths, such as the Lokichar oil fields in Kenya
where crude oil gets transported through long pipelines in the range of 20-60 km from the
reservoir to inland facilities. The long-distance for oil transportation means that the time
is adequate for oil to cool to temperatures below the wax appearance temperature, usually
between 10◦C and 30◦C. The deposition of solid wax crystals on the inner wall of crude oil
pipelines has become a major concern in the oil industry because it slows down pipeline
operation, leading to reduced flow rate and increased operational costs. Low temperature
is the main factor affecting the wax precipitation and deposition process, which means that
pipelines in relatively cold places are especially vulnerable to wax deposition. Addressing
the problem of wax deposition at an early stage of a pipeline design and construction may
reduce the operating and maintenance costs of the pipeline system.

Various wax mitigation methods are used to control wax formation and deposition, such
as mechanical techniques (e.g., pigging), heating of the pipeline and use of chemical
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inhibitors. Heating of the pipeline is not economical in the case of offshore oil
exploration. Excessive usage of additive chemicals can damage the ecosystem in case of
accidental release of chemicals to the environment. The pigging operation cannot
efficiently be applied without a prior knowledge of the deposit thickness. In particular,
pigs usually get stuck inside the crude oil pipeline due to thick and hard deposits making
the situation worse. In the worst case, production must be stopped in order to replace the
plugged portion of the pipeline, which is estimated to cost about 40,000,000 dollars per
incident (Huang et al., 2011). Due to the limitations of the available wax mitigation
methods and the persistent challenge of wax deposition, many oil companies are still
searching for a better solution to the wax deposition.

Multiphase flows such as water-oil or gas-oil two-phase flows and water-gas-oil three-
phase flows are prominent in oil field operations. Water-oil two-phase flows continue to
gain interests from the upstream oil industry since the water content of the ore increases
significantly with the increase in extraction time. The mixing of co-existent water and
crude oil by turbulence eddies promotes the formation of water-in-oil emulsions. This
study is on advancing the understanding of wax deposition in the presence of water-in-oil
emulsions and developing a mathematical model for wax deposition that incorporates the
co-existent water to enable accurate predictions of both the wax-deposit growth rate and
aging (or hardening) of the deposit layer.

1.2 Definition of Terms

The key terms that are used in this study are defined and explained in this section.

1.2.1 Multiphase Flow

Phase refers to the solid, liquid, or vapour state of matter. Thus, multiphase flow is any
fluid flow consisting of more than one phase or component. Each of the phases has a
separately defined volume fraction (the sum of which is unity) and velocity field.

1.2.2 Waxy Crude Oils

Crude oil is a complexmixture of hydrocarbons such as paraffins, naphthenes, asphaltenes,
resins and aromatics, and other organic compounds which contain sulphur, oxygen, nickel,
iron and copper. Wax refers to the long-chain high-molecular weight paraffins having
between 18 to 65 carbon atoms. Thus, wax is the paraffin component of the crude oil. The
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chemical reactivity of alkanes is poor due to the strong carbon to carbon (C-C) bonds and
carbon to hydrogen (C-H) bonds. Hence, waxy crude oil is non-reactive.

1.2.3 The API Gravity of Crude Oils

The American Petroleum Institute (API) gravity is a scale used to grade crude oils,
calibrated in degrees API (i.e., ◦API). Thus, crude oils are classified into three categories
based on their API gravity: heavy crude oils are those whose API gravity is less than
22.1◦API, intermediate crude oils are those whose API gravity ranges between 22.1◦API
and 31.5◦API (inclusive), light crude oils are those whose API gravity is greater than
31.5◦API. In this study, a heavy waxy crude oil with an API gravity of 18 oAPI is
considered.

1.2.4 Wax Appearance Temperature

Wax appearance temperature (WAT) refers to the temperature at which the first wax
crystals start to form in the crude oil in a cooling process, usually between 10◦C and
30◦C. The WAT is also called the cloud point temperature while the temperature at which
crystals begin to aggregate is usually called the pour point temperature. The pour point
temperature is typically 10−15◦C lower than the WAT (Fusi, 2003).

1.2.5 Wax Crystallization

Wax crystallization (or wax precipitation) refers to the process of separation of the solid
phase from a homogeneous solution. The separated solid phase appears as wax crystals.
Wax crystallization consists of two stages, i.e., nucleation and growth. When the
temperature of the crude oil approaches the WAT during the cooling process, the kinetic
energy of the wax molecules reduces due to the temperature reduction hence hindering
the motion of the wax molecules. This leads to continuous reduction and strengthening
of the bond between the wax molecules, forming crystal nuclei (or clusters). As the
nucleation process continues, the wax molecules get tangled and hence increase the size
of the nuclei up to a certain critical volume after which the nuclei become stable, giving
rise to crystal growth.
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1.2.6 Wax Aggregation

When the temperature of crude oil is slightly below the WAT, an equilibrium is
established between the dissolved wax and crystallized (or precipitated) wax. As the
temperature continues to fall, more wax crystals are formed drastically and hence
forming more complex structures known as agglomerates. As a result of the aggregation
process, the liquid oil is entrapped in a wax network, turning the oil into a highly viscous
gel-like material.

Aggregation is the cause of most serious complications in processing waxy crude oils.
Many companies have developed various techniques to inhibit the formation of
aggregates. For instance, a slow stirring of the fluid (mechanical technique), the use of
reheating stations (thermal technique), and the use of specific additives (chemical
modulation).

1.2.7 Wax Deposition

Wax deposition refers to the formation of a layer of separate solid phase (called the gel
layer) and the eventual growth of this layer on a surface in contact with the crude oil. Wax
deposits can be formed from an already precipitated solid wax crystals or from dissolved
wax molecules. Wax deposition in the pipe can only occur when the temperature of the
inner wall of the pipeline falls below the WAT.

The existence of a radial concentration gradient of wax molecules causes a radial
movement of wax molecules from the bulk of the fluid towards the wall, which
precipitate to form solid wax crystals. The wax deposits interlock to form a
pseudo-porous three-dimensional network structure of wax crystals called the gel, which
contains a large fraction of oil trapped within it. Wax deposition is more severe in subsea
pipelines, where the water temperature usually drop to about 5oC. The incipient gel
grows continuously and hardens with time in a process known as aging of the gel.

1.2.8 Wax Deposition Mechanisms

The main mechanisms responsible for wax deposition during transportation of waxy crude
oil in pipelines are molecular diffusion, shear dispersion, Brownian diffusion, and gravity
settling Azevedo & Teixeira (2003).

4



1.2.8.1 Molecular Diffusion

Molecular diffusion refers to the movement of dissolved wax molecules towards the wall
of crude oil pipeline due to the existence of a radial concentration gradient of dissolved
wax molecules in the waxy crude oil, induced by the radial temperature gradient inside
the oil pipeline.

1.2.8.2 Shear Dispersion

Shear dispersion is a mechanism tied to the shearing of the precipitated wax particles
towards the wall, induced by the existence of a radial velocity gradient.

1.2.8.3 Brownian Diffusion

Brownian diffusion refers to the movement of precipitated wax particles towards the wall
due to a radial concentration gradient of the precipitated wax particles. The diffusion of
the precipitated wax particles is caused by Brownian motion.

1.2.8.4 Gravity Settling

Gravity settling refers to the settling of the precipitated wax particles towards the bottom
of the crude oil pipeline, due to the earth's gravity. This is because the wax crystals are
denser than the surrounding liquid oil.

1.2.9 Wax Mitigation Methods

Waxmitigation (or wax remediation or dewaxing) refers to the technique applied to control
wax precipitation and deposition. The mitigation methods used to control wax deposition
are mechanical, thermal and chemical methods (Huang, 2011).

1.2.9.1 Mechanical Removal

Mechanical removal technique involves sending pigs in the crude oil pipeline periodically,
a process commonly known as pigging operation. A pig refers to any device that moves
freely through the pipeline for the purpose of inspecting or cleaning it by scraping off the
wax deposit. The motion of the pig is driven by the flow field. The pig is analogous
to a free moving piston. The pigging operation cannot efficiently be applied without a
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proper wax deposition prediction. This study aims to accurately predict optimal pigging-
frequency to improve the pigging operations.

1.2.9.2 Thermal Technique

Thermal technique involves insulating or heating the crude oil pipeline to keep the flowing
crude oil temperature above thewax appearance temperature (WAT). Usually steam is used
for heating the waxy crude oil to make it easier to extract. This technique is not economical
in the case of offshore oil exploration.

1.2.9.3 Chemical Modulation

Chemical modulation involves injecting chemical wax inhibitors in the flowing crude oil
to alter wax crystallization or crystal growth. However, excessive usage of additive
chemicals can damage the ecosystem in case of accidental release of chemicals to the
environment. The inhibitors may also result in corrosion of the pipeline inner wall and
hence not economical.

1.2.10 Water-in-oil Emulsions

Water-in-oil emulsions refer to the highly stable water droplets formed in waxy crude
oil during extraction and transportation. In this case, the water-in-oil emulsions is the
dispersed phase that is distributed into the continuous oil phase. The formation of the high
stable water-in-oil emulsions is one of the negative factors in extracting and processing
of oil, their preparation and transportation, as well as liquidation/recycling of oil-sludge
barns. The use of conventional techniques such as heating to destroy the emulsions yields
no positive results.

1.2.11 Newtonian and Non-Newtonian Fluids

Newtonian fluids are fluids whose dynamic viscosity is a constant while non-Newtonian
fluids are fluids whose dynamic viscosity is a variable. Waxy crude oil behaves as a
Newtonian fluid at temperatures above the WAT and a non-Newtonian fluid at
temperatures below the WAT (Ramirez-Jaramillo et al., 2004).
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1.2.12 Laminar and Turbulent Flows

Laminar flow refers to fluid flow in which the paths followed by the fluid particles do
not cross each other (i.e., layers of the fluid slip smoothly over each other). Turbulent
flow refers to a chaotic flow, and is characterized by velocity fluctuations since the fluid
particles move in a zigzag manner.

1.2.13 Body Forces and Surface Forces

Body forces are forces which act on the volumetric mass of the fluid element from a
distance without physical contact. These forces are expressed as force per unit volume of
the fluid element (Nm−3). The most common body forces are the gravitational force and
electromagnetic force. Surface forces are forces which are exerted on the surface of the
fluid element by the surrounding through direct contact. These forces are expressed as
force per unit surface area of the fluid element (Nm−2). The most common surface
forces are pressure and shear stresses.

1.2.14 Steady and Unsteady Flows

Unsteady flow refers to a flow in which the flow variables (e.g., velocity, temperature,
concentration) depend on time. On the other hand, a steady flowmeans that flow variables
are independent of time.

1.2.15 Free Stream

Free stream (or bulk of the fluid) refers to the region in the fluid where the effect of viscous
forces, heat flux and solute flux on the flow are negligible. The velocity, temperature and
species concentration are often uniform in the free stream.

1.2.16 Boundary Layer

Boundary layer refers to a thin region in the fluid adjacent to the solid-fluid interface where
velocity, temperature and/or concentration gradients normal to the interface are significant.
In this layer, the viscous forces dominate over the inertial forces. There are three types of
boundary layer, namely; velocity, thermal, and concentration boundary layers.
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1.2.16.1 Velocity Boundary Layer

The velocity boundary layer develops when there exists a velocity gradient of the fluid
particles between the solid-fluid interface and the free stream. The thickness of the
velocity boundary layer is defined as the perpendicular distance measured from the
solid-fluid interface to a point in the fluid where the fluid velocity is 99% of the
free-stream velocity.

1.2.16.2 Thermal Boundary Layer

Thermal boundary layer is associated with heat transfer, and develops when there is a
difference in temperature of the fluid particles between the solid-fluid interface and the
free stream. The thickness of the thermal boundary layer is defined as the perpendicular
distance measured from the solid-fluid interface to a point in the fluid where the
temperature difference between the fluid and solid-fluid interface is 99% of the
temperature difference between the free stream fluid and the solid-fluid interface.

1.2.16.3 Concentration Boundary Layer

Concentration boundary layer is associated with mass transfer and develops when there
is a difference in concentration of a species between the solid-fluid interface and the free-
stream. The thickness of the concentration boundary layer is defined as the perpendicular
distance measured from the solid-fluid interface to a point in the fluid where the difference
in concentration between the fluid and the solid-fluid interface is 99% of the difference in
concentration between the free stream fluid and the solid-fluid interface.

1.2.17 No-slip Boundary Condition

No-slip boundary condition means that the fluid layer in contact with the solid surface
sticks to the surface and moves with it at the same velocity of the solid surface. In
particular, the fluid and solid have equal velocities at their interface. In this study, it is
assumed that there is no-slip of fluid particles at the solid-liquid boundary.

1.2.18 Natural Convection Flow

Natural convection is a type of fluid flow in which the motion of the fluid is initiated by
buoyancy forces which arise due to variation of density of the fluid. The density variation
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is as a result of the existence of temperature or concentration gradients in the fluid. In the
study of natural convection flows, the condition of the fluid particle that is far away from
the boundary layer is indicated by the subscript ∞, which means that this is the value at a
distance where the effect of the boundary layer is not felt.

1.2.19 Heat Transfer

Heat transfer refers to the transport of thermal energy which occurs due to existence of
temperature gradient in the fluid. There are three modes of heat transfer: conduction,
convection, and radiation.

1.2.19.1 Conduction

Conduction is the mode of heat transfer that occurs when a temperature gradient exists
in a stationary medium, e.g., heat transfer through the wall of pipeline when crude oil is
flowing. In oil pipeline transport systems, the high energy molecules of liquid oil collide
with lower energy molecules resulting in heat transfer from high temperature regions to
low temperature regions.

1.2.19.2 Convection

Convection is the mode of heat transfer which takes place as a result of bulk motion and
mixing of macroscopic elements of warmer and cooler regions of a fluid. In crude oil
pipeline transport systems, convective heat transfer involves exchange of thermal energy
between the inner wall of the pipeline and liquid oil.

1.2.19.3 Radiation

Radiation is the mode of heat transfer which occurs due to the propagation of
electromagnetic waves in a vacuum.

1.2.20 Mass Transfer

Mass transfer refers to the transport of molecules of a species which occurs due to the
difference in concentration of the species in a mixture fluid. The basic mechanisms for
mass transfer in crude oil pipeline transport systems are diffusion and convection of the
wax molecules.
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1.2.21 Porous Medium

A porous medium refers to a medium with fine pores which are uniformly distributed
throughout the medium and through which fluid (liquid) can flow freely and continuously.
The gel layer formed in crude oil pipelines is a porous medium. Some liquid oil usually
seep through the gel layer. The pores which allow fluid to pass through are known as
effective pores of a porous medium. The effective pores contribute to the porosity of the
medium, which is defined as the fraction of the whole volume of the material which is
occupied by the pores. The seepage of fluids through a porous medium is governed by
Darcy's law, which is presented in detail in Chapter 3.

1.2.22 Viscous Dissipation

Viscous dissipation refers to the conversion of the kinetic energy of the flow into internal
energy of the fluid (or heat) by work that is done against the viscous fluid stresses. Thus,
viscous dissipation heats up the fluid as the flow progresses.

1.3 Statement of the Problem

Companies dealing with waxy crude oil are dedicated to ensuring an economically feasible
flow of oil in the pipeline transport systems by pumping about 80,000 barrels of oil per
day from the reservoir to inland facilities. Optimum pipeline design and construction is
one aspect of achieving an economically feasible flow of oil.

However, the transportation of waxy crude oil through pipeline is greatly influenced by
the formation of solid wax deposits, whose evolution depend on the cooling rate and on
the quantity of wax molecules in the crude oil. The wax deposits interlock and form a gel-
like layer which grows continuously and hardens during oil transportation hence reducing
the effective inside diameter of the pipeline. In extreme cases, the wax deposit may block
the pipeline leading to loss of production and capital investment. Furthermore, about 90%
of water is usually extracted together with oil and flow together as water-oil two-phase
flow in crude oil pipelines. The water-in-oil emulsions usually collect under the crevices
causing pitting corrosion in the crude oil pipelines. The existing wax deposition models
do not take into consideration the co-existent water and hence are unsuitable to be applied
in field-scale oil pipeline transport systems since they cannot give accurate predictions of
the rate of wax deposit growth and aging. Overestimation of the wax-deposit growth rate,
due to inaccurate wax deposition model, results in very high pigging-frequency which
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is costly and leads to production downtime. Consequently, underestimation of the wax-
deposit growth rate results in very low pigging-frequency which means that the time is
adequate for the wax deposits to thicken and harden hence impossible to remove during
subsequent pigging operations.

In response to these problems, the current study aspires to develop a mathematical model
and simulator that incorporates all the salient features of wax deposition (e.g.,
water-in-oil emulsions) to accurately predict the rates of deposit growth and aging. The
implementation of a pigging operation usually happens when the deposit thickness
reaches a threshold of about 7 millimeters. From an economic perspective, an accurate
prediction of the time it takes for the wax deposits to grow to the threshold thickness is
essential for the design of pigging operations to achieve optimum pigging-frequency and
minimize operational costs. This study is therefore on modeling and analysis of wax
deposition from multiphase flow in field-scale crude oil pipeline transport systems.

1.4 Objectives of the Study

1.4.1 General Objective

To model mathematically and analyze the wax deposition from multiphase flow in field-
scale crude oil pipeline transport systems.

1.4.2 Specific Objectives

The specific objectives of this study are to:

1. Develop a mathematical model for water-oil two-phase flow in field-scale crude oil
pipeline transport systems.

2. Determine the profiles of the flow variables such as velocity, temperature and
species concentration on multiphase flow in field-scale crude oil pipeline transport
systems.

3. Determine the effects of varying the various flow parameters on the flow variables
for multiphase flow in field-scale crude oil pipeline transport systems.

4. Compute the skin-friction coefficient and the rates of heat and mass transfer in
multiphase flow in field-scale crude oil pipeline transport systems.
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5. Predict the rates of wax deposition on the inner wall of crude oil pipeline and aging
of the wax-oil gel layer.

1.5 Significance of the Study

The knowledge of wax deposition and aging rates in field-scale crude oil pipelines helps
in proper scheduling of pipeline maintenance to improve oil recovery and processing
operations in the oil industry. This is achieved by accurately predicting the rates of wax
deposit growth and aging; and suggesting ways to minimize the rate of wax deposition.
Accurate prediction is essential for the design of pigging operations to achieve optimum
pigging-frequency and minimize operational costs. Furthermore, the implementation of
a proper pigging program helps in maintaining the optimum efficiency of the pipeline
and hence safeguarding both the environment and assets of the oil companies.

1.6 Scope of the Study

The present study is confined to a two-dimensional flow of waxy crude oil in pipeline
transport systems. The study focuses on mathematical modeling and simulation of wax
deposition in fluid (water-oil) and deposit two-phase flow. In the fluid phase, the water-in-
oil emulsions is dispersed in the continuous oil phase. In particular, the study focuses on
accurate prediction of the amount of wax deposits in crude oil pipeline transport systems,
i.e., predicting the rates of growth and aging of the wax deposits. Thus the detection of the
location of the wax deposits, which is the focus of Remote Sensing, is beyond the scope
of the present study.

1.7 Thesis Structure

The rest of this thesis is organized as follows. In Chapter 2, a review of existing studies
which are relevant to this study is presented. In Chapter 3, the formulation of the flow
problem, the modeling of wax concentration and deposition mechanisms, the equations
governing the flow of waxy crude oil in pipeline transport systems, and the numerical
methods used to solve the resulting model equations are presented. In Chapter 4, the
results obtained from this study, a discussion of the results, and validation of the results
by comparing the study results with experimental wax deposition data from the reviewed
literature are presented. In Chapter 5, the conclusions drawn from this study and
recommendations for improving the operations in the oil industry and for future research
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work are presented. Finally, the publications of part of this study, the MATLAB codes used
to generate the results and other materials which are relevant to this study are included in
the appendix.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This chapter reviews studies on wax deposition in multiphase flow during crude oil
transportation through field-scale pipelines. It focuses on the findings relevant to wax
deposition and its impact on waxy crude oil flow.

2.2 Literature Review

There are various theoretical and experimental studies in understanding the formation
and deposition of wax in crude oil pipelines, and modeling the phenomenon. For
example, Singh et al. (2000) investigated the formation and aging of the gel layer in
crude oil pipelines through a series of laboratory flow loop experiments. They developed
a mathematical model to predict the growth rate of the wax deposit and the increasing
wax content within the gel layer over time. The model considered the scenario of
externally cooled pipeline walls. The study identified a "counter-diffusion phenomenon"
as the mechanism responsible for gel layer aging. This phenomenon refers to the
opposing diffusion processes between the oil and the deposited wax. Additionally, they
found that the aging rate of the gel layer is influenced by both the oil flow rate and the
temperature of the pipeline's inner wall. However, the model has a limitation that
restricts its applicability to real-world scenarios: the assumption of a quasi-steady state
for all rate processes. This assumption implies that a stable temperature profile can be
rapidly established due to a relatively fast heat transfer rate compared to the slow growth
rate of the deposit. This is unrealistic because time plays a crucial role in any fluid flow
situation. Real-world pipelines experience dynamic changes, and a quasi-steady state
may not be achievable.

Kok et al. (2000) developed a mathematical model for estimating wax deposition in
crude oil pipeline systems. This model combined analytical and numerical approaches
and was applied to the Kirkuk-Ceyhan crude oil pipeline system. The study predicted a
wax deposit thickness of approximately 0.34 mm after one year of operation, along with
a gradual temperature decline from 303 K to 295 K along the pipeline length. The model
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incorporated molecular diffusion, shear dispersion, and Brownian diffusion as
mechanisms for wax deposition. However, the study neglected the potential influence of
thermal diffusion. An additional limitation is the assumption of constant pressure
throughout the pipeline. In real-world crude oil transportation systems, pressure
typically varies along the pipeline length.

Fusi (2003) investigated the unsteady flow of waxy crude oil within a laboratory test
loop, considering shear dispersion and molecular diffusion as deposition mechanisms.
The analysis focused on non-isothermal conditions and used the radial coordinate of the
pipe as the sole spatial variable. To simplify the problem, the researchers applied a
quasi-stationary approximation to the governing equations. The study's findings
suggested that slow cooling of the pipe wall is necessary for continued pipeline
operation. It even proposed a strategy for selecting the cooling rate to ensure a specific
time window where the formed rigid core wouldn't obstruct oil flow. However, the study
has a significant limitation: the assumption of one-dimensional flow. In reality, flow
variables depend on at least two spatial variables. This limitation restricts the
applicability of the results to field-scale oil pipeline transportation systems.

Nazar et al. (2005) conducted an experimental study to investigate the variation in wax
deposition for a mixture of toluene and waxy oil. They further developed a comprehensive
mathematical model applicable to laminar flow conditions. The study considered two key
mechanisms influencing wax deposition: molecular diffusion of wax and the sloughing
effect caused by hydrodynamic forces acting on the deposited wax. The findings of the
study indicated that the model exhibited excellent predictive capabilities for laminar flow.
However, the study neglected frictional heating and heat generation associated with the
oil phase transition from liquid oil to solid wax crystals. Incorporating these factors might
improve the model's accuracy.

Banki et al. (2008) investigated the mathematical formulation and numerical modeling
of wax deposition in crude oil pipelines for laminar flow conditions using the
enthalpy-porosity approach. This approach employs an enthalpy formulation to
approximate convective flow within the gel layer, utilizing a fixed-grid method that
eliminates the need to explicitly determine the oil/gel interface location. The study
considered both molecular diffusion and thermal diffusion, incorporating appropriate
diffusion coefficients. The findings of the study indicated that the design of multiphase
flow systems often relies heavily on empiricism, meaning that pressure drop and
temperature profiles are predicted using established empirical or semi-empirical
correlations. However, a limitation of the study is the lack of a detailed explanation
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regarding the temperature interval determination for the porous medium.

Huang et al. (2011) developed a mathematical model for wax deposition in subsea oil
pipelines. This model aimed to predict both the wax deposit growth rate and the increasing
wax fraction within the gel layer, considering both laminar and turbulent flow conditions.
The researchers employed the backward Euler finite difference method (FDM) to solve
the resulting steady-state heat and mass transfer equations. The study investigated the
effects of wax molecule precipitation within the bulk oil on wax deposition. The study
found that this precipitation acts as a competing phenomenon, reducing wax deposition
by decreasing the availability of dissolved wax molecules that can potentially deposit on
the pipeline's inner wall. However, the assumption of a quasi-steady state is inaccurate.
Time is a crucial factor in any fluid flow scenario, and a more dynamic approach might be
necessary for real-world applications. Also, while the finite difference method was used
in the study, its discretization process is computationally expensive. This may limit the
efficiency of the developed model for complex wax deposition modeling.

Stubsjøen (2013) investigated analytical and numerical modeling of paraffin wax
deposition in pipelines. The resulting model equations were solved numerically using
the finite difference method based on the forward Euler scheme. The study examined the
influence of wax deposit on the thermal conditions within the pipeline. The study found
that the temperature at the oil/deposit interface increased with increasing wax deposit
thickness. However, the study assumed that there is no thermal energy generation in the
fluid. In reality, there is usually dissipation of kinetic energy from the fluid's velocity
field into internal energy (heat) during crude oil transportation. The forward Euler
scheme is an explicit scheme, making it less efficient for initial-boundary value
problems like this one. It requires more computational effort for the numerical solution
to converge to the exact solution. The assumption of Newtonian crude oil is inaccurate.
Crude oil behaves as a Newtonian fluid above the wax solubility limit but transitions to
non-Newtonian behavior at lower temperatures. The study also assumed the absence of
water droplets in the crude oil and limited the model to one-dimensional flow.

Skjæraasen et al. (2014) investigated the restart behavior of subsea pipelines transporting
waxy crude oil using advanced computational pressure wave modeling. The governing
equations were discretized on a cylindrical grid and solved numerically using the finite
difference Euler scheme. The study developed a rheology model and a simulation
algorithm to track the pressure wave propagation during the initial restart of flow. The
findings of the study indicated that accurate implementation of the simulation algorithm
could ensure successful restart of pipelines containing gelled oil with physical wax gels.
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However, the study had limitations. It focused solely on gel breakdown induced by
deformation, and the finite difference Euler scheme, while used here, is not
computationally efficient for wax deposition modeling due to the inherent need for high
grid resolution, leading to intensive calculations.

Fatkhullina et al. (2015) investigated the mathematical modeling of a water-in-oil
emulsion droplet's behavior under unsteady flow conditions during microwave
irradiation. The study focused on the effects of microwave electromagnetic radiation on
a single water-in-oil droplet. The researchers employed the Volume of Fluid (VOF)
method to capture the unsteady dynamics of the free interface separating the water and
oil phases throughout the flow domain. The model equations were solved numerically
using a combination of the Tri-diagonal Matrix Algorithm (TDMA) and the
Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm. The study's
findings revealed that applying microwave electromagnetic radiation to the flow of waxy
crude oil is an efficient method for destroying water-in-oil emulsions.

Zhang et al. (2018) developed a wax deposition model to predict the temperature field
and location of wax deposition within a wellbore system using a heat-fluid coupling
process centered on the borehole axis. The resulting heat-fluid coupled equations were
solved numerically using the finite element method. The study reported that as the fluid
production intensity and moisture content increased, the temperature decreased from the
bottom upwards at a very slow rate. However, the model neglected the reduction in heat
transfer caused by gel layer formation. This assumption is inaccurate because a
significant amount of heat energy is typically lost from the liquid oil during the
formation and deposition of solid wax crystals. This lost heat is then absorbed by the gel
layer.

Ying et al. (2019) investigated the heat transfer analysis during oil phase change in an
overhead pipeline shutdown. The study reported challenges in tracking the oil/gel
interface as wax molecules precipitate out of the liquid oil, making it difficult to model
natural convective heat transfer at this interface. The assumption of liquid crude oil
being a Newtonian fluid throughout the process is inaccurate. Crude oil exhibits
Newtonian behavior above the wax solubility limit in liquid oil, but transitions to
non-Newtonian behavior at lower temperatures. Finally, the assumption that the flowing
fluid is a single pure substance is unrealistic. Water is typically produced alongside
crude oil during extraction, and its presence needs to be considered for accurate heat
transfer analysis.
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Magnini & Matar (2019) investigated wax deposition in crude oil-deposit two-phase flow
within a pipeline using interface-resolved numerical simulations. The study assumed that
molecular diffusion was the sole mechanism driving wax deposition and that water-in-
oil emulsions had a negligible effect. To capture the unsteady dynamics of the free oil-
deposit interface, the study employed the Volume of Fluid (VOF) method. The model
equations were solved numerically using the finite volume method and simulations were
conducted using ANSYS FLUENT software. The results revealed that the deposit pattern
could manifest as either a uniform axisymmetric film coating the pipe wall or a completely
stratified layer, depending on the relative influence of gravitational forces. Additionally,
the study reported that the amount of deposit relative to the pipe volume decreased with
increasing oil flow rate and pipe diameter.

Mouketou & Kolesnikov (2019) investigated the modeling and simulation of multiphase
flow applicable to oil and gas industry processes. The study performed numerical
simulations under steady-state conditions using CFD software. The study neglected the
effects of temperature change and the volume fraction of sand particles. The results
revealed that erosion primarily occurs near the bend's exit and also on the side walls of
the downstream straight pipeline. This sidewall erosion was attributed to the influence of
secondary flows caused by centrifugal forces. The erosion rate decreased with increasing
crude oil viscosity.

Sun et al. (2020) conducted an experimental and theoretical study of wax deposition
behavior on a heat-insulated waxy crude oil pipeline in Northeast China. The study
investigated how flow rate and ambient temperature affect the thickness and wax content
of the deposition layer. The model equations were solved numerically using the Euler
method. The study aimed to predict wax deposition thickness in a heat-insulated crude
oil pipeline across different seasons and operating times. This prediction is expected to
provide a scientific basis for determining the pipeline's wax removal cycle. The
predicted results indicated that the thickness of the wax deposition layer initially
increases and then decreases along the pipeline.

Jiang et al. (2020) conducted a numerical study for removing wax deposition by thermal
washing for the waxy crude oil pipeline. The study adopted the enthalpy-porosity and
volume of fluid (VOF) methods to simulate the melting process of wax in the crude oil
pipeline. The model equations were solved numerically using finite difference method
and simulated in FLUENT, a commercial CFD program. The results obtained from the
study revealed that the wax crystals melt quickly before the liquid fraction reaches 80%,
while the remaining 20% melts very slowly. Increasing the water temperature and flow
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rate can accelerate the melting process.

Waheed & Megahed (2022) investigated the effects of melting heat transfer on a
two-dimensional flow of a micropolar fluid over a horizontal plate with heat
generation/absorption in a slip flow regime. The study assumed steady flow conditions.
The governing boundary layer equations for this physical problem were reduced to a
system of non-linear ordinary differential equations. These model equations were then
solved numerically using the Chebyshev spectral method. The results showed that
velocity increased with increasing material parameter, local Eckert number, and melting
parameter. Conversely, velocity decreased with increasing slip parameter and heat
generation (or absorption) parameter. Temperature increased with increasing material
parameter but decreased with increasing slip parameter, heat generation (or absorption)
parameter, local Eckert number, melting parameter, and thermal conductivity parameter.

Shi et al. (2023) experimentally investigated the treatment of paraffin deposition
behavior in gas-condensate wells using chemical inhibitors. The study employed the
crude oil dynamic paraffin deposition rate tester to study the preventive effects of
paraffin dispersants and paraffin crystal modifiers. The results revealed significant phase
change behavior in gas-condensate wells, with the gas phase being the dominant form.
Additionally, paraffin deposition was found to be concentrated in the 1000-1500 meter
region. A paraffin deposition identification chart was established based on these
findings. The maximum deposition rate reached 15.50 mm/year under temperature and
pressure conditions of 45◦C and 70 MPa. Furthermore, paraffin crystal modifiers
exhibited a significantly greater preventive effect compared to paraffin dispersants. At
the optimal concentrations (0.25-0.50 wt%), these modifiers achieved paraffin
prevention rates of 85-95%. The dissolving paraffin rate reached 0.0169 g/min, resulting
in an approximate 40% decrease in the paraffin appearance temperature and a significant
alteration of paraffin crystal morphology.

From the above previous modeling studies on the flow of waxy crude oil in pipeline
systems, most of the focus has been put on single-phase flow of crude oil in pipelines but
significant problems may also occur in multiphase flow. Thus, existing studies have not
fully addressed the needs of oil producers since these models have not incorporated the
co-existent water during crude oil extraction. The identified research gaps prevent the
direct application of existing wax deposition models to field-scale crude oil pipeline
transport systems. The present study, therefore, is an attempt to come up with a more
comprehensive study that takes into consideration the effects of water-in-oil emulsions,
surface tension, porosity of the gel layer, internal heat generation/absorption, viscous
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dissipation, precipitation kinetics of wax, molecular diffusion and shear dispersion on
the growth and aging of the gel layer. From an economic perspective, an accurate
prediction of the rate of wax deposition is essential for the design of pigging operations
to achieve optimum pigging-frequency and minimize operational costs.

The next chapter presents the mathematical formulation of the problem, and includes the
governing equations, assumptions, the non-dimensionalization process, and solution
methods for the final model equations.
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CHAPTER THREE

METHODOLOGY

This chapter presents the mathematical modeling of wax deposition in multiphase flow
for field-scale crude oil pipeline transport systems, along with the numerical solution of
the model equations.

3.1 Formulation of the Problem

Unsteady two-dimensional flow of waxy crude oil together with some water droplets in a
model pipeline of circular cross-section with a semi-infinite length and inner radius R is
considered, as shown in Figure 3.1. The pipeline is elevated at an angle φ to the
horizontal. A cylindrical coordinate system (r, θ, z) is chosen such that r denotes the
radial distance from the pipe centerline, θ denotes the tangential direction, and z denotes
the stream-wise coordinate or the axial direction. At time t = 0, waxy crude oil of
uniform temperature T∞ is injected at the pipeline inlet. The pipeline inner wall is
considered smooth, rigid and impermeable and is maintained at a uniform temperature
Twall. The temperature Twall may either be less than or greater than the free-stream (or
ambient) temperature T∞. The simultaneous action of two wax deposition mechanisms,
i.e., shear dispersion and molecular diffusion, is considered.

Figure 3.1: Computational Domain for a Model Crude Oil Pipeline (Banki et al.,
2008).
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The elevation of the pipeline is necessary to avoid bends on the pipeline, which may result
in flow through corners and hence causing back-flow of crude oil. The fluid phase and
the solid phase are divided by a sharp interface with normal vector n⃗. The fluid system is
described in terms of three pseudo-components, i.e., oil, wax and emulsions.

3.2 Assumptions

The following assumptions are made to model the flow problem presented above.

1. The flow is axisymmetric, meaning that the flow variables/properties do not depend
on θ and that there is no tangential velocity component.

2. There is no gas in the crude oil pipeline system since the present study is confined
to water-oil two-phase flow.

3. The fluid is considered as a continuous primary phase, whereas solid wax crystals
is the discrete secondary phase. Furthermore, the dispersed water droplets flow at
the same velocity as the continuous oil phase.

4. Thermophysical properties in each phase are constants. However, the variation of
the density of the mixture fluid with temperature and species concentration is
considered in the body force term only; and is assumed to vary linearly so that the
usual Boussinesq's approximation is applicable in the boundary layer flow.

5. Molecular diffusion and shear dispersion are the only mechanisms responsible for
wax deposition and that the thickness of the deposit layer is uniform.

6. There is no slip of fluid particles at the solid-liquid boundary.

7. The flow is non-relativistic, meaning that the velocity of waxy crude oil is much
less than the speed of light.

3.3 Volume of Fluid Model

The crude oil, water-in-oil emulsions and the gel layer are three immiscible phases
separated by an interface. This study employs an interface-tracking technique called the
volume of fluid (VOF) model to capture the dynamics of the interface separating the
phases, throughout the flow domain. In the VOF model, the fraction of the volume
occupied by each phase in the entire domain of the study is determined at any location
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and time (Safaei et al., 2016). Thus, the sum of the volume fractions for all the phases is
equal to unity (or one). The VOF method is appropriate since the complex interface
shapes can be tracked from a simple volume fraction transport equation, without the
convergence problems associated with moving grids. This makes it suitable for
simulating fluid flows with phase-change. Thus, a single set of mixture momentum and
energy equations is solved throughout the domain, and the resulting velocity, pressure
and temperature fields are shared among the phases.

The fluid model adopted makes use of three variables to define the volume fraction of each
phase within the flow domain. The fraction of the volume occupied by crude oil, water-
in-oil emulsions and gel layer in the computational domain of the pipeline are denoted by
ϕoil, ϕwater and ϕgel, respectively. Thus,

ϕoil + ϕwater + ϕgel = 1 (3.1)

Accordingly, the case when ϕoil = 1 represents a pipeline filled with the crude oil only.
Similarly, ϕwater = 1 represents a pipeline filled with water only and ϕgel = 1 represents a
pipeline filled with the wax-oil gel only (i.e., a blocked pipeline). The volume fraction of
each phase takes values in the interval [0, 1]. Note that the volume fraction of water-in-oil
emulsions remains constant throughout the computational domain of the pipeline.

3.4 Thermophysical Properties of the Mixture Fluid

This study employs the Pseudo-Single Phase (PSP) approach where the crude oil-water-
gel three-phase mixture is treated as a single mixture fluid whose physical properties are
computed by averaging the corresponding physical properties of the oil, water and gel,
weighted by the corresponding volume fractions, as presented in (Ahmadi Nadooshan &
Shirani, 2008; Zheng et al., 2017; Yang et al., 2019; Magnini & Matar, 2019). Thus, if
the volume fractions of water and gel are being tracked, then the average density, average
dynamic viscosity, and the average coefficients of volume expansion of the mixture fluid
in each computational cell are given by the volume-based averaging method as:

ρf = (1 − ϕwater) ρoil + ϕwaterρwater (3.2a)

ρmix = (1 − ϕgel) ρf + ϕgelρgel. (3.2b)

µf = (1 − ϕwater)µoil + ϕwaterµwater. (3.2c)

µmix = (1 − ϕgel)µf + ϕgelµgel. (3.2d)
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(βT)f = (1 − ϕwater) (βT)oil + ϕwater (βT)water . (3.2e)

(βT)mix = (1 − ϕgel) (βT)f + ϕgel (βT)gel . (3.2f)

(βC)f = (1 − ϕwater) (βC)oil + ϕwater (βC)water . (3.2g)

(βC)mix = (1 − ϕgel) (βC)f + ϕgel (βC)gel . (3.2h)

The average heat capacity of the mixture fluid at constant pressure is given by the weight-
based averaging method as:

(Cp)f = (1 − ϕwater) ρoil (Cp)oil + ϕwaterρwater (Cp)water
ρf

. (3.3)

(Cp)mix =
(1 − ϕgel) ρf (Cp)f + ϕgelρgel (Cp)gel

ρmix
. (3.4)

The average thermal conductivity of the mixture fluid is given by the Maxwell–Garnett
correlation (Ogbuanu & Roy, 2022) as:

kf =
[
kwater + 2koil + 2ϕwater (kwater − koil)
kwater + 2koil − ϕwater (kwater − koil)

]
koil (3.5)

kmix =
[
kgel + 2kf + 2ϕgel (kgel − kf)
kgel + 2kf − ϕgel (kgel − kf)

]
kf. (3.6)

The subscript f represents the fluid phase, i.e., crude oil and water-in-oil emulsions. Zheng
et al. (2017) concluded that the pseudo-single phase approach is suitable for field scale
simulations.

3.5 Modeling the Wax Concentration

Crude oil is a mixture of several hydrocarbon components and hence tracking the
concentration of each single component is not practical as the flow evolves within the
pipeline. Therefore, this study adopts a pragmatic fluid model in which wax exists in two
different forms, i.e., dissolved wax and crystallized wax (or precipitated wax). Since the
mass concentration of wax (or the amount of wax) which remains soluble (Cd) in the
liquid phase must be equal to the total wax concentration (C) minus the amount of wax
that has precipitated (Cp), the total mass concentration of wax in the crude oil at any
location (r, z) and time t is given by

C(r, z, t) = Cd(r, z, t) + Cp(r, z, t). (3.7)
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Suppose that the precipitated wax (Cp) exists in two different forms, i.e., aggregated or
deposited wax (Ca) and non-aggregated wax (Cn). Thus, the mass concentration of the
non-aggregated wax crystals is given by

Cn(r, z, t) = Cp(r, z, t) − Ca(r, z, t). (3.8)

At temperatures above the WAT, the total wax concentration is given by
C(r, z, t) = Cd(r, z, t) since this is a case of unsaturated solution. This study focuses on
complete saturation, i.e., it is supposed that the dissolved wax concentration (Cd) is the
one of saturation at all locations in the domain, which depends only on temperature, i.e.,

Cd = Cd(T (r, z, t)). (3.9)

In order to describe the crystalline (or precipitate) component of wax in the crude oil, this
study considers a dimensionless parameter αm known as the aggregation degree of wax,
which is defined in (Fusi, 2003) as the ratio of the concentration of aggregated wax to the
concentration of precipitated wax, i.e.,

αm(r, z, t) = Ca(r, z, t)
Cp(r, z, t)

. (3.10)

Thus,αm takes values in the interval [0, 1]. It plays a crucial role in determining the specific
rheology of the fluid. Eliminating Ca between Equations (3.8) and (3.10) yields:

Cn = (1 − αm)Cp. (3.11)

Eliminating Cp between Equations (3.7) and (3.11) yields the relation:

Cn = [1 − αm] (C − Cd) . (3.12)

Equation (3.12) is used to calculate the concentration of non-aggregated wax crystals (Cn)
in the crude oil pipeline once C,Cd and αm are known from the numerical simulations.

3.6 Wax Deposition Mechanisms

Thewax depositionmechanisms considered in this study aremolecular diffusion and shear
dispersion. Molecular diffusion involves dissolved wax while shear dispersion involves
non-aggregated wax crystals. The mathematical models of wax deposition mechanisms
via molecular diffusion and shear dispersion are presented in detail in Subsection 3.6.1
and Subsection 3.6.2, respectively.
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3.6.1 Molecular Diffusion

Molecular diffusion is a deposition process due to the presence of a concentration
gradient of the dissolved wax, which is induced by the temperature gradient. The process
is governed by Fick's first law, which states that the mass flux of a diffusing species (or
solute) goes from the region of high concentration to the region of low concentration
with a magnitude that is proportional to the concentration gradient of the diffusing
species. In this case, the constant of proportionality is called the diffusivity. Suppose
that Fick's law of diffusion holds and other sources of diffusion such as the thermal
diffusion (Soret effect or thermophoresis) are negligible. The mass flux of the dissolved
wax due to molecular diffusion is given by

J⃗d = −Dd
(
∇⃗Cd

)
, (3.13)

where the negative sign on the right-hand side of Equation (3.13) means that the
diffusing species moves from the region of high concentration to the region of low
concentration. Since the radial concentration gradient of the dissolved wax is not readily
available, the chain rule of differentiation is used in Equation (3.13) to express ∇⃗Cd as a
product of the change in concentration of the dissolved wax with respect to temperature
and the temperature gradient. Thus, Equation (3.13) becomes

J⃗d = −Dd

(
dCd

dT
∇⃗T

)
. (3.14)

Equation (3.14) is known as the Fick’s diffusion equation. It expresses the rate at which
the dissolved wax is transported to the pipeline wall per unit surface. In cylindrical
coordinates, Equation (3.14) becomes

J⃗d = −Dd
dCd

dT

(
∂T

∂r
r̂ + ∂T

∂z
k̂
)
. (3.15)

Equation (3.15) is the equation governing the deposition of wax in the pipeline via
molecular diffusion mechanism.

3.6.2 Shear Dispersion

Shear dispersion is a deposition process due to the ''shearing'' of the fluid particles, i.e.,
some wax crystals tend to migrate towards the wall of the crude oil pipeline because of
the presence of a radial velocity gradient. The mass flux of precipitated wax due to shear
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dispersion is given by

J⃗p = − [L1(|γn|)Ca + L2(|γn|)Cn] n⃗, (3.16)

where L1 and L2 are non-negative functions of the shear rate γn (evaluated for the
surface element with normal vector n⃗). In this study, it is assumed that the flux J⃗p of the
precipitated wax crystals is proportional to the concentration Cn of the non-aggregated
wax and to the radial velocity gradient ∂uz/∂r only. Thus, setting L1 = 0,
L2 = Dp (∂uz/∂r) and n⃗ = r̂ in (3.16), yields the cylindrical coordinates form of J⃗p as:

J⃗p = −DpCn
∂uz

∂r
r̂. (3.17)

Equation (3.17) is the equation governing the deposition of wax in the pipeline via shear
dispersion mechanism.

3.7 Governing Equations

The flow of waxy crude oil in pipeline transport systems can be described mathematically
by the equations of conservation of mass, conservation of linear momentum, conservation
of energy, and evolution of the diffusing species. The governing equations are presented
in their general forms in Subsection 3.7.1 and the specific contributions to the general
governing equations are presented in detail in Subsection 3.7.2.

3.7.1 General Governing Equations

This subsection presents the general forms of the equations governing the wax deposition
from multiphase flow in crude oil pipeline transport systems.

3.7.1.1 Equation of Continuity

The continuity equation is derived from the principle of conservation of mass which states
that under normal conditions mass can neither be created nor destroyed. The general form
of the continuity equation, in vector notation, is given by

∂ρmix
∂t

+ ∇⃗ ·
(
ρmixV⃗

)
= 0. (3.18)

Equation (3.18) is essential in determining whether the fluid flow is possible or not. Fluid
flow is possible if the continuity equation is satisfied.
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3.7.1.2 Equation of Conservation of Linear Momentum

The equation of motion is derived from Newton's second law of linear motion, which
states that the rate of change in momentum of a body is equal to the resultant external
force acting on the body and takes place in the direction of the force. The momentum of
a body is defined as the product of its mass and velocity. The general equation of motion
for an incompressible fluid flow, in vector notation, is given by

ρmix

∂V⃗
∂t

+ V⃗ ·
(
∇⃗V⃗

) = −∇⃗p+ ∇⃗ · τ⃗ + ρmixF⃗ . (3.19)

The term
∂V⃗

∂t
is the temporal acceleration, V⃗ ·

(
∇⃗V⃗

)
is the convective acceleration, ∇⃗p is

the pressure gradient, ∇⃗ · τ⃗ denotes the viscous forces, and ρmixF⃗ represents body forces,
such as gravitational force, Lorentz force, and so on, that are driving the motion of the
fluid.

3.7.1.3 Equation of Energy

The energy equation is derived from the first law of thermodynamics, which states that the
amount of heat added to a system is equal to the change in internal energy and the work
done. The general equation of energy for an incompressible fluid flow, in vector notation,
is given by:

ρmix (Cp)mix

[
∂T

∂t
+ V⃗ ·

(
∇⃗T

)]
= ∇⃗ ·

(
kmix∇⃗T

)
+ Se, (3.20)

where ρmix (Cp)mix is the volumetric heat capacity, V⃗ ·
(
∇⃗T

)
is the heat flux due to

convection, ∇⃗ ·
(
kmix∇⃗T

)
is the heat flux due to conduction and Se represents the energy

source term such as thermal radiation and the internal heating of the fluid due to viscous
dissipation. Viscous dissipation represents the heat generated due to viscous stresses
within the fluid. The dissipation function has negligible values except for large velocity
gradients at supersonic speeds.

3.7.1.4 Equation of Species Concentration

Precipitation of wax molecules and formation of the gel layer on the inner wall of crude oil
pipeline creates a radial concentration gradient of the dissolved wax in the liquid oil, which
results in a net radial diffusive flux of wax molecules. In general, the radial diffusion of
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wax molecules is governed by the mass transfer boundary layer equation:

∂C

∂t
+ V⃗ ·

(
∇⃗C

)
= ∇⃗ ·

(
Dd∇⃗C

)
+ Sc, (3.21)

where C is the total concentration of dissolved wax in the oil phase, V⃗ ·
(
∇⃗C

)
is the mass

flux due to convection, ∇⃗ ·
(
Dd∇⃗C

)
is the mass flux due to diffusion of the species and

Sc represents the concentration source term due to chemical reaction or other generation
of the species such as Brownian diffusion, shear dispersion, and Thermophiresis (or the
Soret effect).

3.7.1.5 Volume Fraction Equation

The tracking of the interface(s) between the phases is accomplished by the solution of a
continuity equation for the volume fraction of one (or more) of the phases. For the ith

phase, the volume fraction equation takes the general form:

∂ϕi
∂t

+ ∇⃗ ·
(
ϕiV⃗

)
= Sϕi

ρi
. (3.22)

By default, the source term on the right-hand side of Equation (3.22) is zero, but a constant
or user-defined mass source can be specified for each phase. The volume fraction equation
is not solved for the primary phase (i.e., the oil phase). However, the volume fraction of
the primary phase is computed based on the constraint (3.1).

3.7.2 Specific Governing Equations

The specific equations governing the wax deposition from multiphase flow in crude oil
pipeline transport systems are obtained by adding suitable source terms to the general
governing equations. The resulting equations are then converted to cylindrical coordinates
and the assumptions made are imposed on the equations.

3.7.2.1 Equation of Continuity

Imposing the assumption of mixture incompressibility (i.e., ρmix is assumed constant), the
continuity Equation (3.18) reduces to the simpler form

∇⃗ · V⃗ = 0. (3.23)
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In cylindrical coordinates, Equation (3.23) becomes

1
r

∂

∂r
(rur) + 1

r

∂uθ

∂θ
+ ∂uz

∂z
= 0. (3.24)

Since the flow is assumed to be axisymmetric, the velocity field takes the form V⃗ =
urr̂ + uzk̂. Therefore, Equation (3.24) reduces to the simpler form

1
r

∂

∂r
(rur) + ∂uz

∂z
= 0. (3.25)

Multiplying Equation (3.25) through by r yields

∂ (rur)
∂r

+ ∂ (ruz)
∂z

= 0. (3.26)

Equation (3.26) is the specific equation of continuity, in cylindrical coordinate system, for
water-oil two-phase flow in crude oil transportation pipeline.

3.7.2.2 Equation of Conservation of Linear Momentum

In this study, the Darcy-type source term (or porous viscous term), the buoyancy force,
and the surface tension force are added to the right-hand side of the momentum Equation
(3.19) and the resulting equation is converted to cylindrical coordinates.

3.7.2.2.1 Darcy's Law
Darcy's law describes the flow of fluid through a porous material such as the gel-layer,
driven by pressure gradient. The law states that the volumetric flow rate (Q) of a fluid
through a porousmaterial is directly proportional to both the cross-sectional area (A) of the
porous material and the pressure gradient (∇⃗p) and inversely proportional to the dynamic
viscosity (µmix) of the fluid, i.e.,

Q ∝ A

µmix
∇⃗p. (3.27)

Introducing the constant of proportionality (κ) to the Darcy's law (3.27), yields the
following mathematical expression for the Darcy's law:

Q = − κA

µmix
∇⃗p. (3.28)

The negative sign in Equation (3.28) is necessary since fluid flow occurs from a region
of high pressure to a region of low pressure (i.e., in a direction opposite the direction of

30



increasing pressure gradient). Substituting the expression for the volumetric flow rate
Q = AV⃗ into the Darcy's equation (3.28) yields

V⃗ = − κ

µmix
∇⃗p. (3.29)

Making ∇⃗p the subject in the Darcy's Equation (3.29), yields

∇⃗p = −µmix
κ
V⃗ . (3.30)

Equation (3.31) means that the momentum equation strikes a balance between viscous
forces and the pressure gradient in the porous medium. Note that the Darcy's law given by
Equation (3.31) only applies to slow viscous flows through a porous material but does not
apply to high velocity flows through a porous material. Therefore, the body force (F⃗Darcy)
due to Darcy's law is given by

F⃗Darcy = −µmix
κ
V⃗ . (3.31)

Since the gel layer is a porous material, the Darcy-type source term given by Equation
(3.31) should be added to the right-hand side of the momentum Equation (3.19) in order
to describe the deceleration of the flow through the gel layer.

3.7.2.2.2 Surface Tension Force
Surface tension force exists at the interface between any two fluids if at least one of the
fluids is a liquid, due to the adhesive forces between molecules of the two fluids. Since
the present study deals with flow with more than one phase, the surface tension at the
interface of the continuous oil phase and the gel layer should be accounted for in the
momentum equation. The oil-gel interface behaves in a manner similar to a thinly
stretched membrane. This study adopts the continuum surface force (CSF) model,
proposed by Brackbill et al. (1992), which formulates the surface tension force at the
oil-gel interface into an equivalent body force given as:

F⃗surface = σK∇⃗ϕoil. (3.32)

The direction and magnitude of body force due to surface tension are determined by the
curvature (K) of the oil-gel interface. The interface curvature in the CSF model given by
Equation (3.32) is calculated by the following formula:

K = −
(
∇⃗ · n̂

)
, (3.33)
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where n̂ = ∇⃗ϕoil/
∣∣∣∇⃗ϕoil∣∣∣ is an outward unit normal vector to the oil-gel interface. The

basic idea of the CSF model is to regard the oil-gel interface as a transition region with
a finite thickness, instead of a zero-thickness membrane. The surface tension effect is
interpreted as a continuous body force spread across the transition region, which acts as
a source term in the momentum equation. The CSF model allows us to treat the dynamic
boundary condition at the interface implicitly.

The volumetric surface tension force given by Equation (3.32) is added to the momentum
equation to model the effect of surface tension. With the CSF model, the location of the
oil-gel interface is no longer explicitly required in the analysis, since it is already captured
in the momentum equation (Wu et al., 1998).

3.7.2.2.3 Boussinesq's Approximation
The flow of waxy crude oil is naturally established due to the existence of temperature
and concentration gradients in the fluid. The density of the mixture fluid depends on
temperature and species concentration, written mathematically as

ρmix = ρmix(T,C) (3.34)

The variation of density with temperature and species concentration is responsible for
numerous natural phenomena such as heat and mass transfer by natural convection. The
density variation gives rise to buoyancy forces that drive the motion of the fluid. The
Boussinesq's approximation, therefore, states that the variation of the density of a fluid is
neglected everywhere in the flow field except in the buoyancy terms. Expanding the
density function given by Equation (3.34) in Taylor's series about the reference
temperature T∞ and the reference concentration C∞ yields

ρmix = ρ∞ +
(

∂ρmix
∂T

)
P

(T − T∞) +
(

∂ρmix
∂C

)
P

(C − C∞) + 1
2!

[(
∂2ρmix
∂T 2

)
P

(T − T∞)2

+2
(

∂2ρmix
∂T∂C

)
P

(T − T∞) (C − C∞) +
(

∂2ρmix
∂C2

)
P

(C − C∞)2
]

+ · · · , (3.35)

where ρ∞ = ρmix(T∞, C∞) and P is the reference point (T∞, C∞) about which the density
function is expanded. If the temperature gradient (T −T∞) and the concentration gradient
(C −C∞) are very small such that the terms of order ≥ 2 can be neglected, then Equation
(3.35) reduces to the simpler form

ρmix ≈ ρ∞ +
(
∂ρmix
∂T

)
P

(T − T∞) +
(
∂ρmix
∂C

)
P

(C − C∞) . (3.36)
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The coefficient of volume expansion (βT)mix due to changes in temperature of the mixture
fluid is defined in Cengel & Cimbala (2010) and Bergman et al. (2017) as:

(βT)mix = 1
V

(
∂V

∂T

)
P

= − 1
ρmix

(
∂ρmix
∂T

)
P

, (3.37)

where V is the specific volume (or volume per unit mass, i.e., V = 1/ρmix). A large
value of (βT)mix for a fluid means a large change in density with temperature. Similarly,
the coefficient of volume expansion (βC)mix due to changes in species concentration is
defined as

(βC)mix = 1
V

(
∂V

∂C

)
P

= − 1
ρmix

(
∂ρmix
∂C

)
P

. (3.38)

Substituting Equations (3.37) and (3.38) into Equation (3.36) and rearranging yields

(ρ∞ − ρmix) ≈ ρmix (βT)mix (T − T∞) + ρmix (βC)mix (C − C∞). (3.39)

Equation (3.39) is known as the Boussinesq's approximation and it shows that in solving
natural convection problems, the equations of momentum, energy and species
concentration are coupled, necessitating a simultaneous solution of the governing
equations.

3.7.2.2.4 Stress Tensor
The stress tensor (τ⃗) in Equation (3.19) is given in Moukalled et al. (2016) as:

τ⃗ = µmix

[
∇⃗V⃗ +

(
∇⃗V⃗

)T]
+ λI

(
∇⃗ · V⃗

)
, (3.40)

where λ = −(2/3)µmix is the bulk viscosity coefficient, the superscript T denotes the
transpose, and I is the unit (or identity) tensor of size (3 × 3) defined as.

I =


1 0 0
0 1 0
0 0 1

 (3.41)

The stress tensor represents six shear stresses (i.e., stresses acting in the tangential
direction to the flow field) and three normal stresses (i.e., compressive or tensile stresses
perpendicular to the direction of the flow). The expanded form of the stress tensor in
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three-dimensional cylindrical coordinate system is given in Ochieng et al. (2018) as:


τrr τrθ τrz

τθr τθθ τθz

τzr τzθ τzz

 = µmix



2∂ur

∂r
− 2

3
∇⃗ · V⃗

1
r

∂ur

∂θ
+ ∂uθ

∂r
− uθ

r

∂uz

∂r
+ ∂ur

∂z

1
r

∂ur

∂θ
+ ∂uθ

∂r
− uθ

r
2
(1

r

∂uθ

∂θ
+ ur

r

)
− 2

3
∇⃗ · V⃗

∂uθ

∂z
+ 1

r

∂uz

∂θ

∂uz

∂r
+ ∂ur

∂z

∂uθ

∂z
+ 1

r

∂uz

∂θ
2∂uz

∂z
− 2

3
∇⃗ · V⃗


(3.42)

Equation (3.42) gives the relation between the stress components and the velocity field
and is called the Stokes relations. Imposing the assumptions that the mixture fluid is
incompressible (i.e., ∇⃗ · V⃗ = 0) and that the flow is axisymmetric, the stress matrix given
by Equation (3.42) reduces to the simpler form:


τrr τrθ τrz

τθr τθθ τθz

τzr τzθ τzz

 = µmix



2∂ur

∂r
0 ∂uz

∂r
+ ∂ur

∂z

0 2ur

r
0

∂uz

∂r
+ ∂ur

∂z
0 2∂uz

∂z


(3.43)

Despite the fact that the rheology of crude oils below the WAT has been extensively
studied by many authors and several constitutive equations to describe their
non-Newtonian behaviour have been proposed (e.g. Casson and Herschel-Bulkley
models), these constitutive equations cannot be applied in the present study where the
crude oil, water-in-oil emulsions and the gel-like deposit are modeled as distinct phases
and specific values of the deposit viscosity (µgel) are needed.

3.7.2.2.5 Momentum Equation in Cylindrical Coordinates
Adding the Darcy-type source term (F⃗Darcy) given by Equation (3.31), the buoyancy force
(−ρmixg⃗), and the volumetric surface tension force (F⃗surface) given by Equation (3.32) to
the right-hand side of the momentum Equation (3.19) yields

ρmix

∂V⃗
∂t

+ V⃗ ·
(
∇⃗V⃗

) = −∇⃗p+ ∇⃗ · τ⃗ − µmix
κ
V⃗ − ρmixg⃗ + σK∇⃗ϕoil. (3.44)

The Boussinesq's approximation to the momentum Equation (3.44) is obtained as follows.
Evaluating the momentum Equation (3.44) at the edge of the boundary layer where ρmix →
ρ∞, p → p∞, V⃗ → U∞, κ → ∞ (fluid phase) and K → 0, yields the equation for
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hydrostatic balance as:

−∇⃗p∞ = ρ∞g⃗. (3.45)

The pressure shift (p∗) is given in Currie (2016) as:

p∗ = p− p∞ (3.46)

where the constant p∞ is the hydrostatic pressure. Making p the subject in Equation (3.46)
yields

p = p∗ + p∞ (3.47)

Substituting Equation (3.47) into the momentum Equation (3.44) and expanding the
pressure term, yields

ρmix

∂V⃗
∂t

+ V⃗ ·
(
∇⃗V⃗

) = −∇⃗p∗ − ∇⃗p∞ + ∇⃗ · τ⃗ − µmix
κ
V⃗ − ρmixg⃗ + σK∇⃗ϕoil.(3.48)

Substituting Equation (3.45) into the momentum Equation (3.48), rearranging the terms
on the right-hand side and dropping the star (∗), yields

ρmix

∂V⃗
∂t

+ V⃗ ·
(
∇⃗V⃗

) = −∇⃗p− µmix
κ
V⃗ + ∇⃗ · τ⃗ + (ρ∞ − ρmix) g⃗ + σK∇⃗ϕoil.(3.49)

Substituting the Boussinesq's approximation for the density gradient (ρ∞ − ρmix) given
by Equation (3.39) into the momentum Equation (3.49), yields

ρmix

∂V⃗
∂t

+ V⃗ ·
(
∇⃗V⃗

) = −∇⃗p− µmix
κ
V⃗ + ∇⃗ · τ⃗ + ρmixg⃗ (βT)mix (T − T∞)

+ρmixg⃗ (βC)mix (C − C∞) + σK∇⃗ϕoil, (3.50)

where K = −∇⃗ ·
(
∇⃗ϕoil/

∣∣∣∇⃗ϕoil∣∣∣) is the curvature of the oil-gel interface. The terms
ρmixg⃗ (βT)mix (T−T∞) and ρmixg⃗ (βC)mix (C − C∞) are the buoyancy forces that arise from
the thermal andmass diffusion, respectively. In three-dimensional cylindrical coordinates,
the stress tensor (τ⃗) is written in component form as

τ⃗ = (τrr, τrθ, τrz) r̂ + (τθr, τθθ, τθz) Θ̂ + (τzr, τzθ, τzz) k̂ (3.51)

Thus utilizing Equation (3.51), the stress form of the momentum Equation (3.50) in three-
dimensional cylindrical coordinates is written in component form (Salih, 2011; Ochieng
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et al., 2018) as:

r momentum: ρmix

[
∂ur

∂t
+ ur

∂ur

∂r
+ uθ

r

(
∂ur

∂θ
− uθ

)
+ uz

∂ur

∂z

]
= −∂p

∂r
− µmix

κ
ur

+1
r

∂

∂r
(rτrr) + 1

r

∂

∂θ
(τθr) + ∂

∂z
(τzr) − τθθ

r
+ σK

∂ϕoil
∂r

+ρmixgrβ(T − T∞) + ρmixgr (βC)mix (C − C∞) (3.52a)

θ momentum: ρmix

[
∂uθ

∂t
+ ur

∂uθ

∂r
+ uθ

r

(
∂uθ

∂θ
+ ur

)
+ uz

∂uθ

∂z

]
= −1

r

∂p

∂θ
− µmix

κ
uθ

+1
r

∂

∂r
(rτrθ) + 1

r

∂

∂θ
(τθθ) + ∂

∂z
(τzθ) + τθr

r
+ σK

r

∂ϕoil
∂θ

+ρmixgθβ(T − T∞) + ρmixgθ (βC)mix (C − C∞) (3.52b)

z momentum: ρmix

[
∂uz

∂t
+ ur

∂uz

∂r
+ uθ

r

∂uz

∂θ
+ uz

∂uz

∂z

]
= −∂p

∂z
− µmix

κ
uz

+1
r

∂

∂r
(rτrz) + 1

r

∂

∂θ
(τθz) + ∂

∂z
(τzz) + σK

∂ϕoil
∂z

+ρmixgzβ(T − T∞) + ρmixgz (βC)mix (C − C∞) (3.52c)

where

K = −
[

1
r

∂

∂r

(
r

B

∂ϕoil
∂r

)
+ 1
r

∂

∂θ

(
1
rB

∂ϕoil
∂θ

)
+ ∂

∂z

(
1
B

∂ϕoil
∂z

)]
(3.53)

and

B =
∣∣∣∇⃗ϕoil∣∣∣ =

√√√√(∂ϕoil
∂r

)2

+ 1
r2

(
∂ϕoil
∂θ

)2

+
(
∂ϕoil
∂z

)2

. (3.54)

Since the flow is axisymmetric, the momentum Equations (3.52a)−(3.52c) reduce to the
simpler forms

r momentum: ρmix

[
∂ur

∂t
+ ur

∂ur

∂r
+ uz

∂ur

∂z

]
= −∂p

∂r
− µmix

κ
ur + 1

r

∂

∂r
(rτrr) + ∂

∂z
(τzr) − τθθ

r

+ ρmixgr (βT)mix (T − T∞) + ρmixgr (βC)mix (C − C∞) + σK
∂ϕoil
∂r

. (3.55)

z momentum: ρmix

[
∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z

]
= −∂p

∂z
− µmix

κ
uz + 1

r

∂

∂r
(rτrz) + ∂

∂z
(τzz)

+ ρmixgz (βT)mix (T − T∞) + ρmixgz (βC)mix (C − C∞) + σK
∂ϕoil
∂z

. (3.56)

Similarly, Equations (3.53) and (3.54), respectively, reduce to the simpler forms

K = −
[

1
r

∂

∂r

(
r

B

∂ϕoil
∂r

)
+ ∂

∂z

(
1
B

∂ϕoil
∂z

)]
(3.57)
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and

B =

√√√√(∂ϕoil
∂r

)2

+
(
∂ϕoil
∂z

)2

. (3.58)

Since the pipeline is inclined at an elevation φ to the horizontal, the components of the
gravitational acceleration g⃗ are given as gr = g cos(φ) and gz = g sin(φ). Using the
expressions for the shear stresses given by Equation (3.43) in Equations (3.55) and (3.56)
yields

1
r

∂

∂r
(rτrr) = 1

r

∂

∂r

(
2µmixr

∂ur

∂r

)
= 2µmix

1
r

∂

∂r

(
r

∂ur

∂r

)
= 2µmix

(
∂2ur

∂r2 + 1
r

∂ur

∂r

)
(3.59a)

∂

∂z
(τzr) = ∂

∂z

(
µmix

(
∂uz

∂r
+ ∂ur

∂z

))
= µmix

(
∂2uz

∂r∂z
+ ∂2ur

∂z2

)
(3.59b)

τθθ

r
= 2µmix

ur

r2 (3.59c)

1
r

∂

∂r
(rτrz) = 1

r

∂

∂r

(
rµmix

(
∂uz

∂r
+ ∂ur

∂z

))
= µmix

r

∂

∂r

(
r

∂uz

∂r
+ r

∂ur

∂z

)
= µmix

r

(
r

∂2uz

∂r2 + ∂uz

∂r
+ r

∂2ur

∂r∂z
+ ∂ur

∂z

)

= µmix

(
∂2uz

∂r2 + 1
r

∂uz

∂r
+ ∂2ur

∂r∂z
+ 1

r

∂ur

∂z

)
(3.59d)

∂

∂z
(τzz) = ∂

∂z

(
2µmix

∂uz

∂z

)
= 2µmix

∂

∂z

(
∂uz

∂z

)
= 2µmix

∂2uz

∂z2 (3.59e)

Expanding the curvature (K) by computing the derivatives involved yields

K = −
[1

r

∂

∂r

(
r

B

∂ϕoil
∂r

)
+ ∂

∂z

( 1
B

∂ϕoil
∂z

)]
= 1

B3

[(
∂ϕoil
∂r

)2 ∂2ϕoil
∂r2 + 2∂ϕoil

∂r

∂ϕoil
∂z

∂2ϕoil
∂r∂z

+
(

∂ϕoil
∂z

)2 ∂2ϕoil
∂z2

]

− 1
B

(
∂2ϕoil
∂r2 + 1

r

∂ϕoil
∂r

+ ∂2ϕoil
∂z2

)

= − 1
B3

[(
∂ϕoil
∂r

)2
(

1
r

∂ϕoil
∂r

+ ∂2ϕoil
∂z2

)
− 2∂ϕoil

∂r

∂ϕoil
∂z

∂2ϕoil
∂r∂z

+
(

∂ϕoil
∂z

)2
(

∂2ϕoil
∂r2 + 1

r

∂ϕoil
∂r

)]
(3.60)
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where B is given by Equation (3.58). Substituting Equations (3.59a), (3.59b) and (3.59c)
into the r−momentum Equation (3.55) and simplifying yields

r momentum: ρmix

[
∂ur

∂t
+ ur

∂ur

∂r
+ uz

∂ur

∂z

]
= −∂p

∂r
− µmix

κ
ur + σK

∂ϕoil
∂r

+µmix
(

2∂
2ur

∂r2 + ∂2ur

∂z2 + ∂2uz

∂r∂z
+ 2
r

∂ur

∂r
− 2
r2ur

)
+ρmixg cos(φ) (βT)mix (T − T∞) + ρmixg cos(φ) (βC)mix (C − C∞) .

(3.61)

Substituting Equations (3.59d) and (3.59e) into the z−momentum Equation (3.56) and
simplifying yields

z momentum: ρmix

[
∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z

]
= −∂p

∂z
− µmix

κ
uz + σK

∂ϕoil
∂z

+µmix
(
∂2uz

∂r2 + 2∂
2uz

∂z2 + ∂2ur

∂r∂z
+ 1
r

∂ur

∂z
+ 1
r

∂uz

∂r

)
+ρmixg sin(φ) (βT)mix (T − T∞) + ρmixg sin(φ) (βC)mix (C − C∞) ,

(3.62)

where K is given by Equation (3.60). Equations (3.61) and (3.62) are the specific
equations of conservation of linear momentum, in cylindrical coordinate system, for
water-oil two-phase flow in crude oil transportation pipeline. The axial velocity (uz) is
the primary velocity since the main flow is along the axial direction while the radial
velocity (ur) is the secondary velocity.

3.7.2.3 Equation of Energy

Incorporating the energetic contribution of viscous dissipation function (Ψ) and heat
transfer term (qh) associated with heat transfer from the oil phase to the water phase, the
energy Equation (3.20) becomes.

ρmix (Cp)mix

[
∂T

∂t
+ V⃗ ·

(
∇⃗T

)]
= ∇⃗ ·

(
kmix∇⃗T

)
+ Ψ − qh. (3.63)

The heat transfer term (qh) is given in Zheng et al. (2017) as:

qh = hr
dwater

(T − T∞) , (3.64)
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where hr is the convective heat transfer coefficient between the oil phase and the water
phase. The viscous dissipation function (Ψ) is given in Ochieng (2018) as:

Ψ =
(

− 2
3
µmix∇⃗ · V⃗ ¯̄I + µmix

[
∇⃗V⃗ +

(
∇⃗V⃗

)T
])

: ∇⃗V⃗ . (3.65)

The viscous dissipation term represents a conversion of the kinetic energy of the velocity
field V⃗ to heat energy (i.e., the internal energy of the fluid). It represents a source of
internal energy due to deformation work on the fluid particles. The energy Equation
(3.63), in cylindrical coordinate system, for an incompressible mixture fluid with a
constant thermal conductivity, reduces to the simpler form:
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+
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ρmix (Cp)mix dwater
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+ µmix
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r

∂ur
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− uθ

r

)2
+
(

∂uθ

∂z
+ 1

r
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∂θ
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+
(

∂uz

∂r
+ ∂ur

∂z

)2
]

,

(3.66)

where αmix = kmix/ (ρmix (Cp)mix) is the effective thermal diffusivity of the mixture fluid.
Since the flow is assumed to be axisymmetric, Equation (3.66) reduces to the simpler
form:

∂T

∂t
+ ur

∂T

∂r
+ uz

∂T

∂z
= αmix

(
∂2T

∂r2 + 1
r

∂T

∂r
+ ∂2T

∂z2

)
− hr

ρmix (Cp)mix dwater
(T − T∞)

+ µmix
ρmix (Cp)mix

[
2
(

∂ur

∂r

)2
+ 2

(
ur

r

)2
+ 2

(
∂uz

∂z

)2
+
(

∂uz

∂r
+ ∂ur

∂z

)2
]

. (3.67)

Equation (3.67) is the specific equation of conservation of energy, in cylindrical coordinate
system, for water-oil two-phase flow in crude oil transportation pipeline.

3.7.2.4 Equation of Species Concentration

In this study, the total mass flux (J⃗tot) of wax in the crude oil is given by the sum of the
contribution of the molecular diffusion and the shear dispersion mechanisms, i.e.,

J⃗tot = J⃗d + J⃗p. (3.68)

Substituting the Fick's diffusion Equation (3.15) and the shear dispersion Equation (3.17)
into Equation (3.68), yields the cylindrical coordinates form of the total mass flux of wax
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as:

J⃗tot = −
(
Dd

dCd

dT

∂T

∂r
+DpCn

∂uz

∂r

)
r̂ −Dd

dCd

dT

∂T

∂z
k̂. (3.69)

In the fluid phase, the concentration of dissolved wax, Cd, and that of precipitated (or
crystallized) wax, Cp, are governed by the equations:

∂Cd

∂t
+ V⃗ ·

(
∇⃗Cd

)
+ ∇⃗ ·

(
J⃗d
)

= Sd (3.70a)

and

∂Cp

∂t
+ V⃗ ·

(
∇⃗Cp

)
+ ∇⃗ ·

(
J⃗p
)

= Sp, (3.70b)

respectively. Adding Equations (3.70a) and (3.70b) and using the relation (3.7), yields

∂C

∂t
+ V⃗ ·

(
∇⃗C

)
+ ∇⃗ ·

(
J⃗tot
)

= 0. (3.71)

The right-hand side of Equation (3.71) is zero (i.e., Sd + Sp = 0) since no wax is added
or removed from the crude oil in the control volume of the pipeline. Substituting the total
mass flux given by Equation (3.69) into Equation (3.71), expressing the resulting equation
in cylindrical coordinate system and rearranging yields

∂C

∂t
+ ur

∂C

∂r
+ uz

∂C

∂z
= 1

r

∂

∂r

(
r

(
Dd

dCd
dT

∂T

∂r
+ DpCn

∂uz

∂r

))
+ ∂

∂z

(
Dd

dCd
dT

∂T

∂z

)
. (3.72)

Expanding the derivatives on the right-hand side of Equation (3.72) using the product rule
of differentiation and simplifying the resulting equation yields

∂C

∂t
+ ur

∂C

∂r
+ uz

∂C

∂z
= Dp

[
Cn

(
∂2uz

∂r2 + 1
r

∂uz

∂r

)
+ ∂Cn

∂r

∂uz

∂r

]

+Dd

[
dCd

dT

(
∂2T

∂r2 + 1
r

∂T

∂r
+ ∂2T

∂z2

)
+ ∂

∂r

(
dCd

dT

)
∂T

∂r
+ ∂

∂z

(
dCd

dT

)
∂T

∂z

]
. (3.73)

Using the chain rule of differentiation for derivatives involving Cd, Equation (3.73)
becomes:

∂C

∂t
+ ur

∂C

∂r
+ uz

∂C

∂z
= Dp

[
Cn

(
∂2uz

∂r2 + 1
r

∂uz

∂r

)
+ ∂Cn

∂r

∂uz

∂r

]

+Dd

dCd

dT

(
∂2T

∂r2 + 1
r

∂T

∂r
+ ∂2T

∂z2

)
+ d2Cd

dT 2


(
∂T

∂r

)2

+
(
∂T

∂z

)2

 . (3.74)
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Eliminating Cn between Equations (3.12) and (3.74), and using the chain rule of
differentiation for derivatives involving Cd yields

∂C

∂t
+ ur

∂C

∂r
+ uz

∂C

∂z
= Dp

 (1 − αm) (C − Cd)
(
∂2uz

∂r2 + 1
r

∂uz

∂r

)

+
{

(1 − αm)
(
∂C

∂r
− dCd

dT

∂T

∂r

)
− (C − Cd)

∂αm
∂r

}
∂uz

∂r


+Dd

dCd

dT

(
∂2T

∂r2 + 1
r

∂T

∂r
+ ∂2T

∂z2

)
+ d2Cd

dT 2


(
∂T

∂r

)2

+
(
∂T

∂z

)2

 . (3.75)

Equation (3.75) is the specific equation of total wax concentration, in cylindrical
coordinate system, for water-oil two-phase flow in crude oil transportation pipeline.

3.7.2.5 Equation of Wax Precipitation Kinetics

To obtain the equation governing the precipitation kinetics of wax in crude oil pipeline,
this study assumes that the material derivative (i.e., the derivative with respect to time t
along the path of a fluid particle) of the aggregation degree (αm) is expressed locally (Fusi,
2003) as:

∂αm
∂t

+ V⃗ ·
(
∇⃗αm

)
= [1 − αm]K1 (T ) − αm |W (r, z, t)|K2 (T ) . (3.76)

where K1 and K2 are positive functions of temperature, which are usually determined
experimentally whileW (r, z, t) is the power density dissipated in the fluid by the viscous
forces for an arbitrary unit volume of the pipeline and is defined in (Fusi, 2003) as:

W (r, z, t) = ∂uz

∂r

(
−τ0 + µmix

∂uz

∂r

)
. (3.77)

Equation (3.76) takes into account both the spontaneous aggregation/deposition of wax
crystals and the disintegration/fragmentation of the aggregated wax (or agglomerates) due
to mechanical action (or thixotropy). The first term on the right-hand side of Equation
(3.76) represents the tendency of wax to spontaneously aggregate while the second term
represents the rate of disintegration/fragmentation of the aggregated wax (or wax deposit)
due to internal friction.

Since the velocity field is assumed to take the form V⃗ = urr̂ + uzk̂, using the expression
ofW given by Equation (3.77) and assuming that τ0 = 0, the cylindrical coordinates form
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of Equation (3.76) is

∂αm
∂t

+ ur
∂αm
∂r

+ uz
∂αm
∂z

= [1 − αm]K1 (T ) − αmµmix

(
∂uz

∂r

)2

K2 (T ) . (3.78)

Equation (3.78) is the specific equation governing the precipitation kinetics of wax for
water-oil two-phase flow in crude oil transportation pipeline.

3.7.2.6 Equation of Conservation of Volume Fraction

In the VOF model, the conservation of the volume fraction of the oil phase is governed by
the oil volume fraction transport equation given in Ahmadi Nadooshan & Shirani (2008),
Yang et al. (2019), and Jiang et al. (2020) as:

∂(ϕoilρoil)
∂t

+ V⃗ ·
[
∇⃗(ϕoilρoil)

]
= 0. (3.79)

Imposing the assumption that the flow is axisymmetric and that the mixture fluid is
incompressible, the cylindrical coordinates form of Equation (3.79) becomes

∂ϕoil
∂t

+ ur
∂ϕoil
∂r

+ uz
∂ϕoil
∂z

= 0. (3.80)

Equation (3.80) is the specific equation of conservation of oil volume fraction, in
cylindrical coordinate system, for water-oil two-phase flow in crude oil transportation
pipeline.

3.7.2.7 Equation of Wax Deposit Growth

The total mass concentration of wax (C) is affected by the possible growth of a deposit
layer on the inner wall of the crude oil pipeline. This is because the crude oil flowing
through the pipeline is always the same and a deposit on the pipeline wall implies a
decrease in the total wax concentration in the fluid.

The wax molecules reaching the oil/gel interface through molecular diffusion precipitate
on the interface, causing the interface to extend towards the centerline of the pipeline.
Assuming that the thickness (δ(t)) of the gel layer is uniform, the effective radius of the
pipeline is given as

Reff(t) = R − δ(t) (3.81)

Suppose the control volume is taken as an arbitrary unit length portion of the pipeline.
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From the principle of conservation of mass, the sum of the mass of wax in the fluid phase
and the mass of wax in the gel layer must be constant at any time t. The mass balance in
the control volume of the pipeline at time t is expressed mathematically in (Fasano et al.,
2004) as:

C(r, z, t)πR2
eff(t) + ρgelπ

[
R2 −R2

eff(t)
]

= C∞πR
2. (3.82)

The term C(r, z, t)πR2
eff(t) is the mass of the dissolved wax in the fluid phase,

ρgelπ [R2 −R2
eff(t)] x is the mass of the wax particles in the gel layer, and C∞πR

2 is the
total mass of wax in the control volume of the pipeline at time t ≤ 0; x being the weight
fraction of wax crystals in the gel layer. Making Reff(t) the subject in Equation (3.82)
yields.

Reff(t) = R

(
C∞ − ρgel
C − ρgel

) 1
2

(3.83)

EliminatingReff(t) between Equations (3.81) and (3.83), yields the formula for calculating
the thickness of wax deposit at time t as:

δ(t) = R

1 −
(
C∞ − ρgel
C − ρgel

) 1
2
 . (3.84)

The rate of deposit growth is proportional to the mass flux of dissolved wax in crude oil
at the oil-gel interface (Zheng et al., 2017). The present study adopts the Michigan model
presented in (Gupta & Sircar, 2017) as the equation governing the rate of deposit growth.

dδ

dt
= (1 − f(x))

xρgel

Dd
dCd

dT

∂T

∂r

∣∣∣∣∣
r=Reff

 . (3.85)

Equation (3.85) is the specific equation governing the growth of the gel layer for water-oil
two-phase flow in crude oil transportation pipeline.

3.7.2.8 Equation of Wax Deposit Aging

A concentration gradient of wax molecules exists inside the gel layer, induced by the
temperature difference between the oil-gel interface and the inner wall of the pipeline.
Thus, some wax molecules continue to diffuse from the oil-gel interface into the gel layer,
leading to a gradual increase in the wax content inside the gel layer. The wax content
or weight fraction (x) of solid wax in the gel layer is defined in Ramirez-Jaramillo et al.
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(2004) as:

x = mass of wax in the gel layer
mass of wax in the gel layer + mass of oil trapped in the gel layer

(3.86)

The increase in the weight fraction of wax inside the gel layer with time is called deposit
aging (or hardening of the gel layer). This study adopts the Michigan model for laminar
flow presented in Gupta & Sircar (2017) and Sun et al. (2020) as the equation governing
the rate of aging of the gel layer. Incorporating the shear dispersion mechanism in the
Michigan model yields.

dx

dt
= 2Refff(x)
ρgel (R2 −R2

eff)

(
Dd

dCd

dT

∂T

∂r
+DpCn

∂uz

∂r

)
r=Reff

(3.87)

The function f(x) is the coefficient describing diffusion of wax molecules in the porous
network (i.e., the gel layer) and is given in Gupta & Sircar (2017) and Sun et al. (2020)
as:

f(x) = 1 − x

α2
avgx

2 − x+ 1
, (3.88)

where αavg denotes the average aspect ratio of the wax crystals (or the wax crystal shape
factor) and can be obtained by observing the wax crystal form of the gel layer. It is given
in Sun et al. (2020) as:

αavg = −0.323 lnQ+ 1.684. (3.89)

where Q is the volumetric flow rate of the mixture fluid. Eliminating Cn between
Equations (3.12) and (3.91) yields

dx

dt
= 2Refff(x)
ρgel (R2 −R2

eff)

(
Dd

dCd

dT

∂T

∂r
+Dp (1 − αm) (C − Cd)

∂uz

∂r

)
r=Reff

(3.90)

Eliminating Reff between Equations (3.81) and (3.90) and rearranging yields

dx

dt
= 2 [R − δ(t)]
δ(t) [2R − δ(t)]

f(x)
ρgel

(
Dd

dCd

dT

∂T

∂r
+Dp (1 − αm) (C − Cd)

∂uz

∂r

)
r=Reff

(3.91)

Equation (3.91) is the specific equation governing the aging of the gel layer for water-oil
two-phase flow in crude oil transportation pipeline.
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3.7.3 Boundary and Initial Conditions

Because of the symmetry around the plane r = 0, the analysis of the specific governing
equations in this study is limited to the upper half part of the pipeline (i.e., from the pipe
centerline to the upper wall). Thus, the final set of the governing partial differential
Equations (3.26), (3.61), (3.62), (3.67), (3.75), (3.78), (3.80), (3.85) and (3.91) are
solved subject to the following boundary and initial conditions:



∂ur

∂r
= 0, ∂uz

∂r
= 0, ∂T

∂r
= 0,

∂C

∂r
= 0, ∂αm

∂r
= 0, ∂ϕoil

∂r
= 0.

at r = 0 (centerline)

ur = 0, uz = 0, T = Tinterface,

C = Cinterface, αm = 1, ϕoil = 0.
at r = Reff (oil-gel interface)

ur = 0, uz = U∞, T = T∞, C = C∞,

αm = 0, ϕoil = 1 − ϕwater.
at z = 0 (pipe inlet)

∂ur

∂z
= 0, ∂uz

∂z
= 0, ∂T

∂z
= 0,

∂C

∂z
= 0, ∂αm

∂z
= 0, ∂ϕoil

∂z
= 0.

as z → ∞ (pipe outlet)

ur = 0, uz = U∞, T = T∞, C = C∞,

αm = 0, ϕoil = 1 − ϕwater, δ = 0, x = 0.
at t = 0 (initial conditions)

(3.92)

3.8 Dimensional Analysis of the Governing Equations

Dimensional analysis is a mathematical technique which considers how to determine the
required set of scales for any physical model. It provides a way to compare systems
having different scales. Thus, it ensures that the results obtained from the study are
applicable to other geometrically similar configurations under a similar set of flow
conditions. The process of dimensional analysis is based on the principle of dimensional
homogeneity and it starts with selecting a suitable scale against which all dimensions in
a given physical model are based. Dimensional analysis is necessary in order to identify
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the dimensionless groups that govern the flow, heat and mass transfer characteristics.
The dimensionless governing equations, therefore, should have solutions that are
bounded in the closed interval [0, 1] and they should not depend on any unit. In this
study, the characteristic length is taken as the radius R of the pipe while the
characteristic velocity is taken as the free-stream velocity U∞. Therefore, the
characteristic time is taken as (R/U∞). To express the governing equations and the
initial-boundary conditions in their dimensionless form, the following dimensionless
variables are introduced.

r̄ = r

R
, z̄ = z

R
, t̄ = t

R/U∞
. (3.93a)

u = ur

U∞
, v = uz

U∞
, P = p

ρmixU2
∞
, Θ = T − Twall

T∞ − Twall
(3.93b)

ϕ = C − C∞

Cwall − C∞
, C̄d = Cd − C∞

Cwall − C∞
, R̄eff = Reff

R
(3.93c)

δ̄(t̄) = δ(t)
R
, d̄ = dwater

R
, K̄1 = K1

U∞/R
, K̄2 = K2

(ρmixR2)/µ2
mix
. (3.93d)

From the change of the independent variables given by Equation (3.93a), yields the
following partial derivatives:

∂r̄

∂r
= 1
R
,

∂r̄

∂z
= 0, ∂r̄

∂t
= 0 (3.94a)

∂z̄

∂r
= 0, ∂z̄

∂z
= 1
R
,

∂z̄

∂t
= 0 (3.94b)

∂t̄

∂r
= 0, ∂t̄

∂z
= 0, ∂t̄

∂t
= U∞

R
(3.94c)
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For the transformation (3.93a) to be valid, the Jacobian for the transformation should be
non-zero. The Jacobian for the transformation is given by:

J = ∂(r, z, t)
∂(r̄, z̄, t̄)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂r

∂r̄

∂r

∂z̄

∂r

∂t̄

∂z

∂r̄

∂z

∂z̄

∂z

∂t̄

∂t

∂r̄

∂t

∂z̄

∂t

∂t̄

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R 0 0

0 R 0

0 0 R

U∞

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= R3

U∞
(3.95)

Since R ̸= 0 and U∞ ̸= 0, it implies that J ̸= 0. Therefore, the change of the
independent variables given by Equation (3.93a) is a valid transformation. Using the
chain rule of differentiation and utilizing Equations (3.94a)−(3.94c), yields the
following transformations for the first partial derivatives.

∂

∂r
= ∂r̄

∂r

∂

∂r̄
+

�
�

���
0

∂z̄

∂r

∂

∂z̄
+

�
�
���

0
∂t̄

∂r

∂

∂t̄
= 1
R

∂

∂r̄
(3.96a)

∂

∂z
=

�
�

���
0

∂r̄

∂z

∂

∂r̄
+ ∂z̄

∂z

∂

∂z̄
+

�
�
���

0
∂t̄

∂z

∂

∂t̄
= 1
R

∂

∂z̄
(3.96b)

∂

∂t
=

�
�
���

0
∂r̄

∂t

∂

∂r̄
+

�
�
���

0
∂z̄

∂t

∂

∂z̄
+ ∂t̄

∂t

∂

∂t̄
= U∞

R

∂

∂t̄
(3.96c)

Similarly, the transformations for the second partial derivatives involved in the specific
governing equations are given as:

∂2

∂r2 = ∂

∂r

(
∂

∂r

)
= ∂

∂r

(
1
R

∂

∂r̄

)

= ∂r̄

∂r

∂

∂r̄

(
1
R

∂

∂r̄

)
+

��������*0
∂z̄

∂r

∂

∂z̄

(
1
R

∂

∂r̄

)
+

��������*0
∂t̄

∂r

∂

∂t̄

(
1
R

∂

∂r̄

)
= 1
R

∂

∂r̄

(
1
R

∂

∂r̄

)

= 1
R2

∂2

∂r̄2 (3.97a)
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∂2

∂r∂z
= ∂

∂r

(
∂

∂z

)
= ∂

∂r

(
1
R

∂

∂z̄

)

= ∂r̄

∂r

∂

∂r̄

(
1
R

∂

∂z̄

)
+

���������:0∂z̄

∂r

∂

∂z̄

(
1
R

∂

∂z̄

)
+

��������*0
∂t̄

∂r

∂

∂t̄

(
1
R

∂

∂z̄

)
= 1
R

∂

∂r̄

(
1
R

∂

∂z̄

)

= 1
R2

∂2

∂r̄∂z̄
(3.97b)

∂2

∂z2 = ∂

∂z

(
∂

∂z

)
= ∂

∂z

(
1
R

∂

∂z̄

)

=
��������*0
∂r̄

∂z

∂

∂r̄

(
1
R

∂

∂z̄

)
+ ∂z̄

∂z

∂

∂z̄

(
1
R

∂

∂z̄

)
+

��������*0
∂t̄

∂z

∂

∂t̄

(
1
R

∂

∂z̄

)
= 1
R

∂

∂z̄

(
1
R

∂

∂z̄

)

= 1
R2

∂2

∂z̄2 (3.97c)

Therefore, using Equations (3.96a)−(3.96b) and Equations (3.97a)−(3.97c), the
derivatives involved in the specific governing equations are written in form of the
dimensionless variables given by Equations (3.93a)−(3.93d) as follows.

∂ur

∂r
= 1
R

∂ (U∞u)
∂r̄

= U∞

R

∂u

∂r̄
(3.98a)

∂ur

∂z
= 1
R

∂ (U∞u)
∂z̄

= U∞

R

∂u

∂z̄
(3.98b)

∂ur

∂t
= U∞

R

∂ (U∞u)
∂t̄

= U2
∞
R

∂u

∂t̄
(3.98c)

∂2ur

∂r2 = 1
R2

∂2 (U∞u)
∂r̄2 = U∞

R2
∂2u

∂r̄2 (3.98d)

∂2ur

∂r∂z
= 1
R2

∂2 (U∞u)
∂r̄∂z̄

= U∞

R2
∂2u

∂r̄∂z̄
(3.98e)

∂2ur

∂z2 = 1
R2

∂2 (U∞u)
∂z̄2 = U∞

R2
∂2u

∂z̄2 (3.98f)

∂uz

∂r
= 1
R

∂ (U∞v)
∂r̄

= U∞

R

∂v
∂r̄

(3.98g)
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∂uz

∂z
= 1
R

∂ (U∞v)
∂z̄

= U∞

R

∂v
∂z̄

(3.98h)

∂uz

∂t
= U∞

R

∂ (U∞v)
∂t̄

= U2
∞
R

∂v
∂t̄

(3.98i)

∂2uz

∂r2 = 1
R2

∂2 (U∞v)
∂r̄2 = U∞

R2
∂2v
∂r̄2 (3.98j)

∂2uz

∂r∂z
= 1
R2

∂2 (U∞v)
∂r̄∂z̄

= U∞

R2
∂2v
∂r̄∂z̄

(3.98k)

∂2uz

∂z2 = 1
R2

∂2 (U∞v)
∂z̄2 = U∞

R2
∂2v
∂z̄2 (3.98l)

∂p

∂r
= 1
R

∂ (ρmixU2
∞P )

∂r̄
= ρmixU

2
∞

R

∂P

∂r̄
(3.98m)

∂p

∂z
= 1
R

∂ (ρmixU2
∞P )

∂z̄
= ρmixU

2
∞

R

∂P

∂z̄
(3.98n)

∂T

∂r
= 1
R

∂[(T∞ − Twall) Θ + T∞]
∂r̄

= (T∞ − Twall)
R

∂Θ
∂r̄

(3.98o)

∂T

∂z
= 1
R

∂[(T∞ − Twall) Θ + T∞]
∂z̄

= (T∞ − Twall)
R

∂Θ
∂z̄

(3.98p)

∂T

∂t
= U∞

R

∂[(T∞ − Twall) Θ + T∞]
∂t̄

= U∞ (T∞ − Twall)
R

∂Θ
∂t̄

(3.98q)

∂2T

∂r2 = 1
R2

∂2[(T∞ − Twall) Θ + T∞]
∂r̄2 = (T∞ − Twall)

R2
∂2Θ
∂r̄2 (3.98r)

∂2T

∂z2 = 1
R2

∂2[(T∞ − Twall) Θ + T∞]
∂z̄2 = (T∞ − Twall)

R2
∂2Θ
∂z̄2 (3.98s)

∂C

∂r
= 1
R

∂[(Cwall − C∞)ϕ+ C∞]
∂r̄

= (Cwall − C∞)
R

∂ϕ

∂r̄
(3.98t)
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∂C

∂z
= 1
R

∂[(Cwall − C∞)ϕ+ C∞]
∂z̄

= (Cwall − C∞)
R

∂ϕ

∂z̄
(3.98u)

∂C

∂t
= U∞

R

∂[(Cwall − C∞)ϕ+ C∞]
∂t̄

= U∞ (Cwall − C∞)
R

∂ϕ

∂t̄
(3.98v)

dδ

dt
= U∞

R

d
(
Rδ̄
)

dt̄
= U∞

dδ̄

dt̄
(3.98w)

dCd

dT
= d[(Cwall − C∞) C̄d + C∞]

d[(T∞ − Twall) Θ + T∞]
= (Cwall − C∞)

(T∞ − Twall)
dC̄d

dΘ
(3.98x)

d2Cd

dT 2 = d2[(Cwall − C∞) C̄d + C∞]
d[(T∞ − Twall) Θ + T∞]2

= (Cwall − C∞)
(T∞ − Twall)2

d2C̄d

dΘ2 (3.98y)

B̄ =

√√√√( ∂ϕoil
∂ (Rr̄)

)2

+
(
∂ϕoil
∂ (Rz̄)

)2

= 1
R

√√√√(∂ϕoil
∂r̄

)2

+
(
∂ϕoil
∂z̄

)2

(3.99a)

K̄ = − 1
R4B̄3

(∂ϕoil
∂r̄

)2 (1
r̄

∂ϕoil
∂r̄

+ ∂2ϕoil
∂z̄2

)
− 2∂ϕoil

∂r̄

∂ϕoil
∂z̄

∂2ϕoil
∂r̄∂z̄

+
(
∂ϕoil
∂z̄

)2 (
∂2ϕoil
∂r̄2 + 1

r̄

∂ϕoil
∂r̄

) (3.99b)

3.8.1 Dimensionless Governing Equations

Substituting Equations (3.93a)−(3.98h) into Equation (3.26) and simplifying, yields the
dimensionless form of the continuity equation as:

∂ (Rr̄U∞u)
∂ (Rr̄)

+ ∂ (Rr̄U∞v)
∂ (Rz̄)

= 0 ⇒ ∂ (r̄u)
∂r̄

+ ∂ (r̄v)
∂z̄

= 0. (3.100)
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Substituting Equations (3.93a)−(3.98l) into the r−momentum Equation (3.61) yields

ρmix

[
U2

∞
R

∂u

∂t̄
+ U2

∞
R
u
∂u

∂r̄
+ U2

∞
R

v
∂u

∂z̄

]
= −ρmixU

2
∞

R

∂P

∂r̄
− µmix

κ
U∞u+ σK̄

R

∂ϕoil
∂r̄

+µmix
(

2U∞

R2
∂2u

∂r̄2 + U∞

R2
∂2u

∂z̄2 + U∞

R2
∂2v
∂r̄∂z̄

+ 2
Rr̄

U∞

R

∂u

∂r̄
− 2
R2r̄2U∞u

)
+ρmixg cos(φ) (βT)mix (T∞ − Twall) Θ + ρmixg cos(φ) (βC)mix (Cwall − C∞)ϕ.

(3.101)

Multiplying through by R/ρmixU2
∞ and simplifying yields

∂u

∂t̄
+ u

∂u

∂r̄
+ v

∂u

∂z̄
= −∂P

∂r̄
− µmixR

κρmixU∞
u+ σK̄R

ρmixU2
∞R

∂ϕoil
∂r̄

+ µmix
ρmixRU

(
2∂

2u

∂r̄2 + ∂2u

∂z̄2 + ∂2v
∂r̄∂z̄

+ 2
r̄

∂u

∂r̄
− 2
r̄2u

)

+g cos(φ)R (βT)mix
U2

∞
(T∞ − Twall) Θ + g cos(φ)R (βC)mix

U2
∞

(Cwall − C∞)ϕ. (3.102)

Introducing the dimensionless groups, yields the dimensionless form of the r−momentum
equation as:

∂u

∂t̄
+ u

∂u

∂r̄
+ v

∂u

∂z̄
= −∂P

∂r̄
+ λ2

Re

(
2∂

2u

∂r̄2 + ∂2u

∂z̄2 + ∂2v
∂r̄∂z̄

+ 2
r̄

∂u

∂r̄
− 2
r̄2u

)

− λ2

(Re · Da)
u+ λ3

GrT
Re2 cos(φ)Θ + λ4

GrC
Re2 cos(φ)ϕ+ λ1

We
RK̄

∂ϕoil
∂r̄

. (3.103)

Substituting Equations (3.93a)−(3.98l) into the z−momentum Equation (3.62) yields

ρmix

[
U2

∞
R

∂v
∂t̄

+ U2
∞
R
u
∂v
∂r̄

+ U2
∞
R

v
∂v
∂z̄

]
= −ρmixU

2
∞

R

∂P

∂z̄
− µmix

κ
U∞v + σK̄

R

∂ϕoil
∂z̄

+µmix
(
U∞

R2
∂2v
∂r̄2 + 2U∞

R2
∂2v
∂z̄2 + U∞

R2
∂2u

∂r̄∂z̄
+ 1
Rr̄

U∞

R

∂u

∂z̄
+ 1
Rr̄

U∞

R

∂v
∂r̄

)
+ρmixg sin(φ) (βT)mix (T∞ − Twall) Θ + ρmixg sin(φ) (βC)mix (Cwall − C∞)ϕ. (3.104)

Multiplying through by R/ρmixU2
∞ and simplifying yields

∂v
∂t̄

+ u
∂v
∂r̄

+ v
∂v
∂z̄

= −∂P

∂z̄
− µmixR

κρmixU∞
v + σK̄R

ρmixU2
∞R

∂ϕoil
∂z̄

+ µmix
ρmixRU∞

(
∂2v
∂r̄2 + 2∂

2v
∂z̄2 + ∂2u

∂r̄∂z̄
+ 1
r̄

∂u

∂z̄
+ 1
r̄

∂v
∂r̄

)

+g sin(φ)R (βT)mix
U2

∞
(T∞ − Twall) Θ + g sin(φ)R (βC)mix

U2
∞

(Cwall − C∞)ϕ. (3.105)
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Introducing the dimensionless groups, yields the dimensionless form of the z−momentum
equation as:

∂v
∂t̄

+ u
∂v
∂r̄

+ v
∂v
∂z̄

= −∂P

∂z̄
+ λ2

Re

(
∂2v
∂r̄2 + 2∂

2v
∂z̄2 + ∂2u

∂r̄∂z̄
+ 1
r̄

∂u

∂z̄
+ 1
r̄

∂v
∂r̄

)

− λ2

(Re · Da)
v + λ3

GrT
Re2 sin(φ)Θ + λ4

GrC
Re2 sin(φ)ϕ+ λ1

We
RK̄

∂ϕoil
∂z̄

. (3.106)

where Da = κ

R2 is the Darcy number, GrT = ρ2
f gR

3 (βT)f
µ2
f

(T∞ − Twall) is the thermal

Grashof number, GrC = ρ2
f gR

3 (βC)f
µ2
f

(Cwall − C∞) is the mass transfer Grashof number,

Re = ρfRU∞

µf
is the Reynolds number, We = ρfU

2
∞R

σ
is the Weber number, and

λ1 = ρf
ρmix

=
[
1 − ϕgel

(
1 − ρgel

(1 − ϕwater) ρoil + ϕwaterρwater

)]−1

(3.107a)

λ2 = µmix
µf

ρf
ρmix

=
[
1 − ϕgel

(
1 − µgel

(1 − ϕwater)µoil + ϕwaterµwater

)]
λ1. (3.107b)

λ3 = (βT)mix
(βT)f

=
[
1 − ϕgel

(
1 −

(βT)gel
(1 − ϕwater) (βT)oil + ϕwater (βT)water

)]
. (3.107c)

λ4 = (βC)mix
(βC)f

=
[
1 − ϕgel

(
1 −

(βC)gel
(1 − ϕwater) (βC)oil + ϕwater (βC)water

)]
. (3.107d)

The expressions for the functions λ1, λ2, λ3 and λ4 are obtained from the thermophysical
properties presented in Section 3.4. From Equations (3.99a) and (3.99b), it is clear that

RK̄ = −

(∂ϕoil
∂r̄

)2

+
(
∂ϕoil
∂z̄

)2
− 3

2
(∂ϕoil

∂r̄

)2 (1
r̄

∂ϕoil
∂r̄

+ ∂2ϕoil
∂z̄2

)

−2∂ϕoil
∂r̄

∂ϕoil
∂z̄

∂2ϕoil
∂r̄∂z̄

+
(
∂ϕoil
∂z̄

)2 (
∂2ϕoil
∂r̄2 + 1

r̄

∂ϕoil
∂r̄

). (3.108)

The ratio Ri = GrT
Re2 is called the Richardson number. Generally, the combined effects of

free and forced convection must be considered when Ri ≈ 1. If the inequality Ri ≪ 1 is
satisfied, free convection effects may be neglected. Consequently, if Ri ≫ 1, forced
convection effects may be neglected. Substituting Equations (3.93a)−(3.98s) into the
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energy Equation (3.66) yields

U∞ (T∞ − Twall)
R

∂Θ
∂t̄

+ U∞ (T∞ − Twall)
R

u
∂Θ
∂r̄

+ U∞ (T∞ − Twall)
R

v
∂Θ
∂z̄

= αmix

[
(T∞ − Twall)

R2
∂2Θ
∂r̄2 + 1

Rr̄

(T∞ − Twall)
R

∂Θ
∂r̄

+ (T∞ − Twall)
R2

∂2Θ
∂z̄2

]

+ µmix
ρmix (Cp)mix

[
2
(

U∞
R

∂u

∂r̄

)2
+ 2

(
U∞
R

u

r̄

)2
+ 2

(
U∞
R

∂v
∂z̄

)2

+
(

U∞
R

∂v
∂r̄

+ U∞
R

∂u

∂z̄

)2
]

− hr

ρmix (Cp)mix Rd̄
(T∞ − Twall)Θ. (3.109)

Multiplying through by R/U∞ (T∞ − Twall) and simplifying yields

∂Θ
∂t̄

+ u
∂Θ
∂r̄

+ v
∂Θ
∂z̄

= αmix
U∞R

(
∂2Θ
∂r̄2 + 1

r̄

∂Θ
∂r̄

+ ∂2Θ
∂z̄2

)
− hr

ρmixU∞ (Cp)mix d̄
Θ

+ µmixU∞
ρmixR (Cp)mix (T∞ − Twall)

[
2
(

∂u

∂r̄

)2
+ 2

(
u

r̄

)2
+ 2

(
∂v
∂z̄

)2
+
(

∂v
∂r̄

+ ∂u

∂z̄

)2
]

.(3.110)

Introducing the dimensionless groups, yields the dimensionless form of the energy
equation as:

∂Θ
∂t̄

+ u
∂Θ
∂r̄

+ v
∂Θ
∂z̄

= λ5

Pe

(
∂2Θ
∂r̄2 + 1

r̄

∂Θ
∂r̄

+ ∂2Θ
∂z̄2

)
− Stλ6

d̄
Θ

+λ7
Ec
Re

2
(
∂u

∂r̄

)2

+ 2
(
u

r̄

)2
+ 2

(
∂v
∂z̄

)2

+
(
∂v
∂r̄

+ ∂u

∂z̄

)2
 , (3.111)

where Pe = U∞R

αf
is the Peclet number, Ec = U2

∞
(Cp)f (T∞ − Twall)

is the Eckert number,

Re = ρfU∞R

µf
is the Reynolds number, St = hr

ρfU∞ (Cp)f
is the Stanton number, and

λ5 = αmix
αf

= kmix
kf

ρf
ρmix

(Cp)f
(Cp)mix

, λ6 = ρf
ρmix

(Cp)f
(Cp)mix

, λ7 = µmix
µf

λ6. (3.112)

The expressions for the functions λ5, λ6 and λ7 are obtained from the thermophysical
properties presented in Section 3.4. Substituting Equations (3.93a)−(3.98y) into the
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species concentration Equation (3.75) yields

U∞ (Cwall − C∞)
R

∂ϕ

∂t̄
+ U∞ (Cwall − C∞)

R
u

∂ϕ

∂r̄
+ U∞ (Cwall − C∞)

R
v

∂ϕ

∂z̄

= Dp (1 − αm) (Cwall − C∞)
(
ϕ − C̄d

)(U∞

R2
∂2v
∂r̄2 + 1

Rr̄

U∞

R

∂v
∂r̄

)
+Dp

{
(1 − αm)

(
(Cwall − C∞)

R

∂ϕ

∂r̄
− (Cwall − C∞)

(T∞ − Twall)
dC̄d

dΘ
(T∞ − Twall)

R

∂Θ
∂r̄

)

− (Cwall − C∞)
(
ϕ − C̄d

) ∂αm

∂r

}
U∞

R

∂v
∂r̄

+Dd
(Cwall − C∞)
(T∞ − Twall)

dC̄d

dΘ

(
(T∞ − Twall)

R2
∂2Θ
∂r̄2 + 1

Rr̄

(T∞ − Twall)
R

∂Θ
∂r̄

+ (T∞ − Twall)
R2

∂2Θ
∂z̄2

)
+Dd

(Cwall − C∞)
(T∞ − Twall)2

d2C̄d

dΘ2

{(
(T∞ − Twall)

R

∂Θ
∂r̄

)2

+
(

(T∞ − Twall)
R

∂Θ
∂z̄

)2
}

. (3.113)

Multiplying through by R/U∞ (Cwall − C∞) and simplifying yields

∂ϕ

∂t̄
+ u

∂ϕ

∂r̄
+ v

∂ϕ

∂z̄
=

Dp

R

[
(1 − αm)

(
ϕ − C̄d

)(∂2v
∂r̄2 + 1

r̄

∂v
∂r̄

)

+
{

(1 − αm)
(

∂ϕ

∂r̄
− dC̄d

dΘ
∂Θ
∂r̄

)
−
(
ϕ − C̄d

) ∂αm

∂r̄

}
∂v
∂r̄

]

+ Dd

U∞R

[
dC̄d

dΘ

(
∂2Θ
∂r̄2 + 1

r̄

∂Θ
∂r̄

+ ∂2Θ
∂z̄2

)
+ d2C̄d

dΘ2

{(
∂Θ
∂r̄

)2

+
(

∂Θ
∂z̄

)2
}]

. (3.114)

Introducing the dimensionless groups and parameters, yields the dimensionless form of
the species concentration equation as:

∂ϕ

∂t̄
+ u

∂ϕ

∂r̄
+ v

∂ϕ

∂z̄
= εp

[
(1 − αm)

(
ϕ − C̄d

)(∂2v
∂r̄2 + 1

r̄

∂v
∂r̄

)

+
{

(1 − αm)
(

∂ϕ

∂r̄
− dC̄d

dΘ
∂Θ
∂r̄

)
−
(
ϕ − C̄d

) ∂αm
∂r̄

}
∂v
∂r̄

]

+ 1
Re · Sc

[
dC̄d
dΘ

(
∂2Θ
∂r̄2 + 1

r̄

∂Θ
∂r̄

+ ∂2Θ
∂z̄2

)
+ d2C̄d

dΘ2

{(
∂Θ
∂r̄

)2
+
(

∂Θ
∂z̄

)2
}]

. (3.115)

where Re = ρfU∞R

µf
is the Reynolds number, Sc = µf

ρfDd
is the Schmidt number, εp =

Dp/R is the shear dispersion parameter. Substituting Equations (3.93a)−(3.98y) into the
wax precipitation kinetics Equation (3.78) yields

U∞
R

∂αm
∂t̄

+ U∞
R

u
∂αm
∂r̄

+ U∞
R

v
∂αm
∂z̄

= [1 − αm] U∞
R

K̄1 (Θ) − αmµmix

(
U∞
R

∂v
∂r̄

)2 ρmixR
2

µ2
mix

K̄2 (Θ) ,

(3.116)
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Multiplying through by R/U∞ and simplifying yields

∂αm
∂t̄

+ u
∂αm
∂r̄

+ v
∂αm
∂z̄

= [1 − αm] K̄1 (Θ) − αm
ρmixU∞R

µmix

(
∂v
∂r̄

)2

K̄2 (Θ) . (3.117)

Introducing the dimensionless groups, yields the dimensionless form of the wax
precipitation kinetics equation as:

∂αm
∂t̄

+ u
∂αm
∂r̄

+ v
∂αm
∂z̄

= [1 − αm] K̄1 (Θ) − αm
Re
λ2

(
∂v
∂r̄

)2

K̄2 (Θ) . (3.118)

where Re = ρfU∞R

µf
is the Reynolds number and λ2 is given by Equation (3.107b).

Substituting Equations (3.93a)−(3.98y) into Equation (3.84), yields the dimensionless
form of the wax deposit thickness as:

δ̄(t̄) = 1 −
√

ϕ0

ϕ+ ϕ0
. (3.119)

where ϕ0 = (C∞ − ρgel) / (Cwall − C∞). Substituting Equations (3.93a)−(3.98y) into the
wax deposit growth Equation (3.85) yields

U∞
dδ̄

dt̄
= (1 − f(x))

xρgel

Dd
(Cwall − C∞)
(T∞ − Twall)

dC̄d

dΘ
(T∞ − Twall)

R

∂Θ
∂r̄

∣∣∣∣∣
Rr̄=RR̄eff

 . (3.120)
Multiplying through by 1/U∞ and simplifying yields

dδ̄

dt̄
= (Cwall − C∞)

ρgel

(1 − f(x))
x

 Dd

U∞R

dC̄d

dΘ
∂Θ
∂r̄

∣∣∣∣∣
r̄=R̄eff

 . (3.121)

Introducing the dimensionless groups, yields the dimensionless form of the wax deposit
growth equation as:

dδ̄

dt̄
= ϕ1

(1 − f(x))
x

 1
Re · Sc

dC̄d

dΘ
∂Θ
∂r̄

∣∣∣∣∣
r̄=R̄eff

 , (3.122)

where Re = ρfU∞R

µf
is the Reynolds number, Sc = µf

ρfDd
is the Schmidt number, R̄eff =

1 − δ̄ is the dimensionless effective pipeline radius, ϕ1 = (Cwall − C∞) /ρgel, and the
function f(x) is given by Equation (5.9). Substituting Equations (3.93a)−(3.98y) into the
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wax deposit aging Equation (3.91) yields

U∞

R

dx

dt̄
=

2
(
R −Rδ̄

)
Rδ̄

(
2R −Rδ̄

) f(x)
ρgel

Dd
(Cwall − C∞)
(T∞ − Twall)

dC̄d

dΘ
(T∞ − Twall)

R

∂Θ
∂r̄

+Dp (1 − αm) (Cwall − C∞)
(
ϕ− C̄d

) U∞

R

∂v
∂r̄


Rr̄=RR̄eff

(3.123)

Multiplying through by R/U∞ and simplifying yields

dx

dt̄
= (Cwall − C∞)

ρgel

2
(
1 − δ̄

)
f(x)

δ̄
(
2 − δ̄

)
 Dd

U∞R

dC̄d

dΘ
∂Θ
∂r̄

+ Dp

R
(1 − αm)

(
ϕ− C̄d

) ∂v
∂r̄


r̄=R̄eff

(3.124)

Introducing the dimensionless groups, yields the dimensionless form of the wax deposit
aging equation as:

dx

dt̄
= ϕ1f(x)

2
(
1 − δ̄

)
δ̄
(
2 − δ̄

)[ 1
Re · Sc

dC̄d
dΘ

∂Θ
∂r̄

+ εp (1 − αm)
(
ϕ − C̄d

) ∂v
∂r̄

]
r̄=R̄eff

, (3.125)

where Re = ρfU∞R

µf
is the Reynolds number, Sc = µf

ρfDd
is the Schmidt number,

εp = Dp/R is the shear dispersion parameter, R̄eff = 1 − δ̄ is the dimensionless effective
pipeline radius, ϕ1 = (Cwall − C∞) /ρgel, and the function f(x) is given by Equation
(5.9). Substituting Equations (3.93a)−(3.98y) into the oil volume fraction conservation
Equation (3.80) yields

U∞

R

∂ϕoil
∂t̄

+ U∞

R
u
∂ϕoil
∂r̄

+ U∞

R
v
∂ϕoil
∂z̄

= 0. (3.126)

Multiplying Equation (3.126) through by R/U∞, yields the dimensionless form of the oil
volume fraction conservation equation as:

∂ϕoil
∂t̄

+ u
∂ϕoil
∂r̄

+ v
∂ϕoil
∂z̄

= 0. (3.127)

3.8.2 Dimensionless Boundary and Initial Conditions

Substituting Equations (3.93a)−(3.98y) into the initial-boundary conditions given by
Equation (3.92), yields the dimensionless form of the initial-boundary conditions for the
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governing equations as:

∂u

∂r̄
= 0, ∂v

∂r̄
= 0, ∂Θ

∂r̄
= 0, ∂ϕ

∂r̄
= 0, ∂αm

∂r̄
= 0, ∂ϕoil

∂r̄
= 0. at r̄ = 0

u = 0, v = 0, Θ = β0, ϕ = β1, αm = 1, ϕoil = 0. at r̄ = λ

u = 0, v = 1, Θ = 1, ϕ = 0, αm = 0, ϕoil = 1 − ϕwater. at z̄ = 0

∂u

∂z̄
= 0, ∂v

∂z̄
= 0, ∂Θ

∂z̄
= 0, ∂ϕ

∂z̄
= 0, ∂αm

∂z̄
= 0, ∂ϕoil

∂z̄
= 0. as z̄ → ∞

u = 0, v = 1, Θ = 1, ϕ = 0, αm = 0,

ϕoil = 1 − ϕwater, δ̄ = 0, x = 0.
at t̄ = 0

(3.128)

Here, λ = Reff

R
, β0 = Tinterface − Twall

T∞ − Twall
, and β1 = Cinterface − C∞

Cwall − C∞
. Note that if λ = 1, then

there is no gel layer. The physical significance of the dimensionless numbers which have
been obtained from the process of dimensional analysis of the governing equations in this
study are discussed in Subsection 3.8.3.

3.8.3 Dimensionless Numbers

Expressing the governing equations in their dimensionless forms results in dimensionless
numbers which are very useful in determining the flow characteristics of waxy crude oil in
pipeline systems. The dimensionless numbers obtained in this study are discussed below.

3.8.3.1 Reynolds Number

The Reynolds number (Re) is the ratio of inertial forces to viscous forces. It is expressed
as

Re = inertial forces
viscous forces

= ρfU∞R

µf
. (3.129)

It gives the information whether the flow is inertial or viscous force dominant. It helps us
to determine whether the flow is laminar or turbulent. It may be interpreted as a measure
of the relative importance of convective to viscous momentum fluxes. If the momentum
fluxes are in the same direction then the Reynolds number reveals the boundary layer
characteristics of the flow. If the fluxes are defined such that the diffusion is in the cross
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stream direction, then Re conveys the flow regime (i.e., laminar flow-0 < Re < 2000,
transitional flow-Re = 2000, or turbulent flow-Re > 2000). It controls the ratio of length
scale to velocity boundary layer thickness in forced convection flow.

3.8.3.2 Thermal Grashof Number

The thermal Grashof number (GrT) is defined as the ratio of the thermal buoyancy force
to the viscous force. It is expressed as

GrT = thermal buoyancy forces
viscous forces

= ρ2
f g (βT)f ∆TR3

µ2
f

(3.130)

where∆T = (T∞ − Twall). A positive value ofGrT corresponds to cooling of the pipeline
wall (or heating the fluid in contact with the wall) while a negative value corresponds to
heating the wall of the pipeline (or cooling of the fluid in contact with the wall). It controls
the ratio of length scale to thermal boundary layer thickness in natural convection flow.

3.8.3.3 Mass Grashof Number

The mass (or solutal) Grashof number (GrC) is defined as the ratio of the species buoyancy
force to the viscous force. It is expressed as

GrC = species buoyancy forces
viscous forces

= ρ2
f g (βC)f ∆CR3

µ2
f

(3.131)

where ∆C = (Cwall − C∞). A positive value of GrC means that the wax molecules are
diffusing towards the bulk of the fluid. It controls the ratio of length scale to concentration
boundary layer thickness in natural convection flow.

3.8.3.4 Richardson Number

Richardson number (Ri) is the ratio of Grashof number to the square of the Reynolds
number, i.e.,

Ri = Gr
Re2 . (3.132)

It is a measure of the relative strength of the natural convection and forced convection for
a particular flow. The case Ri ≫ 1 means that natural convection is dominant, Ri ≪ 1
means that forced convection is dominant, and Ri = 1 means that mixed convection is
dominant.
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3.8.3.5 Darcy Number

The Darcy number (Da) is the ratio of permeability (κ) of the porous medium to its cross-
sectional area (commonly the square of the diameter or radius). It is expressed as

Da = κ

R2 . (3.133)

A decrease in κ means an increase in flow resistance. A decrease in the Da is a
consequence of decreasing the permeability of the porous medium.

3.8.3.6 Eckert Number

The Eckert number (Ec) is a dimensionless number defined as the ratio of kinetic energy
of the flow to the boundary layer enthalpy difference. It is expressed as

Ec = kinetic energy of flow
enthalpy difference

= U2
∞

(Cp)f ∆T
(3.134)

where ∆T = (T∞ − Twall) is the temperature gradient. The Eckert number represents the
viscous dissipation potential in the flow. It plays an important role in high speed flows
for which viscous dissipation is significant. A large positive value of Ec indicates high
viscous dissipation occurring at high speed of the flow (high kinetic energy). Very small
values of Eckert number (i.e., Ec ≪ 1) means that the effect of viscous dissipation term
in the energy equation is negligible. A positive value of Ec implies cooling of the pipeline
wall (or loss of heat from the wall to the fluid).

3.8.3.7 Prandtl Number

The Prandtl number (Pr) is defined as the ratio of momentum diffusivity (ν = µf/ρf) to
thermal diffusivity (αf), i.e.,

Pr = momentum diffusivity
thermal diffusivity

= µf
ρfαf

. (3.135)

The Prandtl number provides the information about the thickness of the velocity boundary
layer relative to the thickness of the thermal boundary layer. It also gives the information
about the type of fluid since it is an intrinsic property of a fluid. In particular, the Prandtl
values for oils, water, mercury, and air are 50-2000, 6.90, 0.03, and 0.71, respectively.

59



3.8.3.8 Peclet Number

The Peclet number (Pe) is defined as the ratio of the convection rate to the diffusion rate
in a fluid. It is expressed as

Pe = inertia (convection)
Diffusion rate

= U∞R

αf
(3.136)

Pe is also the product of Re and Pr, i.e., Pe = Re · Pr. It is used to determine plug flow
or perfect mixing.

3.8.3.9 Stanton Number

The Stanton Number (St) is the ratio of heat transferred through a fluid to the thermal
capacity of the same fluid. Expressed as

St = convective heat transfer
thermal capacity

= hr
ρfU∞ (Cp)f

(3.137)

It characterizes the rate of heat exchange between the oil phase and the water droplets
phase. St is also the ratio of Nu and the product of Re and Pr, i.e., St = Nu/(Re · Pr).

3.8.3.10 Nusselt Number

The Nusselt number (Nu) is the ratio of the rate of convective heat transfer to the rate of
conductive heat transfer within the thermal boundary layer. It is expressed as

Nu = convective heat transfer
conductive heat transfer

= hr
kf/R

= hrR

kf
. (3.138)

It represents the dimensionless temperature gradient at the wall of the pipeline. It
characterizes the rate of heat loss from the oil phase to the coolant stream (or the
surrounding sea water) through the pipe wall. It provides a measure of the convective
heat transfer occurring at the pipeline wall. A very small Nusselt number means that the
heat transfer by conduction is dominant. The Nusselt number does not arise as a
dimensionless group when writing the governing equations in non-dimensional forms;
rather, it is used to report data on the convection heat transfer by calculating the heat
transfer coefficient.
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3.8.3.11 Schmidt Number

The Schmidt number (Sc) is the ratio of the momentum diffusivity (νeff) to mass diffusivity
(Dd). It is expressed as

Sc = momentum diffusivity
mass diffusivity

= µf
ρfDd

. (3.139)

The Schmidt number provides the information about the thickness of the velocity boundary
layer relative to the thickness of the concentration boundary layer.

3.8.3.12 Sherwood Number

The Sherwood number (Sh) is the ratio of the rate of convective mass transfer to the rate
of diffusive mass transfer within the concentration boundary layer. It is expressed as

Sh = convective mass transfer rate
mass diffusion rate

= km
Dd/R

= kmR

Dd
. (3.140)

It represents the dimensionless concentration gradient at the pipeline wall. It provides a
measure of the convective mass transfer occurring at the pipeline wall. The Sherwood
number does not arise as a dimensionless group when writing the governing equations in
non-dimensional forms; rather, it is used to report data on convection mass transfer by
calculating the mass transfer coefficient.

3.8.3.13 Weber Number

The Weber number (We) is defined as the ratio of inertial forces to the surface tension
forces. It is expressed as

We = inertial forces
surface tension forces

= ρfU
2
∞R

σ
(3.141)

The formation of water-in-oil emulsions is due to surface tension. Small values of We
means that the surface tension forces are dominant and vice versa.

3.9 Pressure Poisson Formulation

Since the pressure field is desired in the present study, an extra equation is needed for
determining the dimensionless pressure field (P ) explicitly. In the pressure Poisson
formulation of the governing equations, the continuity equation is replaced by a Pressure
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Poisson Equation (PPE) and a Neumann boundary condition for the pressure. The
pressure field is then obtained by solving the PPE, which is presented in
Subsection 3.9.1.

3.9.1 Derivation of the Pressure Poisson Equation

The PPE is derived by cross-differentiation of the momentum equations along with the
continuity equation as follows. Making

∂P

∂r̄
the subject in the dimensionless

r−momentum Equation (3.103) yields

∂P

∂r̄
= −∂u

∂t̄
− u

∂u

∂r̄
− v

∂u

∂z̄
+ λ2

Re

(
2∂

2u

∂r̄2 + ∂2u

∂z̄2 + ∂2v
∂r̄∂z̄

+ 2
r̄

∂u

∂r̄
− 2
r̄2u

)

− λ2

(Re · Da)
u+ λ3

GrT
Re2 cos(φ)Θ + λ4

GrC
Re2 cos(φ)ϕ+ λ1

We
RK̄

∂ϕoil
∂r̄

. (3.142)

Differentiating Equation (3.142) partially with respect to r yields

∂2P

∂r̄2 = − ∂2u

∂r̄∂t̄
− u

∂2u

∂r̄2 −
(
∂u

∂r̄

)2

− v
∂2u

∂r̄∂z̄
− ∂v
∂r̄

∂u

∂z̄
− λ2

(Re · Da)
∂u

∂r̄

+ λ2

Re

(
2∂

3u

∂r̄3 + ∂3u

∂r̄∂z̄2 + ∂3v
∂r̄2∂z̄

+ 2
r̄

∂2u

∂r̄2 − 4
r̄2
∂u

∂r̄
+ 4
r̄3u

)

+λ3
GrT
Re2 cos(φ)∂Θ

∂r̄
+ λ4

GrC
Re2 cos(φ)∂ϕ

∂r̄
+ λ1

We
RK̄

∂2ϕoil
∂r̄2 + λ1

We
∂(RK̄)
∂r̄

∂ϕoil
∂r̄

. (3.143)

Making
∂P

∂z̄
the subject in the dimensionless z−momentum Equation (3.106) yields

∂P

∂z̄
= −∂v

∂t̄
− u

∂v
∂r̄

− v
∂v
∂z̄

+ λ2

Re

(
∂2v
∂r̄2 + 2∂

2v
∂z̄2 + ∂2u

∂r̄∂z̄
+ 1
r̄

∂u

∂z̄
+ 1
r̄

∂v
∂r̄

)

− λ2

(Re · Da)
v + λ3

GrT
Re2 sin(φ)Θ + λ4

GrC
Re2 sin(φ)ϕ+ λ1

We
RK̄

∂ϕoil
∂z̄

. (3.144)

Differentiating Equation (3.144) partially with respect to z yields

∂2P

∂z̄2 = − ∂2v
∂z̄∂t̄

− u
∂2v
∂r̄∂z̄

− ∂u

∂z̄

∂v
∂r̄

− v
∂2v
∂z̄2 −

(
∂v
∂z̄

)2

− λ2

(Re · Da)
∂v
∂z̄

+ λ2

Re

(
∂3v
∂r̄2∂z̄

+ 2∂
3v
∂z̄3 + ∂3u

∂r̄∂z̄2 + 1
r̄

∂2u

∂z̄2 + 1
r̄

∂2v
∂r̄∂z̄

)

+λ3
GrT
Re2 sin(φ)∂Θ

∂z̄
+ λ4

GrC
Re2 sin(φ)∂ϕ

∂z̄
+ λ1

We
RK̄

∂2ϕoil
∂z̄2 + λ1

We
∂(RK̄)
∂z̄

∂ϕoil
∂z̄

. (3.145)
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Adding equations (3.142), (3.143) and (3.145) yields

∂2P

∂r̄2 + 1
r̄

∂P

∂r̄
+ ∂2P

∂z̄2 = −
(

∂2u

∂r̄∂t̄
+ 1

r̄

∂u

∂t̄
+ ∂2v

∂z̄∂t̄

)
− u

(
∂2u

∂r̄2 + ∂2v
∂r̄∂z̄

)

−v

(
∂2u

∂r̄∂z̄
+ ∂2v

∂z̄2

)
− ∂u

∂r̄

(
∂u

∂r̄
+ u

r

)
− ∂u

∂z̄

(
2∂v

∂r̄
+ v

r̄

)
−
(

∂v
∂z̄

)2

+ λ2
Re

(
2∂3u

∂r̄3 + 2 ∂3v
∂r̄2∂z̄

+ 2 ∂3u

∂r̄∂z̄2 + 2 ∂3v
∂z̄3 + 4

r̄

∂2u

∂r̄2 + 2
r̄

∂2v
∂r̄∂z̄

+ 2
r̄

∂2u

∂z̄2

− 2
r̄2

∂u

∂r̄
+ 2

r̄3 u

)
+ λ3

GrT
Re2

[
cos(φ)

(
∂Θ
∂r̄

+ 1
r̄

Θ
)

+ sin(φ)∂Θ
∂z̄

]

+λ4
GrC
Re2

[
cos(φ)

(
∂ϕ

∂r̄
+ 1

r̄
ϕ

)
+ sin(φ)∂ϕ

∂z̄

]
− λ2

(Re · Da)

(
∂u

∂r̄
+ u

r̄
+ ∂v

∂z̄

)
+ λ1

We
RK̄

(
∂2ϕoil
∂r̄2 + 1

r̄

∂ϕoil
∂r̄

+ ∂2ϕoil
∂z̄2

)
+ λ1

We

(
∂(RK̄)

∂r̄

∂ϕoil
∂r̄

+ ∂(RK̄)
∂z̄

∂ϕoil
∂z̄

)
. (3.146)

Factoring out the common derivative operators, Equation (3.146) becomes

∂2P

∂r̄2 + 1
r̄

∂P

∂r̄
+ ∂2P

∂z̄2 = − ∂

∂t̄

(
∂u

∂r̄
+ u

r̄
+ ∂v

∂z̄

)
− u

∂

∂r̄

(
∂u

∂r̄
+ ∂v

∂z̄

)
−v

∂

∂z̄

(
∂u

∂r̄
+ ∂v

∂z̄

)
− ∂u

∂r̄

(
∂u

∂r̄
+ u

r

)
− ∂u

∂z̄

(
2∂v

∂r̄
+ v

r̄

)
−
(

∂v
∂z̄

)2

+ λ2
Re

[
2 ∂2

∂r̄2

(
∂u

∂r̄
+ ∂v

∂z̄

)
+ 2 ∂2

∂z̄2

(
∂u

∂r̄
+ ∂v

∂z̄

)
+ 2

r̄

∂

∂r̄

(
∂u

∂r̄
+ ∂v

∂z̄

)
+ 2

r̄

∂2u

∂z̄2

+2
r̄

∂2u

∂r̄2 − 2
r̄2

∂u

∂r̄
+ 2

r̄3 u

]
+ λ3

GrT
Re2

[
cos(φ)

(
∂Θ
∂r̄

+ 1
r̄

Θ
)

+ sin(φ)∂Θ
∂z̄

]

+λ4
GrC
Re2

[
cos(φ)

(
∂ϕ

∂r̄
+ 1

r̄
ϕ

)
+ sin(φ)∂ϕ

∂z̄

]
− λ2

(Re · Da)

(
∂u

∂r̄
+ u

r̄
+ ∂v

∂z̄

)
+ λ1

We
RK̄

(
∂2ϕoil
∂r̄2 + 1

r̄

∂ϕoil
∂r̄

+ ∂2ϕoil
∂z̄2

)
+ λ1

We

(
∂(RK̄)

∂r̄

∂ϕoil
∂r̄

+ ∂(RK̄)
∂z̄

∂ϕoil
∂z̄

)
. (3.147)

From the dimensionless continuity Equation (3.100), it is clear that

∂u

∂r̄
+ u

r̄
+ ∂v
∂z̄

= 0 (3.148)
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Substituting the continuity constraint given by Equation (3.148) into Equation (3.147)
yields

∂2P

∂r̄2 + 1
r̄

∂P

∂r̄
+ ∂2P

∂z̄2 = −u
∂

∂r̄

(
−u

r̄

)
− v

∂

∂z̄

(
−u

r̄

)
− ∂u

∂r̄

∂v
∂z̄

− ∂u

∂z̄

(
2∂v

∂r̄
+ v

r̄

)

−
(

∂v
∂z̄

)2
+ λ2

Re

[
2 ∂2

∂r̄2

(
−u

r̄

)
+ 2 ∂2

∂z̄2

(
−u

r̄

)
+ 2

r̄

∂

∂r̄

(
−u

r̄

)
+ 2

r̄

∂2u

∂z̄2

+2
r̄

∂2u

∂r̄2 − 2
r̄2

∂u

∂r̄
+ 2

r̄3 u

]
+ λ3

GrT
Re2

[
cos(φ)

(
∂Θ
∂r̄

+ 1
r̄

Θ
)

+ sin(φ)∂Θ
∂z̄

]

+λ4
GrC
Re2

[
cos(φ)

(
∂ϕ

∂r̄
+ 1

r̄
ϕ

)
+ sin(φ)∂ϕ

∂z̄

]
+ λ1

We
RK̄

(
∂2ϕoil
∂r̄2 + 1

r̄

∂ϕoil
∂r̄

+ ∂2ϕoil
∂z̄2

)
+ λ1

We

(
∂(RK̄)

∂r̄

∂ϕoil
∂r̄

+ ∂(RK̄)
∂z̄

∂ϕoil
∂z̄

)
. (3.149)

Expanding the partial derivatives involved in Equation (3.149) yields

∂

∂r̄

(
−u

r̄

)
= −1

r̄

∂u

∂r̄
+ u

r̄2 (3.150a)

∂

∂z̄

(
−u

r̄

)
= −1

r̄

∂u

∂z̄
(3.150b)

∂2

∂r̄2

(
−u

r̄

)
= ∂

∂r̄

(
−1
r̄

∂u

∂r̄
+ u

r̄2

)
= −1

r̄

∂2u

∂r̄2 + 2
r̄2
∂u

∂r̄
− 2
r̄3u (3.150c)

∂2

∂z̄2

(
−u

r̄

)
= −1

r̄

∂2u

∂z̄2 (3.150d)

Substituting Equations (3.150a)−(3.150d) into Equation (3.149) and simplifying using the
continuity constraint given by Equation (3.148), yields

∂2P

∂r̄2 + 1
r̄

∂P

∂r̄
+ ∂2P

∂z̄2 = − 2
r̄2 u2 − 2∂u
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∂r̄
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)
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[
cos(φ)

(
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Θ
)

+ sin(φ)∂Θ
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]
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GrC
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[
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+ sin(φ)∂ϕ
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(3.151)

Equation (3.151) is the dimensionless pressure Poisson equation, in cylindrical coordinate
system, for water-oil two-phase flow in crude oil transportation pipeline. Poisson equation
for pressure is an elliptic PDE, showing the elliptic nature of pressure in incompressible
flows. It enforces the incompressibility condition for the velocity field. The term RK̄ is
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given by Equation (3.108). To solve the PPE, boundary and initial conditions for pressure
are required. The boundary conditions for the pressure field are of the Neumann type
and are defined from Equations (3.142) and (3.144). The boundary values of pressure are
obtained by tangential momentum equation to the fluid adjacent to the wall surface (Salih,
2013). Hence, for a wall located at r = 1 in cylindrical coordinate system, the tangential
momentum equation (z−momentum equation) reduces to

∂P

∂z̄

∣∣∣∣∣∣
r̄=1

= λ2

Re

(
∂2v
∂r̄2 + 1

r̄

∂v
∂r̄

) ∣∣∣∣∣∣
r̄=1

+

− λ2

(Re · Da)
v + λ3

GrT
Re2 sin(φ)Θ

+λ4
GrC
Re2 sin(φ)ϕ+ λ1

We
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∂ϕoil
∂z̄


r̄=1

(3.152)

In general, for incompressible flow, the vector form of the PPE is given in Orszag et al.
(1986) and Johnston & Liu (2004) as:

∇2p = −∇⃗ ·
(
V⃗ ·

(
∇⃗V⃗

))
+ ∇⃗ · F⃗ (3.153)

and the corresponding Neumann boundary condition for the pressure field is given as:

∂p

∂n

∣∣∣∣
wall

=

µ
ρ
n ·
(
∇⃗ ×

(
∇⃗ × V⃗

))
+ n · F⃗

]
wall

(3.154)

where n is a unit normal along the wall and F⃗ is the body force term.

3.9.2 Final Set of Specific Equations Governing the Flow

The final set of the model equations to be solved are the dimensionless r−momentum
Equation (3.103), the dimensionless z−momentum Equation (3.106), the dimensionless
pressure Poisson Equation (3.151), the dimensionless energy Equation (3.111), the
dimensionless species concentration Equation (3.115), the dimensionless deposit growth
rate Equation (3.122), the dimensionless deposit aging rate Equation (3.125), and the
dimensionless oil volume fraction Equation (3.127) subject to the dimensionless
initial-boundary conditions (3.128). In summary, the mathematical model developed for
the present study is a system of coupled partial differential equations (PDEs) given as:
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∂u
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. (3.155a)
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RK̄
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∂z̄

. (3.155b)
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∂ϕoil
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(3.155c)

∂Θ
∂t̄

+ u
∂Θ
∂r̄

+ v
∂Θ
∂z̄

= λ5
Pe

(
∂2Θ
∂r̄2 + 1
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∂Θ
∂r̄

+ ∂2Θ
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)
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Θ
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Ec
Re
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(

∂u
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(
u
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)2
+
(
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∂r̄

+ ∂u
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)2
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. (3.155d)

∂ϕ

∂t̄
+ u

∂ϕ

∂r̄
+ v

∂ϕ

∂z̄
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(1 − αm)

(
ϕ − C̄d

)(∂2v
∂r̄2 + 1

r̄

∂v
∂r̄

)

+
{
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(

∂ϕ

∂r̄
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dΘ
∂Θ
∂r̄

)
−
(
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∂r̄

}
∂v
∂r̄

]

+ 1
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[
dC̄d
dΘ

(
∂2Θ
∂r̄2 + 1

r̄

∂Θ
∂r̄

+ ∂2Θ
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)
+ d2C̄d

dΘ2

{(
∂Θ
∂r̄

)2
+
(

∂Θ
∂z̄
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. (3.155e)

∂αm
∂t̄

+ u
∂αm
∂r̄

+ v
∂αm
∂z̄

= [1 − αm] K̄1 (Θ) − αm
Re
λ2

(
∂v
∂r̄

)2
K̄2 (Θ) . (3.155f)

∂ϕoil
∂t̄

+ u
∂ϕoil
∂r̄

+ v
∂ϕoil
∂z̄

= 0. (3.155g)

dδ̄

dt̄
= ϕ1

(1 − f(x))
x

(
1

Re · Sc
dC̄d
dΘ

∂Θ
∂r̄

∣∣∣∣
r̄=R̄eff

)
(3.155h)

dx

dt̄
= ϕ1f(x)

2
(
1 − δ̄

)
δ̄
(
2 − δ̄

)[ 1
Re · Sc

dC̄d
dΘ

∂Θ
∂r̄

+ εp (1 − αm)
(
ϕ − C̄d

) ∂v
∂r̄

]
r̄=R̄eff

(3.155i)

where the function RK̄ is given by Equation (3.108). The following
temperature-dependent solubility equation (or thermodynamic model) for waxy crude
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oil, proposed by Al-Ahmad et al. (1990), is adopted in this study:

C̄d = 1
Sf

(
0.981 + 0.0677Θ

1 − 0.0208Θ

)
, (3.156)

where Sf = (0.0077MWoil − 1.737) and MWoil denotes the molecular weight of the crude
oil. The molecular weight of crude oil is estimated by the Cragoe correlation given in
Cragoe (1929) as:

MWoil = 6084
oAPI − 5.9

, (3.157)

where oAPI denotes the API gravity of the crude oil. In particular, this study considers
heavy crude oil whose oAPI = 18. Equations (3.155a)−(3.155g) are subject to the
following boundary conditions

ur̄(0, z̄, t̄) = 0, vr̄(0, z̄, t̄) = 0, Θr̄(0, z̄, t̄) = 0, ϕr̄(0, z̄, t̄) = 0,
(αr̄)m(0, z̄, t̄) = 0, (ϕr̄)oil(0, z̄, t̄) = 0.

(3.158a)

u(λ, z̄, t̄) = 0, v(λ, z̄, t̄) = 0, Θ(λ, z̄, t̄) = β0, ϕ(λ, z̄, t̄) = β1
∂P

∂z̄
(λ, z̄, t̄) = λ2

Re
[
v′′(λ, z̄, t̄) + v′(λ, z̄, t̄)

]
− λ2

(Re · Da)
v(λ, z̄, t̄)

+λ3
GrT
Re2 sin(φ)Θ(λ, z̄, t̄) + λ4

GrC
Re2 sin(φ)ϕ(λ, z̄, t̄) + λ1

We
RK̄(λ, z̄, t̄)∂ϕoil

∂z̄
(λ, z̄, t̄)

(3.158b)

u(r̄, 0, t̄) = 0, v(r̄, 0, t̄) = 1, Θ(r̄, 0, t̄) = 1, ϕ(r̄, 0, t̄) = 0
αm(r̄, 0, t̄) = 0, ϕoil(r̄, 0, t̄) = 1 − ϕwater

(3.158c)

uz̄(r̄,∞, t̄) = 0, vz̄(r̄,∞, t̄) = 0, Θz̄(r̄,∞, t̄) = 0, ϕz̄(r̄,∞, t̄) = 0,
(αz̄)m(r̄,∞, t̄) = 0, (ϕz̄)oil(r̄,∞, t̄) = 0.

(3.158d)

The initial conditions are

u(r̄, z̄, 0) = 0, v(r̄, z̄, 0) = 1, P (r̄, z̄, 0) = 1, Θ(r̄, z̄, 0) = 1, ϕ(r̄, z̄, 0) = 0
αm(r̄, z̄, 0) = 0, ϕoil(r̄, z̄, 0) = 1 − ϕwater, δ̄(0) = 0, x(0) = 0

(3.159)

The determination of the skin-friction coefficient and the rates of heat and mass transfer
is presented in Section 3.10.
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3.10 Skin-Friction Coefficient and Rates of Heat and
Mass Transfer

In this study, the physical parameters of engineering interest are the skin-friction
coefficient Cf , the local Nusselt number Nuz and the local Sherwood number Shz. The
skin-friction coefficient relates the dynamic pressure to the shear stress at the pipeline
wall. The heat transfer coefficient is a proportionality constant which relates the heat
flux at the wall of the pipeline to the difference between the temperature at the wall and
that in the bulk of the fluid. Similarly, the mass transfer coefficient relates the solute
diffusion flux at the wall of the pipeline to the difference between the concentration at
the wall and that in the bulk of the fluid. We remark that the phrase ''bulk of the fluid'' is
also called the free-stream, i.e., the region in the fluid that is far away from the boundary
layer where the effect of the viscous forces are negligible. These important parameters
are defined in Ibrahim (2020) and Magagula et al. (2020) as:

Cf = τwall
1
2ρfU

2
∞
, Nuz = Rqwall

kf(Twall − T∞)
, Shz = RJwall

Dd(Cwall − C∞)
. (3.160)

The skin-friction coefficient, the local Nusselt number and the local Sherwood number
describe the shear stress, the heat flux rate and the mass flux rate at the wall of the crude
oil pipeline, respectively. Shear stress refers to the drag force on a surface per unit surface
area It is given by the Newton's law of viscosity. Heat flux refers to the rate of heat transfer
(or energy flow) per unit area. It is given by the Fourier's law of heat conduction which
states that the conductive heat flux through a material is proportional to the temperature
gradient. Mass flux refers to the rate of mass transfer per unit surface area perpendicular
to the direction of the flow. It is given by the Fick's law of diffusion. The wall shear stress
τwall, wall heat flux qwall and wall mass flux Jwall are defined by

τwall = µf

(
∂uz

∂r

)
r=R

, qwall = −kf
(
∂T

∂r

)
r=R

, Jwall = −Dd

(
∂C

∂r

)
r=R

(3.161)

Using the dimensionless variables given by Equations (3.93a)−(3.93d), yields the
dimensionless form of the Equations (3.161) as:

τwall = µf

(
∂uz

∂r

)
r=R

= µf
U∞

R

(
∂v
∂r̄

)
r̄=1

(3.162a)

qwall = −kf
(
∂T

∂r

)
r=R

= −kf
(T∞ − Twall)

R

(
∂Θ
∂r̄

)
r̄=1

(3.162b)
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Jwall = −Dd

(
∂C

∂r

)
r=R

= −Dd
(Cwall − C∞)

R

(
∂ϕ

∂r̄

)
r̄=1

(3.162c)

Substituting Equations (3.162a)−(3.162c) into Equations (3.160), yields

Cf =
µf
U∞

R
1
2ρfU

2
∞

(
∂v
∂r̄

)
r̄=1

= µf
1
2ρfU∞R

(
∂v
∂r̄

)
r̄=1

= 2
Re

(
∂v
∂r̄

)
r̄=1

(3.163a)

Nuz = −
Rkf

(T∞ − Twall)
R

kf(Twall − T∞)

(
∂Θ
∂r̄

)
r̄=1

= −
(
∂Θ
∂r̄

)
r̄=1

(3.163b)

Shz = −
RDd

(Cwall − C∞)
R

Dd(Cwall − C∞)

(
∂ϕ

∂r̄

)
r̄=1

= −
(
∂ϕ

∂r̄

)
r̄=1

(3.163c)

where Re = (ρfU∞R) /µf is the Reynolds number. Rearranging Equations
(3.163a)−(3.163c) yields

CfRe = 2
(
∂v
∂r̄

)
r̄=1

, Nuz = −
(
∂Θ
∂r̄

)
r̄=1

, Shz = −
(
∂ϕ

∂r̄

)
r̄=1

. (3.164)

Equations (3.164) show that the skin-friction coefficient, the local Nusselt number and
the local Sherwood number are proportional to the negative velocity gradient, the negative
temperature gradient and the negative concentration gradient, respectively. The numerical
techniques applied to the model Equations (3.155a)−(3.155g) subject to the boundary
conditions (3.158a)−(3.158d) and the initial conditions (3.159) together with the skin-
friction coefficient and the rates of heat and mass transfer given by Equations (3.164) are
presented in Section 3.11.

3.11 Numerical Method of Solution of the Model
Equations

The numerical solution of time-dependent PDEs by spectral methods requires that the
discretization be done in two different ways, i.e., temporal discretization using finite
difference methods and spatial discretization using spectral methods (Trefethen, 2000).
The coupled system of nonlinear PDEs given by Equations (3.155a) to (3.155g) subject
to the boundary conditions (3.158a)−(3.158d) and the initial conditions (3.159) is
discretized by the second order semi-implicit time discretization method, as presented in
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Section 3.11.1. The resulting system of linear PDEs are discretized in space by the
bivariate spectral collocation method based on Chebyshev-Gauss-Lobatto points, as
presented in Subsection 3.11.2.

3.11.1 Temporal Discretization Using Second-order Semi-implicit
Method

The second order semi-implicit time discretization method is a direct discretization of the
governing equations using second order finite differences implemented on a staggered
grid with explicit time discretization of the nonlinear terms and a second order implicit
time discretization of the linear terms, while at the same time decoupling the system of
the governing PDEs using the Gauss-Jacobi approach. Of course, decoupling the system
is necessary to save on computer memory. Moreover, the nonlinear terms are treated
explicitly in time to avoid the costly solution of a nonlinear system at each time stage. In
particular, the semi-implicit time discretization method combines an explicit second-order
Adams-Bashforth scheme for the nonlinear terms and an implicit Crank-Nicolson scheme
for the linear terms involving spatial derivatives, as presented in Subsubsection 3.11.1.1.
The intermediate functions in the Adams-Bashforth scheme are then approximated by the
forward Euler scheme, presented in Subsubsection 3.11.1.3. The stability, consistency
and convergence of this method has been analyzed in (Johnston & Liu, 2004). In this
study, the time derivatives are discretized by the forward Euler's formula and the boundary
conditions are discretized implicitly in time.

3.11.1.1 Adams-Bashforth and Crank-Nicolson Schemes

The temporal discretization of the r−momentum Equation (3.155a) yields

uk+1 − uk

∆t̄
+ 1

2

(
3uk ∂uk

∂r̄
− uk−1 ∂uk−1

∂r̄

)
+ 1

2

(
3vk ∂uk

∂z̄
− vk−1 ∂uk−1

∂z̄

)
+ ∂P k

∂r̄

= λ2
Re

[
1
2

(
2∂2uk+1

∂r̄2 + 2∂2uk

∂r̄2

)
+ 1

2

(
∂2uk+1

∂z̄2 + ∂2uk

∂z̄2

)
+ ∂2vk

∂r̄∂z̄

+1
2

(
2
r̄

∂uk+1

∂r̄
+ 2

r̄

∂uk

∂r̄

)
− 1

2

( 2
r̄2 uk+1 + 2

r̄2 uk
)]

− λ2
(Re · Da)

1
2

(
uk+1 + uk

)
+λ3

GrT
Re2 cos(φ)Θk + λ4

GrC
Re2 cos(φ)ϕk

+ λ1
We

1
2

[
3
(
RK̄

)k ∂(ϕoil)k

∂r̄
−
(
RK̄

)k−1 ∂(ϕoil)k−1

∂r̄

]
, (3.165)

where ∆t̄ denotes the time-step size from the current time level to the next time level,
uk−1 = u(r̄, z̄, t̄k−1), uk = u(r̄, z̄, t̄k), uk+1 = u(r̄, z̄, t̄k+1), etc., and k = 1, 2, 3, · · ·
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The functions at time level k are approximated by the forward Euler scheme, presented in
Subsubsection 3.11.1.3. Rearranging Equation (3.165) by writing the terms at time level
k + 1 on the left-hand side and the terms at time level k and k − 1 on the right-hand side,
yields the time discretized r−momentum equation as:

−∆t̄λ2
Re

∂2uk+1

∂r̄2 − ∆t̄λ2
2Re

∂2uk+1
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1
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∂r̄
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1
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]}
(3.166)

The linear iterative scheme represented by Equation (3.166) is discrete in time but
continuous in space. Similarly, the temporal discretization of the z−momentum
Equation (3.155b) yields
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(
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∂r̄
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∂z̄

]
. (3.167)

Rearranging Equation (3.167) by writing the terms at time level k+1 on the left-hand side
and the terms at time level k and k − 1 on the right-hand side, yields the time discretized

71



z−momentum equation as:
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(3.168)

The temporal discretization of the energy Equation (3.155d) yields
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. (3.169)

Rearranging Equation (3.169) by writing the terms at time level k+1 on the left-hand side
and the terms at time level k and k − 1 on the right-hand side, yields the time discretized
energy equation as:
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The temporal discretization of the species concentration Equation (3.155e) yields
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)

+

[1 − (αm)k
]∂ϕk

∂r̄
−
(

dC̄d
dΘ

)k
∂Θk

∂r̄

−
(

ϕk −
(
C̄d
)k
)

∂ (αm)k

∂r̄

 ∂vk

∂r̄

]

−εp
1
2

[ (
1 − (αm)k−1

)(
ϕk−1 −

(
C̄d
)k−1

)(
∂2vk−1

∂r̄2 + 1
r̄

∂vk−1

∂r̄

)

+
{(

1 − (αm)k−1
)∂ϕk−1

∂r̄
−
(

dC̄d
dΘ

)k−1
∂Θk−1

∂r̄


−
(

ϕk−1 −
(
C̄d
)k−1

)
∂ (αm)k−1

∂r̄

}
∂vk−1

∂r̄

]

+ 1
Re · Sc

3
2

(dC̄d
dΘ

)k (
∂2Θk

∂r̄2 + 1
r̄

∂Θk

∂r̄
+ ∂2Θk

∂z̄2

)
+
(

d2C̄d
dΘ2

)k

(

∂Θk

∂r̄

)2

+
(

∂Θk

∂z̄

)2



− 1
Re · Sc

1
2

[(
dC̄d
dΘ

)k−1(
∂2Θk−1

∂r̄2 + 1
r̄

∂Θk−1

∂r̄
+ ∂2Θk−1

∂z̄2

)

+
(

d2C̄d
dΘ2

)k−1

(

∂Θk−1

∂r̄

)2

+
(

∂Θk−1

∂z̄

)2

]

(3.171)

Rearranging Equation (3.171) by writing the terms at time level k+1 on the left-hand side
and the terms at time level k and k − 1 on the right-hand side, yields the time discretized
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species concentration equation as:

ϕk+1 = ϕk + ∆t̄

{
− 1

2

(
3uk ∂ϕk

∂r̄
− uk−1 ∂ϕk−1

∂r̄

)
− 1

2

(
3vk ∂ϕk

∂z̄
− vk−1 ∂ϕk−1

∂z̄

)

+
3εp
2

[ [
1 − (αm)k

] (
ϕk −

(
C̄d
)k
)(

∂2vk

∂r̄2 + 1
r̄

∂vk

∂r̄

)

+

[1 − (αm)k
]∂ϕk

∂r̄
−
(

dC̄d
dΘ

)k
∂Θk

∂r̄

−
(

ϕk −
(
C̄d
)k
)

∂ (αm)k

∂r̄

 ∂vk

∂r̄

]

−εp
2

[ (
1 − (αm)k−1

)(
ϕk−1 −

(
C̄d
)k−1

)(
∂2vk−1

∂r̄2 + 1
r̄

∂vk−1

∂r̄

)

+
{(

1 − (αm)k−1
)∂ϕk−1

∂r̄
−
(

dC̄d
dΘ

)k−1
∂Θk−1

∂r̄


−
(

ϕk−1 −
(
C̄d
)k−1

)
∂ (αm)k−1

∂r̄

}
∂vk−1

∂r̄

]

+ 3
2Re · Sc

(dC̄d
dΘ

)k (
∂2Θk

∂r̄2 + 1
r̄

∂Θk

∂r̄
+ ∂2Θk

∂z̄2

)
+
(

d2C̄d
dΘ2

)k

(

∂Θk

∂r̄

)2

+
(

∂Θk

∂z̄

)2



− 1
2Re · Sc

[(
dC̄d
dΘ

)k−1(
∂2Θk−1

∂r̄2 + 1
r̄

∂Θk−1

∂r̄
+ ∂2Θk−1

∂z̄2

)

+
(

d2C̄d
dΘ2

)k−1

(

∂Θk−1

∂r̄

)2

+
(

∂Θk−1

∂z̄

)2

]}

(3.172)

The temporal discretization of the precipitation kinetics Equation (3.155f) yields

(αm)k+1 − (αm)k

∆t̄
+ 1

2

(
3uk ∂ (αm)k

∂r̄
− uk−1∂ (αm)k−1

∂r̄

)

+1
2

(
3vk ∂ (αm)k

∂z̄
− vk−1∂ (αm)k−1

∂z̄

)

= 1
2

[
3
[
1 − (αm)k

] (
K̄1
)k

−
(
1 − (αm)k−1

) (
K̄1
)k−1

]

−Re
λ2

1
2

3 (αm)k

(
∂vk

∂r̄

)2 (
K̄2
)k

− (αm)k−1
(
∂vk−1

∂r̄

)2 (
K̄2
)k−1

 . (3.173)

Rearranging Equation (3.173) by writing the terms at time level k+1 on the left-hand side
and the terms at time level k and k − 1 on the right-hand side, yields the time discretized
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precipitation kinetics equation as:

(αm)k+1 = (αm)k + ∆t̄

1
2

[
3
[
1 − (αm)k

] (
K̄1
)k

−
(
1 − (αm)k−1

) (
K̄1
)k−1

]

−1
2

(
3uk ∂ (αm)k

∂r̄
− uk−1∂ (αm)k−1

∂r̄

)
− 1

2

(
3vk ∂ (αm)k

∂z̄
− vk−1∂ (αm)k−1

∂z̄

)

− Re
2λ2

3 (αm)k

(
∂vk

∂r̄

)2 (
K̄2
)k

− (αm)k−1
(
∂vk−1

∂r̄

)2 (
K̄2
)k−1

 (3.174)

The temporal discretization of the oil volume fraction Equation (3.155g) yields

(ϕoil)k+1 − (ϕoil)k

∆t̄
+ 1

2

(
3uk ∂(ϕoil)k

∂r̄
− uk−1∂(ϕoil)k−1

∂r̄

)

+1
2

(
3vk ∂(ϕoil)k

∂z̄
− vk−1∂(ϕoil)k−1

∂z̄

)
= 0. (3.175)

Rearranging Equation (3.175) by writing the terms at time level k+1 on the left-hand side
and the terms at time level k and k − 1 on the right-hand side, yields the time discretized
oil volume fraction equation as:

(ϕoil)k+1 = (ϕoil)k + ∆t̄

− 1
2

(
3uk ∂(ϕoil)k

∂r̄
− uk−1∂(ϕoil)k−1

∂r̄

)

−1
2

(
3vk ∂(ϕoil)k

∂z̄
− vk−1∂(ϕoil)k−1

∂z̄

). (3.176)

The temporal discretization of the deposit growth rate Equation (3.155h) yields

δ̄k+1 − δ̄k

∆t̄
= 3

2
ϕ1

(
1 − f(xk)

)
xk

 1
Re · Sc

(
dC̄d

dΘ

)k
∂Θk

∂r̄

∣∣∣∣∣
r̄=R̄eff


−1

2
ϕ1

(
1 − f(xk−1)

)
xk−1

 1
Re · Sc

(
dC̄d

dΘ

)k−1
∂Θk−1

∂r̄

∣∣∣∣∣
r̄=R̄eff

 (3.177)

Rearranging Equation (3.177) by writing the terms at time level k+1 on the left-hand side
and the terms at time level k and k − 1 on the right-hand side, yields the time discretized
deposit growth rate equation as:

δ̄k+1 = δ̄k + ∆t̄

− ϕ1

2Re · Sc

3

[
1 − f(xk)

]
xk

(dC̄d

dΘ

)k
∂Θk

∂r̄

∣∣∣∣∣
r̄=R̄eff


−

[
1 − f(xk−1)

]
xk−1

(dC̄d

dΘ

)k−1
∂Θk−1

∂r̄

∣∣∣∣∣
r̄=R̄eff

 (3.178)
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The temporal discretization of the deposit aging rate Equation (3.155i) yields

xk+1 − xk

∆t̄
= 3

2
ϕ1f(xk)

2
(
1 − δ̄k

)
δ̄k
(
2 − δ̄k

)
 1

Re · Sc

(
dC̄d

dΘ

)k
∂Θk

∂r̄

+εp
[
1 − (αm)k

] (
ϕk −

(
C̄d
)k
)
∂vk

∂r̄


r̄=R̄eff

−1
2
ϕ1f(xk−1)

2
(
1 − δ̄k−1

)
δ̄k−1

(
2 − δ̄k−1

)
 1

Re · Sc

(
dC̄d

dΘ

)k−1
∂Θk−1

∂r̄

+εp
(
1 − (αm)k−1

) (
ϕk−1 −

(
C̄d
)k−1

)
∂vk−1

∂r̄


r̄=R̄eff

. (3.179)

Rearranging Equation (3.179) by writing the terms at time level k+1 on the left-hand side
and the terms at time level k and k − 1 on the right-hand side, yields the time discretized
deposit aging rate equation as:

xk+1 = xk + ∆t̄

3
2
ϕ1f(xk)

2
(
1 − δ̄k

)
δ̄k
(
2 − δ̄k

)
 1

Re · Sc

(
dC̄d

dΘ

)k
∂Θk

∂r̄

+εp
[
1 − (αm)k

] (
ϕk −

(
C̄d
)k
)
∂vk

∂r̄


r̄=R̄eff

−1
2
ϕ1f(xk−1)

2
(
1 − δ̄k−1

)
δ̄k−1

(
2 − δ̄k−1

)
 1

Re · Sc

(
dC̄d

dΘ

)k−1
∂Θk−1

∂r̄

+εp
(
1 − (αm)k−1

)(
ϕk−1 −

(
C̄d
)k−1

)
∂vk−1

∂r̄


r̄=R̄eff

 (3.180)

The functions f(xk−1) and f(xk) are deduced from Equation (5.9) and are given as:

f(xk−1) = 1 − xk−1

α2
avg(xk−1)2 − xk−1 + 1

and f(xk) = 1 − xk

α2
avg(xk)2 − xk + 1

(3.181)

The temporal discretization of the boundary conditions (3.158a)−(3.158d) yields

uk+1
r̄ (0, z̄) = 0, vk+1

r̄ (0, z̄) = 0, Θk+1
r̄ (0, z̄) = 0, ϕk+1

r̄ (0, z̄) = 0,
αm

k+1
r̄ (0, z̄) = 0, ϕoilk+1

r̄ (0, z̄) = 0.
(3.182a)

uk+1(λ, z̄) = 0, vk+1(λ, z̄) = 0, Θk+1(λ, z̄) = β0, ϕ
k+1(λ, z̄) = β1,

(αm)k+1 (λ, z̄) = 1, (ϕoil)k+1 (λ, z̄) = 0.
(3.182b)
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uk+1(r̄, 0) = 0, vk+1(r̄, 0) = 1, Θk+1(r̄, 0) = 1, ϕk+1(r̄, 0) = 0,
(αm)k+1 (r̄, 0) = 0, (ϕoil)k+1 (r̄, 0) = 1 − ϕwater.

(3.182c)

uk+1
z̄ (r̄,∞) = 0, vk+1

z̄ (r̄,∞) = 0, Θk+1
z̄ (r̄,∞) = 0, ϕk+1

z̄ (r̄,∞) = 0,
αm

k+1
z̄ (r̄,∞) = 0, ϕoilk+1

z̄ (r̄,∞) = 0.
(3.182d)

where the subscripts r̄ and z̄ denote derivatives with respect to r̄ and z̄, respectively.
Similarly, the temporal discretization of the initial conditions (3.159) yields

u0(r̄, z̄) = 0, v0(r̄, z̄) = 1, P 0(r̄, z̄) = 1, Θ0(r̄, z̄) = 1, ϕ0(r̄, z̄) = 0
α0
m(r̄, z̄) = 0, ϕ0

oil(r̄, z̄) = 1 − ϕwater, δ̄
0 = 0, x0 = 0

(3.183)

3.11.1.2 Discretization of the Pressure Poisson Equation

Once the functions uk+1, vk+1, (ϕoil)k+1,Θk+1 and ϕk+1 have been determined, the
pressure Poisson Equation (3.155c) is then solved using the following time discretized
PPE:

∂2P k+1

∂r̄2 + 1
r̄

∂P k+1

∂r̄
+ ∂2P k+1

∂z̄2 = − 2
r̄2 (uk+1)2 − 2∂uk+1

∂z̄

∂vk+1

∂r̄

+ λ1
We

(RK̄)k+1
(

∂2(ϕoil)k+1

∂r̄2 + 1
r̄

∂(ϕoil)k+1

∂r̄
+ ∂2(ϕoil)k+1

∂z̄2

)

+ λ1
We

(
∂(RK̄)k+1

∂r̄

∂(ϕoil)k+1

∂r̄
+ ∂(RK̄)k+1

∂z̄

∂(ϕoil)k+1

∂z̄

)

+λ3
GrT
Re2

[
cos(φ)

(
∂Θk+1

∂r̄
+ 1

r̄
Θk+1

)
+ sin(φ)∂Θk+1

∂z̄

]

+λ4
GrC
Re2

[
cos(φ)

(
∂ϕk+1

∂r̄
+ 1

r̄
ϕk+1

)
+ sin(φ)∂ϕk+1

∂z̄

]
(3.184)

subject to the following boundary condition

P k+1
z̄ (1, z̄) = λ2

Re
[
vk+1

r̄r̄ (1, z̄) + vk+1
r̄ (1, z̄)

]
− λ2

(Re · Da)
vk+1(1, z̄)

+λ3
GrT
Re2 sin(φ)Θk+1(1, z̄) + λ4

GrC
Re2 sin(φ)ϕk+1(1, z̄) + λ1

We
(RK̄)k+1(1, z̄)ϕoilk+1

z̄ (1, z̄)
(3.185)

where the subscript z̄ denotes derivative with respect to z̄.
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3.11.1.3 Forward Euler Schemes

The intermediate functions uk, vk, P k,Θk, ϕk, (αm)k , (ϕoil)k, δ̄k and xk in the above
temporal schemes are calculated using the forward Euler formula as follows. The Euler's
forward scheme for the function uk is given as:

uk = uk−1 + ∆t̄
(
∂u

∂t̄

)k−1

(3.186)

Evaluating the r−momentum Equation (3.155a) at time level k − 1, making ∂u
k−1

∂t̄
the

subject and substituting the result on the right-hand side into Equation (3.186) yields

uk = uk−1 + ∆t̄

{
− uk−1 ∂uk−1

∂r̄
− vk−1 ∂uk−1

∂z̄
− ∂P k−1

∂r̄
− λ2

(Re · Da)
uk−1

+ λ2
Re

(
2∂2uk−1

∂r̄2 + ∂2uk−1

∂z̄2 + ∂2vk−1

∂r̄∂z̄
+ 2

r̄

∂uk−1

∂r̄
− 2

r̄2 uk−1
)

+λ3
GrT
Re2 cos(φ)Θk−1 + λ4

GrC
Re2 cos(φ)ϕk−1 + λ1

We
(RK̄)k−1 ∂(ϕoil)k−1

∂r̄

}
(3.187)

Similarly, the Euler's forward scheme for the function vk is given as:

vk = vk−1 + ∆t̄
(
∂v
∂t̄

)k−1

(3.188)

Evaluating the z−momentum Equation (3.155b) at time level k − 1, making ∂vk−1

∂t̄
the

subject and substituting the result on the right-hand side into Equation (3.188) yields

vk = vk−1 + ∆t̄

{
− uk−1 ∂vk−1

∂r̄
− vk−1 ∂vk−1

∂z̄
− ∂P k−1

∂z̄
− λ2

(Re · Da)
vk−1

+ λ2
Re

(
∂2vk−1

∂r̄2 + 2∂2vk−1

∂z̄2 + ∂2uk−1

∂r̄∂z̄
+ 1

r̄

∂uk−1

∂z̄
+ 1

r̄

∂vk−1

∂r̄

)

+λ3
GrT
Re2 sin(φ)Θk−1 + λ4

GrC
Re2 sin(φ)ϕk−1 + λ1

We
(RK̄)k−1 ∂(ϕoil)k−1

∂z̄

}
(3.189)

The Euler's forward scheme for the function Θk is given as:

Θk = Θk−1 + ∆t̄
(
∂Θ
∂t̄

)k−1

(3.190)
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Evaluating the energy Equation (3.155d) at time level k − 1, making ∂Θk−1

∂t̄
the subject

and substituting the result on the right-hand side into Equation (3.190) yields

Θk = Θk−1 + ∆t̄

{
− uk−1 ∂Θk−1

∂r̄
− vk−1 ∂Θk−1

∂z̄

+ λ5
Pe

(
∂2Θk−1

∂r̄2 + 1
r̄

∂Θk−1

∂r̄
+ ∂2Θk−1

∂z̄2

)
− Stλ6

d̄
Θk−1

+λ7
Ec
Re

2
(

∂uk−1

∂r̄

)2

+ 2
(

uk−1

r̄

)2

+ 2
(

∂vk−1

∂z̄

)2

+
(

∂vk−1

∂r̄
+ ∂uk−1

∂z̄

)2
}(3.191)

The Euler's forward scheme for the function ϕk is given as:

ϕk = ϕk−1 + ∆t̄
(
∂ϕ

∂t̄

)k−1

(3.192)

Evaluating the species concentration Equation (3.155e) at time level k−1, making ∂ϕ
k−1

∂t̄
the subject and substituting the result on the right-hand side into Equation (3.192) yields

ϕk = ϕk−1 + ∆t̄

{
− uk−1 ∂ϕk−1

∂r̄
− vk−1 ∂ϕk−1

∂z̄

+εp

[ [
1 − (αm)k−1

] [
ϕk−1 − (C̄d)k−1

](∂2vk−1

∂r̄2 + 1
r̄

∂vk−1

∂r̄

)

+
{[

1 − (αm)k−1
]∂ϕk−1

∂r̄
−
(

dC̄d
dΘ

)k−1
∂Θk−1

∂r̄


−
(
ϕk−1 − (C̄d)k−1

) ∂ (αm)k−1

∂r̄

}
∂vk−1

∂r̄

]

+ 1
Re · Sc

[(
dC̄d
dΘ

)k−1(
∂2Θk−1

∂r̄2 + 1
r̄

∂Θk−1

∂r̄
+ ∂2Θk−1

∂z̄2

)

+
(

d2C̄d
dΘ2

)k−1

(

∂Θk−1

∂r̄

)2

+
(

∂Θk−1

∂z̄

)2

]}

(3.193)

The Euler's forward scheme for the function ϕk is given as:

(αm)k = (αm)k−1 + ∆t̄
(
∂αm
∂t̄

)k−1

(3.194)

Evaluating the precipitation kinetics Equation (3.155f) at time level k − 1, making
∂(αm)k−1

∂t̄
the subject and substituting the result on the right-hand side into Equation
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(3.194) yields

(αm)k = (αm)k−1 + ∆t̄

{
− uk−1 ∂ (αm)k−1

∂r̄
− vk−1 ∂ (αm)k−1

∂z̄

+
[
1 − (αm)k−1

]
(K̄1)k−1 − Re

λ2
(αm)k−1

(
∂vk−1

∂r̄

)2

(K̄2)k−1
}

(3.195)

The Euler's forward scheme for the function (ϕoil)k is given as:

(ϕoil)k = (ϕoil)k−1 + ∆t̄
(
∂ϕoil
∂t̄

)k−1

(3.196)

Evaluating the oil volume fraction Equation (3.155g) at time level k−1, making ∂(ϕoil)k−1

∂t̄
the subject and substituting the result on the right-hand side into Equation (3.196) yields

(ϕoil)k = (ϕoil)k−1 + ∆t̄

{
− uk−1 ∂ (ϕoil)k−1

∂r̄
− vk−1 ∂ (ϕoil)k−1

∂z̄

}
(3.197)

The Euler's forward scheme for the function δ̄k is given as:

δ̄k = δ̄k−1 + ∆t̄
(
dδ̄

dt̄

)k−1

(3.198)

Evaluating the deposit growth rate Equation (3.155h) at time level k − 1, making dδ̄
k−1

dt̄
the subject and substituting the result on the right-hand side into Equation (3.198) yields

δ̄k = δ̄k−1 + ∆t̄

{
ϕ1

(
1 − f(xk−1)

)
xk−1

 1
Re · Sc

(
dC̄d
dΘ

)k−1
∂Θk−1

∂r̄

∣∣∣∣
r̄=R̄eff

} (3.199)

The Euler's forward scheme for the function δ̄k is given as:

xk = xk−1 + ∆t̄
(
dx

dt̄

)k−1

(3.200)

Evaluating the deposit aging rate Equation (3.155i) at time level k− 1, making dx
k−1

dt̄
the

subject and substituting the result on the right-hand side into Equation (3.200) yields

xk = xk−1 + ∆t̄

{
ϕ1f(xk−1)

2
(
1 − δ̄k−1

)
δ̄k−1

(
2 − δ̄k−1

)[ 1
Re · Sc

(
dC̄d
dΘ

)k−1
∂Θk−1

∂r̄

+εp
(
1 − (αm)k−1

) (
ϕk−1 − (C̄d)k−1

) ∂vk−1

∂r̄

]
r̄=R̄eff

}
(3.201)
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The iterative system of linear PDEs (3.166), (3.168), (3.184), (3.170), (3.172), (3.174),
(3.176) and the corresponding boundary conditions (3.231a)−(3.182d) and the initial
conditions (3.231d) are discretized in space by the bivariate Chebyshev spectral
collocation method, presented in Subsection 3.11.2.

3.11.2 Spatial Discretization Using Chebyshev Spectral Collocation
Method

The spectral collocation method is characterized by the fact that the numerical solution is
forced to satisfy the governing equations exactly at the collocation points. The bivariate
Chebyshev spectral collocation method is valid in the domain [−1, 1] in both r̄ and z̄.
Therefore, the physical domain on which the system of governing equations are defined
should be transformed from [a, b] × [α, β] to [−1, 1] × [−1, 1]. In particular, the domain
r̄ ∈ [a, b] is transformed to the new domain r̂ ∈ [−1, 1] using the following linear
transformation.

r̄ = 1
2

(b− a) r̂ + 1
2

(b+ a) (3.202)

Similarly, the domain z̄ ∈ [α, β] is transformed to the new domain ẑ ∈ [−1, 1] using the
following linear transformation.

z̄ = 1
2

(β − α) ẑ + 1
2

(β + α) . (3.203)

Here, a = 0, b = λ, α = 0 and β = L∞, where L∞ is a finite number chosen to be large
enough to approximate the asymptotic behaviour at infinity. The transformations (3.202)
and (3.203) will be implemented in the FDM schemes when evaluating the derivatives at
the collocation points (r̄i, z̄j), using the chain rule of differentiation. A detailed
presentation of the bivariate spectral collocation method can be found in Motsa et al.
(2014), Magagula et al. (2016), Samuel & Motsa (2019), Goqo et al. (2019), Magagula
et al. (2020), and Ibrahim (2020).

The iterative system of linear PDEs (3.166), (3.168), (3.184), (3.170), (3.172), (3.174),
(3.176) and the corresponding boundary conditions (3.231a)−(3.182d) and the initial
conditions (3.231d) is discretised in space using the Chebyshev spectral collocation
method in both the r̄ and z̄ direction, with Lagrange fundamentals (or Lagrange
coefficients) chosen as the basis functions. The unknown solutions u(r̄, z̄, t̄k+1),
v(r̄, z̄, t̄k+1), Θ(r̄, z̄, t̄k+1), ϕ(r̄, z̄, t̄k+1), αm(r̄, z̄, t̄k+1), and ϕoil(r̄, z̄, t̄k+1), which are
functions of the space variables r̄ and z̄ only, are respectively approximated by the
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bivariate Lagrange interpolating polynomial of the forms:

u(r̄, z̄, t̄k+1) ≈
M∑

m=0

N∑
n=0

u(r̂m, ẑn, t̄k+1)Lm(r̂)Ln(ẑ) (3.204a)

v(r̄, z̄, t̄k+1) ≈
M∑

m=0

N∑
n=0

v(r̂m, ẑn, t̄k+1)Lm(r̂)Ln(ẑ) (3.204b)

Θ(r̄, z̄, t̄k+1) ≈
M∑

m=0

N∑
n=0

Θ(r̂m, ẑn, t̄k+1)Lm(r̂)Ln(ẑ) (3.204c)

ϕ(r̄, z̄, t̄k+1) ≈
M∑

m=0

N∑
n=0

ϕ(r̂m, ẑn, t̄k+1)Lm(r̂)Ln(ẑ) (3.204d)

αm(r̄, z̄, t̄k+1) ≈
M∑

m=0

N∑
n=0

αm(r̂m, ẑn, t̄k+1)Lm(r̂)Ln(ẑ) (3.204e)

ϕoil(r̄, z̄, t̄k+1) ≈
M∑

m=0

N∑
n=0

ϕoil(r̂m, ẑn, t̄k+1)Lm(r̂)Ln(ẑ) (3.204f)

where the functions Lm(r̂) are the Lagrange cardinal polynomials defined by

Lm(r̂) =
M∏

i=0
i̸=m

(r̂ − r̂i)
(r̂m − r̂i)

, with Lm(r̂i) = δmi =

1, if i = m

0, if i ̸= m
(3.205)

Similarly, the functions Ln(ẑ) are defined by

Ln(ẑ) =
N∏

j=0
j ̸=n

(ẑ − ẑj)
(ẑn − ẑj)

, with Ln(ẑj) = δnj =

1, if j = n

0, if j ̸= n
(3.206)

In particular, the assumed solution (3.204a) interpolates the function u(r̄, z̄, t̄k+1) at the
symmetrically distributed Chebyshev-Gauss-Lobatto grid points (r̂i, ẑj) defined on the
domain [−1, 1] × [−1, 1] by:

r̂i = cos
(
πi

M

)
and ẑj = cos

(
πj

N

)
; i = 0, 1, · · · ,M ; j = 0, 1, · · · , N, (3.207)

where M and N denotes the number of collocation (or grid) points in r̄ and z̄ direction,
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respectively. The Chebyshev-Gauss-Lobatto grid points are indexed from right to left of
the domains in r̄ and z̄ since r̂M = −1, r̂0 = 1, ẑN = −1, and ẑ0 = 1. Hence, it is taken
that r̄0 = b, r̄1, r̄2, · · · , r̄M = a and z̄0 = β, z̄1, z̄2, · · · , z̄N = α as the computational
grids.

The choice of the Chebyshev-Gauss-Lobatto grid points (3.207) makes it possible to
convert the continuous spatial derivatives, in both r̄ and z̄, to discrete matrix form at the
collocation points. For example, the first partial derivative of u(r̄, z̄, t̄k+1) with respect to
r̄ is approximated at the collocation points (r̄i, z̄j), for j = 0, 1, 2, · · · , N , using the chain
rule of differentiation as follows:

∂u

∂r̄

∣∣∣∣∣
(r̄i,z̄j)

≈
M∑

m=0

N∑
n=0

u(r̂m, ẑn, t̄k+1)Ln(ẑj)
(dLm(r̂)

dr̂

dr̂

dr̄

) ∣∣∣∣∣
r̂=r̂i

=
M∑

m=0

N∑
n=0

u(r̂m, ẑn, t̄k+1)Ln(ẑj)
( 2

b − a

) dLm(r̂)
dr̂

∣∣∣∣∣
r̂=r̂i

=
M∑

m=0

( 2
b − a

)
Di,mu(r̂m, ẑj , t̄k+1), i = 0, 1, 2, · · · , M,

= DU(k+1)
j , at z̄ = z̄j and t̄ = t̄k+1, (3.208)

whereDi,m = dLm(r̂)
dr̂

∣∣∣∣∣∣
r̂=r̂i

, for i,m = 0, 1, 2, · · · ,M , are the entries of the standard first

derivative Chebyshev differentiation matrix [Di,m] of size (M+1)×(M+1) as defined in
Trefethen (2000). The matrixD is an (M+1)×(M+1) scaling matrix for the Chebyshev
derivative matrix [Di,m] and is given by

D = [2/(b− a)][Di,m], for i,m = 0, 1, 2, · · · ,M. (3.209)

The unknown column vector U(k+1)
j is defined as

U(k+1)
j = [u(r̄0, z̄j, t̄k+1), u(r̄1, z̄j, t̄k+1), · · · , u(r̄M , z̄j, t̄k+1)]T, (3.210)

where the superscript T denotes matrix transpose. Similarly, the first partial derivative of
u(r̄, z̄, t̄k+1) with respect to z̄ is approximated at the collocation points (r̄i, z̄j), for i =
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0, 1, 2, · · · ,M , using the chain rule of differentiation as follows:

∂u

∂ẑ

∣∣∣∣
(r̄i,z̄j)

≈
M∑

m=0

N∑
n=0

u(r̂m, ẑn, t̄k+1)Lm(r̂i)
(
dLn(ẑ)
dẑ

dẑ
dz̄

) ∣∣∣∣∣∣
ẑ=ẑj

=
M∑

m=0

N∑
n=0

u(r̂m, ẑn, t̄k+1)Lm(r̂i)
(

2
β − α

)
dLn(ẑ)
dẑ

∣∣∣∣∣∣
ẑ=ẑj

=
N∑

n=0

(
2

β − α

)
dj,nu(r̂i, ẑn, t̄k+1), j = 0, 1, 2, · · · , N,

=
N∑

n=0
dj,nU(k+1)

n , (3.211)

where dj,n = dLn(ẑ)
dẑ

∣∣∣∣∣∣
ẑ=ẑj

, for j, n = 0, 1, 2, · · · , N , are the entries of the standard first

derivative Chebyshev differentiation matrix [dj,n] of size (N + 1) × (N + 1). The matrix
d is an (N + 1) × (N + 1) scaling matrix for the Chebyshev derivative matrix [dj,n] and
is given by

d = [2/(β − α)][dj,n], for j, n = 0, 1, 2, · · · , N. (3.212)

Here, dj,n denotes the element at the jth row and the nth column of the matrix d. In
general, the unknown column vector U(k+1)

n is constructed in such a manner that for every
grid point in z̄, the grid points in r̄ are varied. This arrangement of grid points explains the
presence of the single sum in the last expression in Equation (3.211). Such a pattern will be
useful when assembling the system of linear algebraic equations to obtain the coefficient
matrices. Similarly, the second partial derivatives of u(r̄, z̄, t̄k+1) with respect to r̄ and z̄
are approximated at the collocation points (r̄i, z̄j) using the chain rule of differentiation as
follows:

∂2u

∂r̄2

∣∣∣∣∣
(r̄i,z̄j)

≈
M∑

m=0

N∑
n=0

u(r̂m, ẑn, t̄k+1)Ln(ẑj)
[
d2Lm(r̂)
dr̂2

(dr̂

dr̄

)2
] ∣∣∣∣∣

r̂=r̂i

=
M∑

m=0

N∑
n=0

u(r̂m, ẑn, t̄k+1)Ln(ẑj)
( 2

b − a

)2 d2Lm(r̂)
dr̂2

∣∣∣∣∣
r̂=r̂i

=
M∑

m=0

( 2
b − a

)2
D2

i,mu(r̂m, ẑj , t̄k+1), i = 0, 1, 2, · · · , M,

= D2U(k+1)
j . (3.213a)
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∂2u

∂z̄2

∣∣∣
(r̄i,z̄j)

≈
M∑

m=0

N∑
n=0

u(r̂m, ẑn, t̄k+1)Lm(r̂i)
[
d2Ln(ẑ)
dẑ2

(dẑ

dz̄

)2
] ∣∣∣∣∣

ẑ=ẑj

=
M∑

m=0

N∑
n=0

u(r̂m, ẑn, t̄k+1)Lm(r̂i)
( 2

β − α

)2 d2Ln(ẑ)
dẑ2

∣∣∣∣∣
ẑ=ẑj

=
N∑

n=0

( 2
β − α

)2
d2

j,nu(r̂i, ẑn, t̄k+1), j = 0, 1, 2, · · · , N

=
N∑

n=0
d2

j,nU(k+1)
n . (3.213b)

∂2u

∂r̄∂z̄

∣∣∣
(r̄i,z̄j)

≈
M∑

m=0

N∑
n=0

u(r̂m, ẑn, t̄k+1)
(dLm(r̂)

dr̂

dr̂

dr̄

) ∣∣∣∣∣
r̂=r̂i

(dLn(ẑ)
dẑ

dẑ

dz̄

) ∣∣∣∣∣
ẑ=ẑj

=
M∑

m=0

N∑
n=0

u(r̂m, ẑn, t̄k+1)
( 2

b − a

) dLm(r̂)
dr̂

∣∣∣∣∣
r̂=r̂i

( 2
β − α

) dLn(ẑ)
dẑ

∣∣∣∣∣
ẑ=ẑj

=
M∑

m=0

N∑
n=0

( 2
b − a

)
Di,m

( 2
β − α

)
dj,nu(r̂m, ẑn, t̄k+1),

=
N∑

n=0
dj,nDU(k+1)

n . (3.213c)

The partial derivatives of the other dependent variables, i.e., v(r̄, z̄, t̄k+1), Θ(r̄, z̄, t̄k+1),
ϕ(r̄, z̄, t̄k+1), αm(r̄, z̄, t̄k+1), and ϕoil(r̄, z̄, t̄k+1), with respect to r̄ and z̄ can be transformed
to discrete matrix form in a similar manner. The differentiation process illustrated above
can be easily extended to higher order partial derivatives.

Substituting the respective discrete derivative matrices into the r−momentum Equation
(3.166), yields the following system of (M + 1) × (N + 1) linear algebraic equations:

[
diag(a0)D2 + diag(a1)D + diag(a2)I

]
U(k+1)

j +
N∑

n=0

[
a3d2

j,nI
]
U(k+1)

n = R1(k)
j (3.214)

where diag(· · · ) represents a diagonal matrix of vectors. The coefficients on the left-hand
side are given by

diag(a0) = −∆t̄λ2

Re
, diag(a1) = −∆t̄λ2

Re
1
r̄

(3.215a)

diag(a2) =
(

1 + ∆t̄λ2

Re
1
r̄2 + ∆t̄λ2

2(Re · Da)

)
, diag(a3) = −∆t̄λ2

2Re
(3.215b)
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and the right-hand side vector is given by

R1(k)
j = U(k)

j + ∆t̄

− 1
2
(
3U(k)

j · DU(k)
j − U(k−1)

j · DU(k−1)
j

)

−1
2

(
3V(k)

j ·
N∑

n=0
dj,nU(k)

n − V(k−1)
j ·

N∑
n=0

dj,nU(k−1)
n

)
− DP(k)

j

+ λ2

Re

(
D2U(k)

j + 1
2

N∑
n=0

d2
j,nU(k)

n + D
N∑

n=0
dj,nV(k)

n + 1
r̄
DU(k)

j − 1
r̄2U

(k)
j

)

− λ2

2(Re · Da)
U(k)

j + λ3
GrT
Re2 cos(φ)Θ(k)

j + λ4
GrC
Re2 cos(φ)Φ(k)

j

+ λ1

2We

[
3
(
RK̄

)k
DΦoil

(k)
j −

(
RK̄

)k−1
DΦoil

(k−1)
j

] (3.216)

where the variable RK̄ is defined by Equation (3.108). Similarly, the discrete form of
the z−momentum Equation (3.168) is a system of (M + 1) × (N + 1) linear algebraic
equations given by:

[
diag(b0)D2 + diag(b1)D + diag(b2)I

]
V(k+1)

j +
N∑

n=0

[
b3d2

j,nI
]
V(k+1)

n = R2(k)
j (3.217)

The coefficients on the left-hand side are given by

diag(b0) = −∆t̄λ2

2Re
, diag(b1) = −∆t̄λ2

2Re
1
r̄

(3.218a)

diag(b2) =
(

1 + ∆t̄λ2

2(Re · Da)

)
, diag(b3) = −∆t̄λ2

Re
(3.218b)

and the right-hand side vector is given by

R2(k)
j = V(k)

j + ∆t̄

− 1
2
(
3U(k)

j · DV(k)
j − U(k−1)

j · DV(k−1)
j

)

−1
2

(
3V(k)

j ·
N∑

n=0
dj,nV(k)

n − V(k−1)
j ·

N∑
n=0

dj,nV(k−1)
n

)
−

N∑
n=0

dj,nP(k)
n

+ λ2

Re

(
1
2
D2V(k)

j +
N∑

n=0
d2

j,nV(k)
n + D

N∑
n=0

dj,nU(k)
n + 1

r̄

N∑
n=0

dj,nU(k)
n + 1

2r̄
DV(k)

j

)

− λ2

2(Re · Da)
V(k)

j + λ3
GrT
Re2 sin(φ)Θ(k)

j + λ4
GrC
Re2 sin(φ)Φ(k)

j

+ λ1

2We

[
3(RK̄)k

N∑
n=0

dj,nΦoil
(k)
n − (RK̄)k−1

N∑
n=0

dj,nΦoil
(k−1)
n

] (3.219)

The discrete form of the energy Equation (3.170) is a system of (M + 1) × (N + 1) linear
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algebraic equations given by:

[
diag(d0)D2 + diag(d1)D + diag(d2)I

]
Θ(k+1)

j +
N∑

n=0

[
d3d2

j,nI
]

Θ(k+1)
n = R4(k)

j

(3.220)

The coefficients on the left-hand side are given by

diag(d0) = −∆t̄λ5

2Pe
, diag(d1) = −∆t̄λ5

2Pe
1
r̄

(3.221a)

diag(d2) =
(

1 + St∆t̄λ6

2d̄

)
, diag(d3) = −∆t̄λ5

2Pe
(3.221b)

and the right-hand side vector is given by

R4(k)
j = Θ(k)

j + ∆t̄

− 1
2
(
3U(k)

j · DΘ(k)
j − U(k−1)

j · DΘ(k−1)
j

)

−1
2

(
3V(k)

j ·
N∑

n=0
dj,nΘ(k)

n − V(k−1)
j ·

N∑
n=0

dj,nΘ(k−1)
n

)

+ λ5

2Pe

(
D2Θ(k)

j + 1
r̄
DΘ(k)

j +
N∑

n=0
d2

j,nΘ(k)
n

)
− Stλ6

2d̄
Θ(k)

j

+λ7
Ec
2Re

3
[
2
(
DU(k)

j

)2
+ 2

(1
r̄
U(k)

j

)2
+ 2

(
N∑

n=0
dj,nV(k)

n

)2

+
(
DV(k)

j +
N∑

n=0
dj,nU(k)

n

)2 ]
−
[
2
(
DU(k−1)

j

)2
+ 2

(1
r̄
U(k−1)

j

)2

+2
(

N∑
n=0

dj,nV(k−1)
n

)2

+
(
DV(k−1)

j +
N∑

n=0
dj,nU(k−1)

n

)2 ]
 (3.222)

The discrete form of the species concentration Equation (3.172) is a system of (M + 1) ×
(N + 1) linear algebraic equations given by:

IΦ(k+1)
j = R5(k)

j (3.223)
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The right-hand side vector is given by

R5(k)
j = Φ(k)

j + ∆t̄

− 1
2
(
3U(k)

j · DΦ(k)
j − U(k−1)

j · DΦ(k−1)
j

)

−1
2

(
3V(k)

j ·
N∑

n=0
dj,nΦ(k)

n − V(k−1)
j ·

N∑
n=0

dj,nΦ(k−1)
n

)

+3εp
2

 [1 − αm
(k)
j

] (
Φ(k)

j − Cd
(k)
j

)
·
(
D2V(k)

j + 1
r̄
DV(k)

j

)

+
{[

1 − αm
(k)
j

] (
DΦ(k)

j − C1d(k)
j · DΘ(k)

j

)
−
(
Φ(k)

j − Cd
(k)
j

)
· Dαm

(k)
j

}
· DV(k)

j


−εp

2

 [1 − αm
(k−1)
j

] (
Φ(k−1)

j − Cd
(k−1)
j

)
·
(
D2V(k−1)

j + 1
r̄
DV(k−1)

j

)

+
{ [

1 − αm
(k−1)
j

] (
DΦ(k−1)

j − C1d(k−1)
j · DΘ(k−1)

j

)
−
(
Φ(k−1)

j − Cd
(k−1)
j

)
· Dαm

(k−1)
j

}
· DV(k−1)

j


+ 3

2Re · Sc

C1d(k)
j ·

(
D2Θ(k)

j + 1
r̄
DΘ(k)

j +
N∑

n=0
d2

j,nΘ(k)
n

)

+C2d(k)
j ·

(DΘ(k)
j

)2
+
(

N∑
n=0

dj,nΘ(k)
n

)2


− 1
2Re · Sc

C1d(k−1)
j ·

(
D2Θ(k−1)

j + 1
r̄
DΘ(k−1)

j +
N∑

n=0
d2

j,nΘ(k−1)
n

)

+C2d(k−1)
j ·

(DΘ(k−1)
j

)2
+
(

N∑
n=0

dj,nΘ(k−1)
n

)2

(3.224)

The discrete form of the precipitation kinetics Equation (3.174) is a system of (M + 1) ×
(N + 1) linear algebraic equations given by:

Iαm
(k+1)
j = R6(k)

j (3.225)
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The right-hand side vector is given by

R6(k)
j = αm

(k)
j + ∆t̄

1
2
[
3
(
1 − αm

(k)
j

)
· K1(k)

j −
(
1 − αm

(k−1)
j

)
· K1(k−1)

j

]
−1

2
(
3U(k)

j · Dαm
(k)
j − U(k−1)

j · Dαm
(k−1)
j

)
−1

2

(
3V(k)

j ·
N∑

n=0
dj,nαm

(k)
n − V(k−1)

j ·
N∑

n=0
dj,nαm

(k−1)
n

)

− Re
2λ2

[
3αm

(k)
j ·

(
DV(k)

j

)2
· K2(k)

j − αm
(k−1)
j ·

(
DV(k−1)

j

)2
· K2(k−1)

j

] (3.226)

The discrete form of the oil volume fraction Equation (3.176) is a system of (M + 1) ×
(N + 1) linear algebraic equations given by:

IΦoil
(k+1)
j = R7(k)

j (3.227)

The right-hand side vector is given by

R7(k)
j = Φoil

(k)
j + ∆t̄

− 1
2
(
3U(k)

j · DΦoil
(k)
j − U(k−1)

j · DΦoil
(k−1)
j

)

−1
2

(
3V(k)

j ·
N∑

n=0
dj,nΦoil

(k)
j − V(k−1)

j ·
N∑

n=0
dj,nΦoil

(k−1)
j

) (3.228)

The intermediate solutions U(k)
j ,V(k)

j ,Θ(k)
j ,ΦU (k)

j ,αm
(k)
j and Φoil

(k)
j in the above

systems are obtained from Equations (3.187), (3.189), (3.191), (3.193), (3.195) and
(3.197), respectively, i.e.,

U(k)
j = U(k−1)

j + ∆t̄

{
− U(k−1)

j · DU(k−1)
j − V(k−1)

j ·
N∑

n=0
dj,nU(k−1)

n − DP(k−1)
j − λ2

(Re · Da)
U(k−1)

j

+ λ2
Re

(
2D2U(k−1)

j +
N∑

n=0
d2

j,nU(k−1)
n + D

N∑
n=0

dj,nV(k−1)
n + 2

r̄
DU(k−1)

j − 2
r̄2U

(k−1)
j

)

+λ3
GrT
Re2 cos(φ)Θ(k−1)

j + λ4
GrC
Re2 cos(φ)Φ(k−1)

j + λ1
We

(RK̄)k−1 · DΦoil
(k−1)
j

}
(3.229a)

V(k)
j = V(k−1)

j + ∆t̄

{
− U(k−1)

j · DV(k−1)
j − V(k−1)

j ·
N∑

n=0
dj,nV(k−1)

n −
N∑

n=0
dj,nP(k−1)

n − λ2
(Re · Da)

V(k−1)
j

+ λ2
Re

(
D2V(k−1)

j + 2
N∑

n=0
d2

j,nV(k−1)
n + D

N∑
n=0

dj,nU(k−1)
n + 1

r̄

N∑
n=0

dj,nU(k−1)
n + 1

r̄
DV(k−1)

j

)

+λ3
GrT
Re2 sin(φ)Θ(k−1)

j + λ4
GrC
Re2 sin(φ)Φ(k−1)

j + λ1
We

(RK̄)k−1 ·
N∑

n=0
dj,nΦoil

(k−1)
n

}
(3.229b)
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Θ(k)
j = Θ(k−1)

j + ∆t̄

{
− U(k−1)

j · DΘ(k−1)
j − V(k−1)

j ·
N∑

n=0
dj,nΘ(k−1)

n

+ λ5
Pe

(
D2Θ(k−1)

j + 1
r̄
DΘ(k−1)

j +
N∑

n=0
d2

j,nΘ(k−1)
n

)
− Stλ6

d̄
Θ(k−1)

j

+λ7
Ec
Re

[
2
(
DU(k−1)

j

)2
+ 2

(1
r̄
U(k−1)

j

)2
+ 2

(
N∑

n=0
dj,nV(k−1)

n

)2

+
(
DV(k−1)

j +
N∑

n=0
dj,nU(k−1)

n

)2 ]}
(3.229c)

Φ(k)
j = Φ(k−1)

j + ∆t̄

{
− U(k−1)

j · DΦ(k−1)
j − V(k−1)

j ·
N∑

n=0
dj,nΦ(k−1)

n

+εp

[ [
1 − αm

(k−1)
j

] [
Φ(k−1)

j − Cd
(k−1)
j

]
·
(
D2V(k−1)

j + 1
r̄
DV(k−1)

j

)

+
{[

1 − αm
(k−1)
j

]
·
(
DΦ(k−1)

j − C1d
(k−1)
j · DΘ(k−1)

j

)

−
(
Φ(k−1)

j − Cd
(k−1)
j

)
· Dαm

(k−1)
j

}
· DV(k−1)

j

]

+ 1
Re · Sc

[
C1d

(k−1)
j ·

(
D2Θ(k−1)

j + 1
r̄
DΘ(k−1)

j +
N∑

n=0
d2

j,nΘ(k−1)
n

)

+C2d
(k−1)
j ·

(DΘ(k−1)
j

)2
+
(

N∑
n=0

d2
j,nΘ(k−1)

n

)2
]}

(3.229d)

αm
(k)
j = αm

(k−1)
j + ∆t̄

{
− U(k−1)

j · Dαm
(k−1)
j − V(k−1)

j ·
N∑

n=0
dj,nαm

(k−1)
n

+
[
1 − αm

(k−1)
j

]
· K1(k−1)

j − Re
λ2

αm
(k−1)
j ·

(
DV(k−1)

j

)2
· K2(k−1)

j

}
(3.229e)

Φoil
(k)
j = Φoil

(k−1)
j + ∆t̄

{
− U(k−1)

j · DΦoil
(k−1)
j − V(k−1)

j ·
N∑

n=0
dj,nΦoil

(k−1)
n

}
(3.229f)

The unknown column vectors U(k+1)
j ,V(k+1)

j ,Θ(k+1)
j ,Φ(k+1)

j ,αm
(k+1)
j and Φoil

(k+1)
j are
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given by:

U(k+1)
j = [u(r̄0, z̄j, t̄k+1), u(r̄1, z̄j, t̄k+1), · · · , u(r̄M , z̄j, t̄k+1)]T (3.230a)

V(k+1)
j = [v(r̄0, z̄j, t̄k+1), v(r̄1, z̄j, t̄k+1), · · · , v(r̄M , z̄j, t̄k+1)]T (3.230b)

Θ(k+1)
j = [Θ(r̄0, z̄j, t̄k+1),Θ(r̄1, z̄j, t̄k+1), · · · ,Θ(r̄M , z̄j, t̄k+1)]T (3.230c)

Φ(k+1)
j = [ϕ(r̄0, z̄j, t̄k+1), ϕ(r̄1, z̄j, t̄k+1), · · · , ϕ(r̄M , z̄j, t̄k+1)]T (3.230d)

αm
(k+1)
j = [αm(r̄0, z̄j, t̄k+1), αm(r̄1, z̄j, t̄k+1), · · · , αm(r̄M , z̄j, t̄k+1)]T (3.230e)

Φoil
(k+1)
j = [ϕoil(r̄0, z̄j, t̄k+1), ϕoil(r̄1, z̄j, t̄k+1), · · · , ϕoil(r̄M , z̄j, t̄k+1)]T (3.230f)

The discrete form of the boundary conditions (3.231a)−(3.231c) and the initial conditions
(3.231d) are given by:

DU(k+1)
j = 0, DV(k+1)

j = 0, DΘ(k+1)
j = 0, DΦ(k+1)

j = 0, Dαm
(k+1)
j = 0 at r̄ = r̄0 (3.231a)

U(k+1)
j = 0, V(k+1)

j = 0, Θ(k+1)
j = 1, Φ(k+1)

j = 1 at r̄ = r̄M (3.231b)

U(k+1)
0 = 0, V(k+1)

0 = 1, Θ(k+1)
0 = 0, Φ(k+1)

0 = 0, αm
(k+1)
0 = 0

Φoil
(k+1)
0 = 1 − ϕwater

at z̄ = z̄0 (3.231c)

U(0)
j = 0, V(0)

j = 0, P(0)
j = 0, Θ(0)

j = 0, Φ(0)
j = 0

αm
(0)
j = 0, Φoil

(0)
j = 1 − ϕwater, δ̄

0 = 0, x0 = 0
at t̄ = t̄0 (3.231d)

The linear system of algebraic Equations (3.214), (3.217), (3.220), (3.223), (3.225),
(3.227) and the corresponding initial-boundary conditions given by Equation
(3.231a)−(3.231d) is solved as a matrix of the general form AF(k+1) = R(k), where
F(k+1) and R(k) are column vectors of size (M + 1)(N + 1) × 1 while A is a square
matrix of size (M + 1)(N + 1) × (M + 1)(N + 1). In particular, the system (3.214)
takes the form 

A10,0 A10,1 · · · A10,N

A11,0 A11,1 · · · A11,N

... ... . . . ...
A1N,0 A1N,1 · · · A1N,N




U(k+1)

0

U(k+1)
1
...

U(k+1)
N

 =


R1(k)

0

R1(k)
1
...

R1(k)
N

 (3.232)

where A1j,n's are square matrices each of size (M + 1) × (M + 1) given by

A1j,j = diag(a0)D2 + diag(a1)D + diag(a2)I + a3d2
j,jI (3.233a)

A1j,n = a3d2
j,nI, when n ̸= j. (3.233b)
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Similarly, the system (3.217) takes the form

A20,0 A20,1 · · · A20,N

A21,0 A21,1 · · · A21,N

... ... . . . ...
A2N,0 A2N,1 · · · A2N,N




V(k+1)

0

V(k+1)
1
...

V(k+1)
N

 =


R2(k)

0

R2(k)
1
...

R2(k)
N

 (3.234)

where A2j,n's are square matrices each of size (M + 1) × (M + 1) given by

A2j,j = diag(b0)D2 + diag(b1)D + diag(b2)I + b3d2
j,jI (3.235a)

A2j,n = b3d2
j,nI, when n ̸= j. (3.235b)

The system (3.220) takes the form

A40,0 A40,1 · · · A40,N

A41,0 A41,1 · · · A41,N

... ... . . . ...
A4N,0 A4N,1 · · · A4N,N




Θ(k+1)

0

Θ(k+1)
1
...

Θ(k+1)
N

 =


R4(k)

0

R4(k)
1
...

R4(k)
N

 (3.236)

where A4j,n's are square matrices each of size (M + 1) × (M + 1) given by

A4j,j = diag(d0)D2 + diag(d1)D + diag(d2)I + d3d2
j,jI (3.237a)

A4j,n = d3d2
j,nI, when n ̸= j. (3.237b)

The system (3.223) takes the form

A50,0 A50,1 · · · A50,N

A51,0 A51,1 · · · A51,N

... ... . . . ...
A5N,0 A5N,1 · · · A5N,N




Φ(k+1)

0

Φ(k+1)
1
...

Φ(k+1)
N

 =


R5(k)

0

R5(k)
1
...

R5(k)
N

 (3.238)

where A5j,n's are square matrices each of size (M + 1) × (M + 1) given by

A5j,j = I (3.239a)

A5j,n = O, when n ̸= j. (3.239b)
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The system (3.225) takes the form

A60,0 A60,1 · · · A60,N

A61,0 A61,1 · · · A61,N

... ... . . . ...
A6N,0 A6N,1 · · · A6N,N




αm

(k+1)
0

αm
(k+1)
1
...

αm
(k+1)
N

 =


R6(k)

0

R6(k)
1
...

R6(k)
N

 (3.240)

where A6j,n's are square matrices each of size (M + 1) × (M + 1) given by

A6j,j = I (3.241a)

A6j,n = O, when n ̸= j. (3.241b)

The system (3.227) takes the form

A70,0 A70,1 · · · A70,N

A71,0 A71,1 · · · A71,N

... ... . . . ...
A7N,0 A7N,1 · · · A7N,N




Φoil

(k+1)
0

Φoil
(k+1)
1
...

Φoil
(k+1)
N

 =


R7(k)

0

R7(k)
1
...

R7(k)
N

 (3.242)

where A7j,n's are square matrices each of size (M + 1) × (M + 1) given by

A7j,j = I (3.243a)

A7j,n = O, when n ̸= j. (3.243b)

The corresponding boundary conditions are imposed on the leading diagonal sub-block
matrices of the coefficient matrix in the above systems, i.e., on the main diagonal of the
matrices A1j,j , A2j,j , A4j,j , A5j,j , A6j,j and A7j,j , to yield a new consistent system of
linear algebraic equations with a unique solution. The solutions are then obtained by pre-
multiplying the matrix equation by the inverse of A, i.e., by A−1, to get

F(k+1) = A−1R(k). (3.244)

The matrix system (3.244) is solved starting from suitable initial approximations (or initial
guesses). The initial conditions, in this study, are used as the initial guesses. The iteration
is repeated for k = 1, 2, 3, · · · , until the following condition is satisfied:

∥∥∥F(k+1) − F(k)
∥∥∥

∞
< εtol, (3.245)

where ϵtol denotes the prescribed absolute error tolerance which, in this study, is taken as
εtol = 10−13.
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3.12 Predictions Based on Objectives Four and Five

The resulting solutions for the velocity field, temperature field and concentration are then
used to determine the rates of wax deposition and deposit aging together with the skin-
friction coefficient, rates of heat and mass transfer, as discussed below.

3.12.1 Determination of Rates of Wax Deposition and Deposit Aging

The rate of wax deposition is determined from Equations (3.178) and (3.199). The rate of
deposit aging is determined from Equations (3.180) and (3.201).

3.12.2 Determination of Skin-friction Coefficient, Rates of Heat and
Mass Transfer

The wall shear stress and the rates of heat and mass transfer are obtained by applying
the Bivariate Chebyshev spectral collocation method to the Equations (3.164) in a similar
manner to get the following discrete matrix forms.

CfRe = 2DVk+1
j , Nuz = −DΘk+1

j , Shz = −DΦk+1
j , at r̄ = r̄M . (3.246)

3.13 Computer Simulations

Computer simulations of the numerical schemes are done in MATLAB® software to obtain
the profiles of the flow variables. The data used in the computer simulations is presented
in Table 3.1 and Table 3.2. The choices of the parameter values presented in Table 3.1 are
to serve as baseline cases for the purpose of generating the profiles of the flow variables.
In particular, the Pr values for oils are in the range 50-2000, Re-values in the range 0 <
Re < 2000 means that the flow is laminar, Ec = 1.2 means that the kinetic energy of flow
is greater than the enthalpy difference,GrT > 0 corresponds to cooling of the pipeline wall
(or heating the fluid in contact with the wall), etc. At each time step, all time-dependent
flow variables are updated. The number of collocation points in the radial direction is
taken as 19 while that in the axial direction is taken as 15.

The simulation results are presented in chapter 4 in form of graphs and tables, and
discussed.
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Table 3.1: Values of the Dimensionless Parameters Used in the Computer Simulation.

Parameter Value
Eckert number, Ec 1.2
Thermal Grashof number, GrT 5.0
Mass Grashof number, GrC 5.0
Darcy number, Da 1.0×104

Prandtl number, Pr 50
Reynolds number, Re

√
0.5

Peclet number, Pe 50
√

0.5
Richardson number, Ri 1
Schmidt number, Sc 1.5
Stanton number, St 1.5
Weber number, We 1.0
Elevation of pipeline, φ π/12

Table 3.2: Physical Properties Values Used in the Computer Simulation.

Physical Property Value Unit
API gravity of waxy crude oil 18 oAPI
Volumetric flow rate of waxy crude oil, Q 1 m3/s
Shear dispersion coefficient, Dp 4.8×10−3 m
Diameter of water droplet, d̄ 1.0×10−2 m
Inner radius of the pipeline, R 0.25 m
Density of oil, ρoil 950 kg/m3

Density of water, ρwater 997.1 kg/m3

Density of gel, ρgel 900 kg/m3

Dynamic viscosity of oil, µoil 0.5 Ns/m2

Dynamic viscosity of water, µwater 8.9×10−4 Ns/m2

Dynamic viscosity of gel, µgel 0.82 Ns/m2

Coefficient of thermal expansion for oil, (βT)oil 0.9 m3/kg
Coefficient of thermal expansion for water, (βT)water 256.32×10−6 m3/kg
Coefficient of thermal expansion for gel, (βT)gel 1.2 m3/kg
Coefficient of mass expansion for oil, (βC)oil 0.9 m3/kg
Coefficient of mass expansion for water, (βC)water 1.0 m3/kg
Coefficient of mass expansion for gel, (βC)gel 1.2 m3/kg
Specific heat capacity of waxy crude oil, (Cp)oil 2300 J/kgK
Specific heat capacity of water-in-oil emulsions, (Cp)water 4179.6 J/kgK
Specific heat capacity of gel, (Cp)gel 2900 J/kgK
Thermal conductivity of waxy crude oil, koil 0.1 W/mK
Thermal conductivity of water-in-oil emulsions, kwater 0.608 W/mK
Effective thermal conductivity of gel, kgel 0.25 W/mK

95



CHAPTER FOUR

RESULTS AND DISCUSSION

In this chapter, the effects of varying the various flow parameters such as Reynolds
number, Grashof number, Eckert number, Schmidt number, and Weber number on the
flow variables, including the skin-friction coefficient, rates of heat and mass transfer and
deposit growth and aging rates have been presented. The effects of parametric variations
are presented in Section 4.3, the skin-friction coefficient and rates of heat and mass
transfer are presented in Section 4.4, the rates of deposit growth and aging are presented
in Section 4.5, and the validation of the study results is presented in Section 4.6.

4.1 Profiles of the Flow Variables

This section presents three-dimensional (3D) graphs of the flow variables (i.e., radial
velocity, axial velocity, fluid temperature, total wax concentration, wax precipitation
kinetics, and volume fraction of crude oil) at different positions (r̄, z̄) in the pipeline, at
the last time step, to provide an overview of their profiles. From the refined governing
equations, namely the coupled system of nonlinear partial differential equations (PDEs)
(3.155a)−(3.155g), and the associated boundary conditions (3.158a)−(3.158d) and the
initial conditions (3.159), the following 3D surface plots were obtained from computer
simulations. The interpretation of the 3D surface plots involves the overall shape of the
surface, presence of peaks and/or valleys on the surface, relationship between the
independent variables, and colour gradient and how it corresponds to the values of the
variable.
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Figure 4.1: A 3D Graph of Radial Velocity Profiles Plotted Against Both Radial and
Axial Distances in Waxy Crude Oil Flow Through Pipelines.

Figure 4.1 shows a three-dimensional surface plot of the radial velocity (u) plotted
against radial distance (r̄) and axial distance (z̄). It is observed that the radial velocity
distribution of waxy crude oil within the pipe exhibits a saddle-shaped pattern, indicating
that the radial velocity of the waxy crude oil varies significantly across the pipe's radial
and axial directions. As the radial distance increases from the pipe's center, the radial
velocity decreases, approaching zero near the walls. This suggests that the flow of the oil
is primarily concentrated at the center of the pipe. Along the axial direction, the radial
velocity initially increases, reaching a maximum value at a certain point, implying that
the flow of the oil is accelerated as it moves along the pipe due to the pressure gradient.
Beyond the peak velocity point, the radial velocity decreases, suggesting that the flow is
gradually decelerated due to frictional forces at the pipe walls. The peak represents the
point of maximum radial velocity and flow concentration.
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Figure 4.2: A 3D Graph of Axial Velocity Profiles Plotted Against Both Radial and
Axial Distances in Waxy Crude Oil Flow Through Pipelines.

Figure 4.2 shows a three-dimensional surface plot of the axial velocity (v) plotted against
radial distance (r̄) and axial distance (z̄). It is observed that the axial/streamwise velocity
distribution of the waxy crude oil in the pipeline exhibits a dome-shaped pattern, with a
distinct valley at the center of the pipe and the axial velocity decreases gradually towards
the pipe walls. This suggests that the flow of the oil is primarily concentrated at the
center of the pipe. Along the axial direction, the axial velocity remains relatively
constant, implying that the flow velocity does not vary significantly with the distance
from the pipe inlet. The valley represents the point of minimum axial velocity, indicating
the region where the oil flow is least concentrated and slowest.
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Figure 4.3: A 3D Graph of Temperature Profiles Plotted Against Both Radial and
Axial Distances in Waxy Crude Oil Flow Through Pipelines.

Figure 4.3 shows a three-dimensional surface plot of the temperature (Θ) plotted against
radial distance (r̄) and axial distance (z̄). It is observed that the temperature distribution
in the pipeline exhibits a smooth and curved surface, indicating a relatively uniform
temperature profile. The temperature increases with increasing radial distance from the
pipe center, suggesting that heat transfer from the surrounding environment significantly
influences the temperature distribution. Additionally, the temperature tends to increase
along the pipe length, implying that the oil flow also contributes to the temperature
distribution. The absence of distinct peaks or valleys further supports the observation of
a smooth and continuous temperature distribution. The temperature variation along the
radial distance is more pronounced than along the axial distance, suggesting that heat
transfer from the surrounding environment plays a more significant role in determining
the temperature profile than the oil flow. Moreover, the temperature is higher near the
pipe walls and at the top of the pipe. This is due to the direct contact of the pipe walls
with the surrounding environment, which is typically at a higher temperature than the
waxy crude oil. Additionally, the oil at the top of the pipe is closer to the heat source,
which is typically located at the upstream end of the pipeline. The uniform temperature
distribution suggests that the heat transfer mechanisms, including conduction from the
pipe walls and convective flow of the oil, are effective in maintaining a relatively
constant temperature throughout the pipeline. This is crucial for preventing the
solidification of wax crystals, which can obstruct the flow of oil and lead to pipeline
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failures.

Figure 4.4: A 3D Graph of Total Wax Concentration Profiles Plotted Against Both
Radial and Axial Distances in Waxy Crude Oil Flow Through Pipelines.

Figure 4.4 shows a three-dimensional surface plot of the total wax concentration (ϕ)
plotted against radial distance (r̄) and axial distance (z̄). It is observed that the total
concentration of waxy components exhibits a ridge-shaped pattern, indicating a
non-uniform distribution within the pipe. The total concentration of waxy components in
the crude oil pipeline decreases with increasing radial distance from the pipe's center,
suggesting that waxy components tend to accumulate towards the center of the pipe,
possibly due to lower shear forces in that region. Along the axial direction, the
concentration initially increases, reaching a peak value at a specific axial location, and
then gradually decreases towards the downstream end of the pipeline. This suggests that
the waxy components tend to concentrate in a particular region along the pipe's length,
possibly due to factors such as changes in flow conditions or the presence of nucleation
sites. This peak represents the point of maximum concentration, indicating the region
where the waxy components are most abundant. Thus, the total concentration of waxy
components exhibits a strong dependence on both radial distance and axial position. The
non-uniform distribution could lead to the formation of wax deposits, which can obstruct
the flow of oil and cause pipeline failures.
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Figure 4.5: A 3D Graph of Wax Aggregation Degree Profiles Plotted Against Both
Radial and Axial Distances in Waxy Crude Oil Flow Through Pipelines.

Figure 4.5 shows a three-dimensional surface plot of the wax aggregation degree (αm)
plotted against radial distance (r̄) and axial distance (z̄). It is observed that the
aggregation degree of wax crystals in the gel layer exhibits a relatively flat and slightly
curved surface, indicating a relatively uniform distribution for the aggregation of wax
crystals throughout the pipe. However, there is a slight increase in the aggregation
degree of wax crystals from the center of the pipe toward the pipe walls, implying that
the aggregation of wax crystals is slightly more pronounced near the pipe walls due to
the lower shear forces near the pipe walls, which may promote the formation of larger
wax crystal clusters. Also, the aggregation degree of wax crystals in the gel layer shows
a slight increase from the upstream end of the pipeline toward the downstream end,
possibly due to the gradual release of waxy components from the oil phase and the
formation of nucleation sites along the pipe's length. Overall, the aggregation degree of
wax crystals shows a weak dependence on radial distance and a slightly stronger
dependence on axial position. This suggests that the aggregation process is relatively
consistent throughout the pipe, with localized areas of higher aggregation near the pipe
walls and toward the downstream end of the pipeline.
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Figure 4.6: A 3D Graph of Oil Volume Fraction Profiles Plotted Against Both Radial
and Axial Distances in Waxy Crude Oil Flow Through Pipelines.

Figure 4.6 shows a three-dimensional surface plot of the oil volume fraction (ϕoil) plotted
against radial distance (r̄) and axial distance (z̄). It is observed that the volume fraction
of crude oil exhibits a relatively smooth and slightly curved surface, indicating a
relatively uniform distribution throughout the pipe. The oil volume fraction decreases
toward the pipe walls and along the axial direction of the pipe, suggesting that there is a
slight increase in the proportion of wax deposits and other non-oil components in these
regions. The gradual decrease in crude oil volume fraction from the center of the pipe
toward the walls implies that wax deposits and other non-oil components tend to
accumulate more toward the pipe walls, possibly due to slower flow velocities near the
pipe walls. The slight decrease in crude oil volume fraction from the upstream end of the
pipeline toward the downstream end suggests that the accumulation of wax deposits and
other non-oil components tends to increase with increasing flow distance, possibly due
to the gradual release of waxy components from the oil phase and the formation of
nucleation sites along the pipe's length. The oil volume fraction shows a weak
dependence on radial distance and a slightly stronger dependence on axial position. The
relatively uniform distribution in the volume fraction indicates a consistent distribution
of crude oil and non-oil components throughout the pipe, while the gradual decreases in
volume fraction of crude oil toward the pipe walls and along the axial direction suggest
that wax deposits and other non-oil components tend to accumulate in these regions.
This accumulation could lead to the formation of blockages and flow restrictions, which
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can disrupt the operation of the pipeline.

4.2 Temporal Evolution of the Flow Variables

In this section, the flow variables are plotted against time to analyze their temporal
evolution. The results are presented in the form of graphs, which are carefully examined
and discussed.
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Figure 4.7: Temporal Evolution of the Axial Velocity.

It is observed in Figure 4.7 that the axial velocity profile of waxy crude oil within the
pipeline decreases with an increase in time. This is attributed to the gradual
accumulation of wax crystals on the pipe walls, which constricts the flow path and
reduces the effective cross-sectional area of the pipeline. This constriction effectively
reduces the overall flow velocity, contributing to the decrease in axial velocity. Over
time, detached wax particles may settle towards the bottom of the pipeline, further
reducing the effective flow area and hindering fluid movement. Additionally, the
presence of wax deposit can create a temperature gradient along the pipeline. As wax
crystals accumulate, they absorb heat from the flowing crude oil, causing a temperature
decrease near the wall. This temperature gradient affects the wax precipitation kinetics,
potentially accelerating the deposition process and exacerbating the velocity reduction.
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Figure 4.8: Temporal Evolution of the Temperature.

It is observed in Figure 4.8 that the temperature profile of waxy crude oil within the
pipeline decreases with an increase in time. This behavior is attributed to the interplay
between the heat transfer process and wax deposition. As waxy crude oil flows through
the pipeline, it loses heat to the cooler surroundings through the pipeline walls. This heat
loss is proportional to the temperature difference between the crude oil and the
environment, causing the crude oil to gradually cool down. Furthermore, as wax crystals
deposit on the pipeline walls, they release latent heat of fusion, further cooling the waxy
crude oil. This exothermic process contributes to the overall decrease in temperature
over time.
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Figure 4.9: Temporal Evolution of the Total Concentration of Wax Molecules.

It is observed in Figure 4.9 that the concentration profile of wax molecules in waxy
crude oil within the pipeline increases steadily with an increase in time. This increase is
attributed to the ongoing precipitation of wax crystals as the oil temperature decreases.
As the temperature falls below the wax appearance temperature (WAT), the solubility of
wax molecules in the oil diminishes, causing them to precipitate out of solution and form
wax crystals. These newly formed wax crystals then disperse throughout the oil, leading
to a gradual increase in the overall concentration of wax molecules.
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Figure 4.10: Temporal Evolution of the Aggregation Kinetics of Wax.

It is observed in Figure 4.10 that the aggregation degree profile of wax crystals within
the waxy crude oil pipeline increases steadily with time. This is because as the crude oil
temperature decreases, wax molecules in the oil phase start to form small clusters, known
as wax crystals. This process of wax crystal formation, called nucleation, is continuous
and occurs throughout the pipeline. Once wax crystals are formed, they continue to grow
by attaching to other wax molecules in the oil phase. This growth process is continuous
and contributes to the increase in aggregation degree over time.
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Figure 4.11: Temporal Evolution of the Oil Volume Fraction.

It is observed in Figure 4.11 that the oil volume fraction profile for waxy crude oil within
the pipeline decreases steadily with an increase in time. This reduction is attributed to
the progressive accumulation of wax crystals on the pipe walls. As wax crystals
precipitate and grow, they occupy a larger volume, effectively displacing the oil and
gradually reducing the overall oil volume fraction. This displacement of oil is
particularly pronounced near the pipe walls, where the wax crystals preferentially
accumulate due to the lower temperatures and enhanced shear rates. The reduction in oil
volume fraction can have several implications for the flow behavior of waxy crude oil.
For example, it can lead to the formation of unstable oil-wax interfaces. These unstable
interfaces can become sites for further wax precipitation and deposition, further
contributing to the potential blockage of the pipeline.
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Figure 4.12: Temporal Evolution of the Wax Deposit Thickness.

It is observed in Figure 4.12 that the wax deposition thickness profile for waxy crude
oil within the pipeline increases initially and then plateaus, reaching a steady-state. This
behavior is attributed to the interplay between wax deposition and removal processes.
Initially, as the waxy crude oil flows through the pipeline and its temperature falls below
the wax appearance temperature (WAT), wax molecules precipitate from the solution and
form wax crystals. These crystals accumulate on the pipe walls, leading to a gradual
increase in the wax deposit thickness. The wax deposition rate is initially high due to
the substantial concentration gradient between the bulk oil and the pipe wall, creating a
favorable environment for crystal nucleation and growth. However, as the wax deposit
thickness increases, the wax deposit acts as an insulator, impeding heat transfer from the
bulk oil to the pipe wall. This reduced heat transfer slows down the wax precipitation
kinetics, causing the deposition rate to decline over time. Eventually, a steady-state is
reached when the deposition rate is balanced by the removal rate, resulting in a stable wax
deposit thickness profile.

108



0 0.02 0.04 0.06 0.08 0.1 0.12
0

2

4

6

8

10

10-3

Figure 4.13: Temporal Evolution of the Weight Fraction of Wax in the Gel Layer.

It is observed in Figure 4.13 that the weight fraction of wax crystals in the gel layer for
the flow of waxy crude oil within the pipeline increases with an increase in time and then
reaches a steady-state. This behavior is attributed to the interplay between wax
deposition and gelation processes. Initially, as waxy crude oil flows through the pipeline,
wax crystals precipitate and accumulate on the pipe walls, forming a gel layer. This gel
layer gradually increases in weight fraction as more wax crystals deposit and integrate
into the gel structure. However, as the weight fraction of wax crystals in the gel layer
increases, the growing gel layer enhances the viscosity of the oil near the pipe walls,
hence weakening the shear forces that can disrupt the gel structures. This reduced shear
force decelerates the gelation process and impedes the further incorporation of wax
crystals into the gel layer. Eventually, a steady-state is attained when the rate of wax
deposition and gelation is balanced by the reduced rate of crystal incorporation and gel
growth, resulting in a stable weight fraction of wax crystals in the gel layer.

4.3 Effects of Varying Flow Parameters on the Flow
Variables

This section presents the results of a parametric study aimed at investigating the effects
of various flow parameters on the flow variables. The flow variables in this study are the

109



radial velocity, axial velocity, temperature, species concentration, aggregation degree and
volume fraction of oil. The following two-dimensional graphs are the results obtained by
varying the various flow parameters, one at a time.

4.3.1 Effects of Varying Reynolds Number
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Figure 4.14: Effects of Varying Re on the Radial Velocity Profiles.

It is observed from Figure 4.14 that an increase in Reynolds number leads to an increase in
the radial velocity profiles of waxy crude oil in the pipeline under laminar flow conditions.
The Reynolds number represents the ratio of inertial forces to viscous forces acting on a
fluid element. The observed trend can be attributed to the enhanced shear stress acting
on the fluid. As the Reynolds number increases, the shear stress, which represents the
frictional force between adjacent fluid layers, becomes strong enough to induce mixing
between the layers. This mixing, known as shear dispersion, facilitates the distribution of
wax particles more evenly across the pipe radius. The increased shear stress enables the
waxy molecules to overcome the cohesive forces that tend to aggregate them, allowing
them to slide past each other more easily. Consequently, the tendency of wax particles to
deposit on the pipe walls decreases, and the radial velocity profiles become more uniform
across the radial direction.
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Figure 4.15: Effects of Varying Re on the Axial Velocity Profiles.

It is observed from Figure 4.15 that an increase in Reynolds number results in a decrease
in the axial velocity profiles of waxy crude oil in the pipeline under laminar flow
conditions. This trend can be attributed to the enhanced drag force acting on the fluid.
As the Reynolds number increases, the drag force, which opposes the movement of fluid
particles, also intensifies. The increased drag force causes the fluid particles to
decelerate in the axial direction, leading to a reduction in the average axial velocity.
Additionally, with an increase in Reynolds number, the axial velocity profile becomes
more non-uniform. The slower-moving fluid particles near the oil-gel interface exert a
retarding effect on the faster-moving fluid particles at the pipe centerline, contributing to
the decline in average axial velocity.
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Figure 4.16: Effects of Varying Re on the Temperature Profiles.

It is observed from Figure 4.16 that an increase in Reynolds number leads to an increase in
the temperature profiles of waxy crude oil in the pipeline under laminar flow conditions.
As the Reynolds number increases, the shear stress, which represents the frictional force
between adjacent fluid layers, also intensifies. This increased shear stress causes the waxy
crude oil molecules to rub against each other with greater force, generating heat due to
internal friction. The generated heat is then transferred to the surrounding fluid, resulting
in an overall increase in temperature. Furthermore, with an increase in Reynolds number,
the thickness of the thermal boundary layer, which is a thin layer of fluid adjacent to the oil-
deposit interface where temperature gradients are significant, decreases. This reduction
in boundary layer thickness can be attributed to the increased shear stress, which disrupts
the stagnant layer of fluid near the pipe wall and promotes more efficient heat transfer.
The thinner boundary layer allows heat to dissipate more effectively from the oil-deposit
interface into the bulk fluid, contributing to the overall increase in temperature profiles.
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Figure 4.17: Effects of Varying Re on the Concentration Profiles.

It is observed from Figure 4.17 that an increase in Reynolds number leads to an increase
in the total concentration profiles of wax in crude oil pipelines under laminar flow
conditions. This trend arises because higher Reynolds numbers signify stronger fluid
motion driven by inertial forces relative to viscous forces. As the Reynolds number
increases, the waxy crude oil encounters greater fluid movement in the radial direction,
promoting mixing within the pipeline. This increased flow facilitates the distribution and
dispersion of waxy components more evenly throughout the fluid, resulting in higher
total concentration profiles. In essence, the enhanced fluid motion counteracts the
tendency of waxy components to settle or adhere to the oil-gel interface, leading to a
more uniform distribution of waxy crude oil within the pipeline.
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Figure 4.18: Effects of Varying Re on the Aggregation Degree Profiles.

It is observed from Figure 4.18 that an increase in Reynolds number leads to a decrease
in the aggregation degree profiles of wax crystals in crude oil pipelines under laminar
flow conditions. This trend is attributed to the stronger fluid motion driven by inertial
forces relative to viscous forces at higher Reynolds numbers. When the Reynolds
number increases, the fluid's enhanced radial velocity and turbulence promote better
mixing and dispersion of waxy components. This vigorous flow hinders the waxy
particles from sticking together or forming aggregates, resulting in lower aggregation
degree profiles. Essentially, the enhanced fluid motion disrupts the tendency of waxy
components to clump or adhere to each other, thereby reducing aggregation within the
pipeline.
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Figure 4.19: Effects of Varying Re on the Volume Fraction of Oil Profiles.

It is observed from Figure 4.19 that an increase in Reynolds number leads to a decrease
in the volume fraction occupied by crude oil in the pipeline under laminar flow
conditions. As the Reynolds number increases, shear stress between fluid layers also
increases. This increased shear stress causes the waxy crude oil molecules to deform and
flow more readily, promoting the dispersion of wax crystals within the fluid. The
increased shear stress breaks up the agglomerates of wax crystals, causing them to
become more uniformly dispersed within the fluid, resulting in an overall increase in
wax concentration. This increase in wax concentration leads to a reduction in the volume
fraction of crude oil. Moreover, the increased shear stress also minimizes wax deposition
on the oil-gel interface. As the waxy crystals are more effectively dispersed, they are less
prone to precipitation and adhesion to the pipe wall, reducing the accumulation of wax
deposits. This reduced deposition enables more wax crystals to remain in suspension
within the bulk fluid, further contributing to the reduction in the volume fraction of crude
oil. This phenomenon bears practical implications for the efficient transport and
processing of crude oil in pipelines, as it directly impacts the quality and composition of
the transported fluid.
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4.3.2 Effects of Varying Mass Grashof Number
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Figure 4.20: Effects of Varying GrC on the Radial Velocity Profiles.

It is observed from Figure 4.20 that an increase in the mass Grashof number leads to a
decrease in the radial velocity profiles of waxy crude oil in the pipeline. Mass Grashof
number indicates the ratio of the buoyancy forces acting on the wax crystals to the
viscous hydrodynamic forces. The observed trend arises from the enhanced buoyancy
forces acting on the wax crystals associated with higher mass Grashof number. This
increased buoyancy forces cause the wax crystals to rise towards the oil-gel interface,
forming a layer of wax-enriched fluid with higher viscosity compared to the surrounding
bulk oil, leading to a reduction in its flow rate. Therefore, the velocity boundary layers
adjacent to the oil-gel interface thicken. The thickened boundary layer impedes radial
fluid motion, consequently reducing the radial velocities across the pipe's cross-sectional
area.
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Figure 4.21: Effects of Varying GrC on the Axial Velocity Profiles.

It is observed from Figure 4.21 that an increase in the mass Grashof number leads to an
increase in the axial velocity profiles of waxy crude oil in the pipeline. As the mass
Grashof number increases, the species buoyancy forces become more dominant relative
to viscous hydrodynamic forces. Consequently, the buoyancy of the waxy crude oil
increases, making it more likely to move upward within the pipeline. The upward
movement of waxy crude oil induces a flow of oil in the axial direction of the pipeline.
This axial flow thins the hydrodynamic boundary layer, the layer of oil adjacent to the
pipe wall that is slowed down due to friction. The thinned hydrodynamic boundary layer
facilitates the unrestricted flow of waxy crude oil in the axial direction, resulting in an
increase in the axial velocity profile.
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Figure 4.22: Effects of Varying GrC on the Temperature Profiles.

It is observed from Figure 4.22 that an increase in the mass Grashof number leads to a
decrease in the temperature profiles of waxy crude oil in the pipeline. With increasing
mass Grashof number, buoyant forces acting on the fluid become more dominant than
viscous forces. This means that the warmer, less dense oil at the pipe centerline rises
more readily, while the cooler, denser oil near the oil-gel interface sinks more readily.
This circulation of oil promotes a more uniform distribution of heat throughout the pipe,
consequently leading to a reduced overall temperature profile.
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Figure 4.23: Effects of Varying GrC on the Concentration Profiles.

It is observed from Figure 4.23 that an increase in the mass Grashof number leads to a
decrease in the total concentration profiles of wax molecules in the crude oil pipeline.
The observed trend arises from the increased dominance of species buoyancy forces over
viscous hydrodynamic forces. With increasing mass Grashof number, buoyant forces
propel wax molecules away from the oil-gel interface and towards the bulk of the fluid.
The enhanced natural convection currents within the oil promote a more comprehensive
mixing of wax molecules across the pipeline's cross-section. Consequently, the
concentration of wax molecules near the pipe centerline diminishes, resulting in a
decline in the overall concentration profile.
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Figure 4.24: Effects of Varying GrC on the Aggregation Degree Profiles.

It is observed from Figure 4.24 that an increase in the mass Grashof number leads to
an increase in the aggregation degree profiles of wax crystals on the pipe wall in crude
pipelines. This is because as the mass Grashof number increases, the buoyancy forces
acting on the fluid also intensify. These intensified buoyancy forces drive a more vigorous
convective flow, which promotes mixing and shear stress within the fluid. This increased
turbulence in the flow creates eddies and vortices that promote the dispersion and collision
of wax crystals, increasing the likelihood of their aggregation. Aggregation occurs when
wax crystals collide and adhere to each other, forming larger clusters. These larger clusters
are more likely to deposit on the pipe wall due to their increased inertia and reduced ability
to remain suspended in the flow.
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Figure 4.25: Effects of Varying GrC on the Volume Fraction of Oil Profiles.

It is observed from Figure 4.25 that an increase in the mass Grashof number causes an
increase in the volume fraction occupied by crude oil in the pipeline. The observed trend
is because as the mass Grashof number increases, the buoyancy forces acting on the wax
crystals become stronger, causing them to disperse more effectively within the crude oil.
This dispersion reduces the tendency of wax crystals to accumulate and form deposits
on the pipe wall, thereby increasing the volume fraction of crude oil flowing through the
pipeline.
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4.3.3 Effects of Varying Eckert Number
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Figure 4.26: Effects of Varying Ec on the Temperature Profiles.

It is observed from Figure 4.26 that an increase in the Eckert number leads to an increase
in the temperature profiles of waxy crude oil within the pipeline. This phenomenon is
attributed to the enhanced viscous heating effect. The Eckert number represents the ratio
of viscous dissipation to thermal conduction. As the Eckert number increases, the
viscous shear stresses acting on the oil also increase. This increased shear stress
generates more heat through viscous dissipation, which in turn increases the oil
temperature. The increased temperature enhances Brownian motion of the wax crystals,
causing them to collide more frequently and break down into smaller particles. These
smaller particles are less prone to deposition and contribute to a more uniform
temperature distribution across the pipeline.
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4.3.4 Effects of Varying Weber Number
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Figure 4.27: Effects of Varying We on the Radial Velocity Profiles.
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Figure 4.28: Effects of Varying We on the Axial Velocity Profiles.
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It is observed from Figure 4.27 and Figure 4.28 that an increase in the Weber number
causes a decrease in both radial and axial velocity profiles of waxy crude oil within the
pipeline. The Weber number represents the ratio of inertial forces to surface tension
forces within the fluid. With an increase in the Weber number, inertial forces, which are
responsible for dispersing fluid particles, become relatively more dominant in
comparison to surface tension forces, which act to stick fluid particles together.
Consequently, the fluid's resistance to deformation or breakup due to surface tension
weakens as inertial forces take precedence. This weakening leads to a decrease in the
fluid's capacity to sustain radial and axial velocities, resulting in a decrease in the
velocity profiles.
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Figure 4.29: Effects of Varying We on the Temperature Profiles.

It is observed from Figure 4.29 that an increase in the Weber number leads to a decrease
in the temperature profiles of waxy crude oil within the pipeline. This decrease is
attributed to the enhanced mixing and heat transfer between the oil and the surrounding
environment. With an increase in the Weber number, inertial forces, which are
responsible for fluid mixing and turbulence, become relatively more dominant compared
to surface tension forces, which tend to dampen mixing. This increased dominance of
inertial forces leads to enhanced turbulence and mixing within the oil, promoting heat
transfer from the oil's core to its outer regions. Consequently, the temperature at the
pipeline's centerline, which represents the core of the flow, decreases. The increased
turbulence also results in the formation of a thinner thermal boundary layer near the pipe
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wall. The thermal boundary layer is a region of the fluid where temperature gradients are
significant. A thinner boundary layer indicates more efficient heat transfer between the
oil and the surrounding environment, further contributing to the decrease in temperature
of the bulk oil.
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Figure 4.30: Effects of Varying We on the Concentration Profiles.

It is observed from Figure 4.30 that an increase in Weber number causes a decrease in
the total concentration profiles of waxy crude oil within the pipeline. The observed trend
is attributed to enhanced mixing and shear-induced wax dispersion. With an increase in
the Weber number, inertial forces, which are responsible for fluid mixing and turbulence,
become relatively more dominant compared to surface tension forces, which tend to
promote wax particle aggregation and deposition. The increased turbulence promotes the
mixing of the oil phases, distributing waxy particles more uniformly throughout the
pipeline cross-section. This reduces the concentration of wax particles in the near-wall
region, where deposition is most likely to occur.
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Figure 4.31: Effects of Varying We on the Aggregation Degree Profiles.

It is observed from Figure 4.31 that an increase in the Weber number causes an increase in
the aggregation degree profiles of wax crystals within crude oil pipeline. This increase is
attributed to the weakening of surface tension forces relative to inertial forces as theWeber
number increases. This weakening allows wax crystals to overcome surface tension and
collide with each other more frequently. Consequently, wax crystals are more likely to
aggregate or stick together and form larger clusters, leading to higher aggregation degree
profiles near the oil-gel interface.
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Figure 4.32: Effects of Varying We on the Volume Fraction of Oil.

It is evident fromFigure 4.32 that an increase in theWeber number causes an increase in the
volume fraction occupied by crude oil within the pipeline. The observed trend is because
higher Weber numbers represent stronger inertial forces relative to surface tension forces.
As a result, the fluid is less constrained by surface tension and has a greater tendency to
flow as a continuous, bulk fluid rather than forming stable droplets. This leads to a higher
volume fraction occupied by crude oil within the pipeline because the fluid particles are
less likely to adhere to the walls and has higher tendency of occupying a larger portion of
the pipeline's internal volume.

4.4 Skin-Friction Coefficient and Rates of Heat andMass
Transfer

The quantities of practical interest in this study are the skin-friction coefficient and the
rates of heat andmass transfer. The parametersRe,GrT,GrC,Ec, Sc, andWe are varied on
the local skin-friction coefficient (CfRe), local Nusselt number (Nuz) and local Sherwood
number (Shz) and their numerical values are presented in Table 4.1.
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Table 4.1: Skin-friction Coefficient and Rates of Heat andMass Transfer for Various
Values of the Parameters Re, GrT, GrC, Ec, Sc, and We

Re GrT GrC Ec Sc We CfRe Nuz Shz

2.24 5 5 1.2 1.5 1.0 0.1230 1.9907 1.3916
3.24 5 5 1.2 1.5 1.0 0.1874 1.9912 1.3206
4.24 5 5 1.2 1.5 1.0 0.2926 1.9911 1.2494
2.24 10 5 1.2 1.5 1.0 0.1246 1.9907 1.3926
2.24 15 5 1.2 1.5 1.0 0.1262 1.9907 1.3935
2.24 20 5 1.2 1.5 1.0 0.1277 1.9907 1.3944
2.24 5 10 1.2 1.5 1.0 0.2038 1.9915 1.4182
2.24 5 15 1.2 1.5 1.0 0.2793 1.9921 1.4438
2.24 5 20 1.2 1.5 1.0 0.3495 1.9925 1.4683
2.24 5 5 2.7 1.5 1.0 0.1233 1.9890 1.3922
2.24 5 5 4.2 1.5 1.0 0.1236 1.9874 1.3928
2.24 5 5 5.7 1.5 1.0 0.1238 1.9857 1.3933
2.24 5 5 1.2 3.0 1.0 0.1098 1.9906 1.4851
2.24 5 5 1.2 4.5 1.0 0.1055 1.9905 1.5162
2.24 5 5 1.2 6.0 1.0 0.1033 1.9905 1.5318
2.24 5 5 1.2 1.5 1.5 0.1113 1.9919 1.5007
2.24 5 5 1.2 1.5 2.0 0.1047 1.9925 1.5614
2.24 5 5 1.2 1.5 2.5 0.1004 1.9929 1.6002

From the table, the following observations are noted:

i) An increase in the Reynolds number (Re) increases the skin friction coefficient but
leads to a decrease in the Nusselt number and Sherwood number. This
phenomenon is a consequence of the relationship between wall shear stress and the
velocity gradient. As Re rises, the velocity profile increases, resulting in higher
wall shear stress and, consequently, an elevated skin friction coefficient.
Additionally, the increase in Re causes the thermal boundary layer to thicken,
leading to a decreased Nusselt number. The Sherwood number, on the other hand,
diminishes because higher Reynolds numbers cause a thickening of the
concentration boundary layer, reducing the rate of species transport within it.

ii) An increase in the thermal Grashof number (GrT) increases the skin friction
coefficient and Sherwood number, but has no effect on the Nusselt number. The
rise in the skin friction coefficient is attributed to the thermal Grashof number
causing an increase in velocity, which subsequently thins the velocity boundary
layer. Conversely, the elevation in the Sherwood number is a consequence of the
thermal Grashof number leading to a reduction in the thickness of the
concentration boundary layer, thereby increasing the rate of species transport
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within this layer. The Nusselt number, however, remains unaffected.

iii) An increase in the mass Grashof number (GrC) results in an increase in the skin
friction coefficient, Nusselt number, and Sherwood number. This observed pattern
is because the higher values of the mass Grashof number lead to the thinning of the
velocity, thermal, and concentration boundary layers. This, in turn, results in a
higher rate of transportation within these boundary layers, accounting for the
increased values of the skin friction coefficient, Nusselt number, and Sherwood
number.

iv) An increase in the Eckert number (Ec) causes an increase in the skin friction
coefficient and Sherwood number but decreases the Nusselt number. This pattern
arises from the fact that higher values of the Eckert number result in an increased
fluid velocity, subsequently leading to higher wall shear stress. As the Eckert
number rises, it also contributes to the thickening of the thermal boundary layer,
which reduces the heat transfer rate at the pipeline wall, consequently lowering the
Nusselt number. However, this thickening of the thermal boundary layer enhances
the rate of species transport, leading to an increase in the Sherwood number.

v) An increase in the Schmidt number (Sc) causes a decrease in the skin friction
coefficient and Nusselt number but increases the Sherwood number. This
phenomenon is attributed to the influence of the Schmidt number on fluid
behavior. As Sc increases, it decelerates the axial velocity of fluid particles,
causing the velocity boundary layer to thicken, which in turn reduces the motion of
fluid particles and leads to a decrease in the skin friction coefficient. Additionally,
the thermal boundary layer thickness increases with higher Sc, resulting in reduced
heat transfer at the pipeline wall and a lower Nusselt number. In contrast, the
concentration boundary layer thickness decreases with increasing Sc, leading to an
enhanced rate of species transportation and an increase in the Sherwood number.

vi) An increase in the Weber number (We) decreases the skin friction coefficient but it
increases the Nusselt number and Sherwood number. This trend can be attributed
to the influence of the Weber number on the behavior of the fluid. An increase in
We results in the deceleration of fluid particle velocities, leading to the thickening
of the velocity boundary layer, which subsequently reduces particle motion and
causes a decrease in the skin friction coefficient. Moreover, an increase in We
causes the thermal boundary layer thickness to decrease, resulting in a higher rate
of heat transfer. The Sherwood number experiences an increase because higher
values of the Weber number lead to a reduction in concentration boundary layer
thickness, enhancing the rate of species transport.
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4.5 Deposit Growth and Aging

The data about deposit thickness and weight fraction of wax in the deposit extracted from
the computer simulations are also plotted against time, while varying the various flow
parameters. Moreover, the values of the deposit growth and aging rates are presented in
Table 4.2.

4.5.1 Effects of Flow Parameters on Deposit Thickness
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Figure 4.33: Effects of Varying Re on the Deposit Thickness.

It is observed in Figure 4.33 that an increase in the Reynolds number causes an increase
in the wax deposit thickness for flow of waxy crude oil in a pipeline within the laminar
flow regime. Increasing the Reynolds number implies that the inertial forces becomemore
dominant than the viscous forces. This observed trend is attributed to the increase in shear
stress at the oil-gel interface as the Reynolds number increases. This shear stress enhances
the rate of diffusion of wax molecules from the bulk of the oil to the oil-gel interface. This
enhancement occurs because the shear stress causes thewaxmolecules tomove faster from
the bulk of the crude oil to the oil-gel interface, which then leads to their precipitation and
deposition on the pipe inner wall, consequently increasing the deposit thickness.
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Figure 4.34: Effects of Varying GrC on the Deposit Thickness.

It is observed in Figure 4.34 that an increase in the mass Grashof number causes a
decrease in the thickness of wax deposit profiles for flow of waxy crude oil in a pipeline.
An increase in the mass Grashof number signifies that buoyancy forces, which arise
from density differences due to temperature variations, become more dominant than
viscous forces, which govern the flow behavior in laminar conditions in the pipeline.
The enhanced buoyancy forces lead to a more buoyant flow pattern, disrupting the
diffusion of wax molecules from the bulk oil towards the pipe wall. This diffusion
process is crucial for wax deposition to occur. The increased turbulence caused by
buoyancy forces can re-entrain wax molecules that have already deposited on the pipe
wall, preventing them from forming a thick deposit layer. The dominant buoyancy
forces promote a stratified flow pattern, where the oil with the highest wax concentration
is located closer to the pipe wall. This reduces the concentration gradient driving wax
diffusion, further hindering deposition. The combined effects of disrupted diffusion, wax
re-entrainment, and stratified flow lead to a decrease in the rate of wax deposition,
resulting in thinner deposit profiles.
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Figure 4.35: Effects of Varying We on the Deposit Thickness.

It is observed in Figure 4.35 that an increase in the Weber number causes a decrease in
the thickness of wax deposit profiles for flow of waxy crude oil in a pipeline. Increasing
the Weber number implies that inertial forces, which represent the flow stresses, become
more dominant than surface tension forces, which represent the cohesive forces between
wax crystals. Thus, the observed trend is attributed to the interplay between flow stresses
and wax deposition processes. As the Weber number increases, the flow stresses near the
pipe wall intensify, leading to a more dispersed distribution of wax crystals throughout
the flow cross-section. This dispersion diminishes the concentration gradient between the
bulk oil and the pipe wall, making it more challenging for wax crystals to adhere to the
pipe surface. Furthermore, the elevated flow stresses can act to remove wax crystals that
have already deposited on the pipe walls. This mechanical removal process contributes to
limiting the overall thickness of the wax deposit.
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4.5.2 Effects of Flow Parameters on Weight Fraction of Wax in the
Deposit
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Figure 4.36: Effects of Varying Re on the Weight Fraction of Wax in Oil.

It is observed from Figure 4.36 that an increase in Reynolds number results in a decrease
in the weight fraction of wax in the deposited layer. The observed trend is because the
exposure of the deposited layer to a range of temperatures and shear stress triggers
physical and chemical processes on the wax deposit, which alters its molecular structure
and properties. The thermal gradient across the deposit may result in an internal mass
flux which yields a continuous increase in the wax content of the deposited layer. Thus it
leads to the hardening of the deposit as time elapses, a process called aging of the
deposit.
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Figure 4.37: Effects of Varying Sc on the Weight Fraction of Wax in Oil.

It is observed from Figure 4.37 that an increase in Schmidt number results in a decrease
in the weight fraction of wax in the deposited layer. The observed trend is because the
Schmidt number decreases the deposit thickness. Hence, the thinner deposit layer
increases the temperature gradient in the deposited layer, which increases the diffusion
flux in the deposited layer. Thus it leads to the continuous diffusion of wax molecules
into the deposited layer, increasing the wax content in the deposited layer.
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4.5.3 Rates of Deposit Growth and Aging

Table 4.2: Rates of Deposit Growth and Aging for Various Values of the Parameters
Re, GrT, GrC, Ec, Sc, and We

Re GrT GrC Ec Sc We Growth Rate aging Rate
2.24 5 5 1.2 1.5 1.0 2.067×10−5 4.990×10−4

3.24 5 5 1.2 1.5 1.0 1.190×10−5 3.174×10−4

4.24 5 5 1.2 1.5 1.0 8.139×10−6 2.245×10−4

2.24 10 5 1.2 1.5 1.0 2.067×10−5 4.997×10−4

2.24 15 5 1.2 1.5 1.0 2.067×10−5 5.005×10−4

2.24 20 5 1.2 1.5 1.0 2.068×10−5 5.012×10−4

2.24 5 10 1.2 1.5 1.0 2.069×10−5 5.221×10−4

2.24 5 15 1.2 1.5 1.0 2.070×10−5 5.467×10−4

2.24 5 20 1.2 1.5 1.0 2.071×10−5 5.727×10−4

2.24 5 5 2.7 1.5 1.0 2.065×10−5 4.990×10−4

2.24 5 5 4.2 1.5 1.0 2.064×10−5 4.991×10−4

2.24 5 5 5.7 1.5 1.0 2.062×10−5 4.991×10−4

2.24 5 5 1.2 3.0 1.0 7.572×10−6 2.962×10−4

2.24 5 5 1.2 4.5 1.0 4.443×10−6 2.114×10−4

2.24 5 5 1.2 6.0 1.0 3.108×10−6 1.650×10−4

2.24 5 5 1.2 1.5 1.5 2.085×10−5 5.960×10−4

2.24 5 5 1.2 1.5 2.0 2.097×10−5 6.707×10−4

2.24 5 5 1.2 1.5 2.5 2.105×10−5 7.300×10−4

It is observed from Table 4.2 that both the Reynolds number and Schmidt number
significantly affect the wax deposit growth and aging rates. As the wax flow progresses,
the deposit growth and aging rates decrease due to an increase in the interfacial
temperature (because the oil-deposit interface moves away from the pipeline wall) and to
the onset of deposit removal.

4.5.4 Prediction of Wax Deposit Thickness and Weight Fraction 
of Wax in the Gel Layer

This study proposes simplified prediction models for the deposit thickness and weight
fraction of wax in the gel layer using the Lagrange interpolation technique. Applying the
MATLAB® Basic Fitting toolkit to Figures 4.12 and 4.13, we obtain the following
polynomials:

δ(t) = −
(
1.529 × 10−6

)
t6 +

(
5.746 × 10−5

)
t5 −

(
8.772 × 10−4

)
t4

+
(
7.095 × 10−3

)
t3 −

(
3.388 × 10−2

)
t2 +

(
1.054 × 10−1

)
t (4.1)
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and

x(t) = −
(
1.9 × 106

)
t4 +

(
6.6 × 104

)
t3 −

(
8.3 × 102

)
t2 + 4.6t (4.2)

Equation (4.1) is used to estimate the deposit thickness, while equation (4.2) is used to
estimate the weight fraction of wax in the gel layer at any time t.

The deposit growth and aging rates are obtained by differentiating equations (4.1) and
(4.2) with respect to time t, respectively. Accurate predictions of the rates of wax deposit
growth and aging in the crude oil pipeline will lead to an optimal pigging frequency,
informing geochemists and mechanical engineers on the appropriate time to carry out the
pigging operations. This will ensure continuous transport of waxy crude oil with
minimal downtime, thus minimizing production losses and capital investments.

4.6 Validation of the Results

The results of this study are validated against experimental data from Magnini & Matar
(2019). The authors conducted a fundamental study of wax deposition in crude oil flows in
a pipeline via interface-resolved numerical simulations. The wax deposit thickness profile
is compared in both studies, as shown in Figures 4.38(a) and 4.38(b). It is observed that
the deposit thickness profiles follow a similar trend as time increases.

(a) Average Thickness of the Wax Deposit
(Magnini & Matar, 2019)
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Figure 4.38: Graphs of Deposit Thickness in Magnini & Matar (2019) and in the
Present Study.
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The observed trends in deposit thickness mean that our model successfully captures the
key aspects of wax deposition in pipeline flows. While there might be slight quantitative
differences between the profiles in Figures 4.38(b) and 4.38(a), the qualitative agreement
over time validates the applicability of our model to real-world scenarios.

Further validation of the the results from this study is achieved by comparing the time
evolution of temperature against experimental data from Ying et al. (2019), who
conducted a phase-change heat transfer analysis of a shutdown overhead pipeline. The
fluid temperature profile is compared in both studies, as shown in 4.39(a) and 4.39(b). It
is observed that the temperature profiles exhibit a similar trend as time progresses.

(a) Temperature drop curves at some typical
positions in the pipe (Ying et al., 2019)
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Figure 4.39: Graphs of Temperature Profile in Ying et al. (2019) and in the Present
Study.

The observed trends in temperature profile mean that our model accurately predicts the
transient thermal behavior of the fluid during pipeline cool-down. While there might be
deviations in the absolute temperature values between Figures 4.39(b) and 4.39(a), the
qualitative agreement in the cooling trend strengthens themodel's credibility for real-world
pipeline operations.

The validations presented in Figure 4.38 and Figure 4.39 demonstrate the model's ability
to accurately predict wax deposition under various flow conditions. The next chapter
presents the conclusions drawn from this study and recommendations of the research
findings to the consumers and future researchers.
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CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

The conclusions and recommendations based on the study of wax deposition from
multiphase flow in field-scale crude oil pipeline transport systems; are presented in this
chapter.

5.1 Conclusions

A mathematical model has been developed to predict wax deposition and aging in
field-scale crude oil pipeline transport systems, utilizing the VOF and PSP approaches.
In this model, waxy crude oil and the wax deposit are treated as two immiscible phases
separated by a smooth interface. The wax concentration is modeled by considering a
practical fluid model, which accounts for two forms of wax: dissolved wax and
crystallized wax (or precipitated wax). Molecular diffusion and shear dispersion are
considered as the primary deposition mechanisms. The model involves the numerical
solution of coupled mass, momentum, energy, and species transport equations, along
with equations for wax aggregation degree, conservation of volume fraction, deposit
growth, and aging in the presence of water-in-oil emulsions.

The profiles of the flow variables are determined through computer simulations. The study
investigates the impact of various flow parameters, such as Reynolds number, Grashof
number, Eckert number, Schmidt number, and Weber number, on the flow variables, as
well as the skin-friction coefficient and the rates of heat and mass transfer. Additionally,
the study calculates and predicts the rates of wax deposition on the inner wall of crude
oil pipelines and the rate of aging of the gel layer. From this research, the following
conclusions have been drawn:

1. The deposit thickness steadily increases during the initial phases of wax deposition.
Afterward, it reaches a steady-state value of 0.2 and maintains that value over time.

2. Theweight fraction of wax in the gel layer steadily increases during the initial phases
of wax deposition. Afterward, it reaches a steady-state value of 0.012 and maintains
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that value over time.

3. The deposit thickness increases by at most 2.5% with increasing Reynolds number
from 2.2361 to 3.1361. However, it decreases by at most 2.0% with increasing
mass Grashof number from 5 to 11. Additionally, it decreases by at most 7.0% with
increasing Weber number from 1.0 to 2.5.

4. Theweight fraction ofwax in the gel layer decreases by atmost 0.3%with increasing
Reynolds number from 2.2361 to 3.1361, and by atmost 0.25%with increasingmass
Grashof number from 1.5 to 6.0.

5. The aggregation of wax crystals in the pipeline decreases by at most 2.5% with
increasing Reynolds number from 2.2361 to 3.1361. However, it increases by at
most 3.4% with increasing mass Grashof number from 5 to 11. Additionally, it
increases by at most 4.8% with increasing Weber number from 1.0 to 2.5.

6. The total concentration of waxy components in the pipeline increases by at most
10.0% with increasing Reynolds number from 2.2361 to 3.1361. However, it
decreases by at most 8.0% with increasing mass Grashof number from 5 to 11.
Additionally, it decreases by at most 20% with increasing Weber number from 1.0
to 2.5.

7. The fraction of the volume occupied by waxy crude oil in the pipeline decreases by
up to 10.0% with increasing Reynolds number from 2.2361 to 3.1361. However, it
increases by up to 9.0% with increasing mass Grashof number from 5 to 11, and by
up to 25% with increasing Weber number from 1.0 to 2.5.

8. The temperature of waxy crude oil in the pipeline increases by at most 0.001% with
increasing Reynolds number from 2.2361 to 3.1361, and by at most 0.002% with
increasing Eckert number from 1.2 to 1.5. However, it decreases by atmost 0.0034%
with increasing mass Grashof number from 5 to 11. Additionally, it decreases by at
most 1.3% with increasing Weber number from 1.0 to 2.5.

9. The radial velocity of waxy crude oil in the pipeline increases by at most 1.0% with
increasing Reynolds number from 2.2361 to 3.1361. However, it decreases by at
most 1.8% with increasing mass Grashof number from 5 to 11. Additionally, it
decreases by at most 1.3% with increasing Weber number from 1.0 to 2.5.

10. The axial/streamwse velocity of waxy crude oil in the pipeline decreases by at most
0.7%with increasing Reynolds number from 2.2361 to 3.1361, and by at most 1.2%
with increasing Weber number from 1.0 to 2.5. However, it increases by at most
3.0% with increasing mass Grashof number from 5 to 11.
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11. Skin friction coefficient increases from 0.1230 to 0.4022 with increasing Reynolds
number from 2.2361 to 5.2361, and from 0.1230 to 0.1277 with increasing mass
Grashof number from 5 to 20. It also increases from 0.1230 to 0.1334 with
increasing Weber number from 1.0 to 2.5.

12. The Nusselt number increases from 1.9907 to 4.9834 with increasing Reynolds
number from 2.2361 to 5.2361 and from 1.9907 to 2.0225 with increasing mass
Grashof number from 5 to 20. It also increases from 1.9907 to 2.0434 with
increasing Weber number from 1.0 to 2.5.

13. The Sherwood number increases from 1.3916 to 7.2234 with increasing mass
Grashof number from 5 to 20, and from 1.3916 to 1.6002 with increasing Weber
number from 1.0 to 2.5.

14. The proposed simplified wax deposition models, given by equations (4.1) and (4.2),
can be used to predict the deposit growth and aging at any time, respectively, in
field-scale waxy crude oil pipeline transport systems.

Hence, varying values of the flow parameters in this study can be used to control the flow
variables, such as velocity, wax concentration, wax aggregation degree, and oil volume
fraction, quite effectively in waxy crude oil transportation pipelines. Moreover, this study
asserts that the flow parameters have a substantial effect on engineering parameters of
concern, such as the coefficient of skin friction and the rates of heat and mass transfer at
the pipeline wall.

The study results have been validated versus experimental wax deposition data available
from the literature. The insight gained via the numerical simulations has been utilized to
develop a prediction method to estimate the rates of wax deposition and aging.

5.2 Recommendations

This study is a significant contribution to the studies on unsteady multiphase flows in
pipelines in the presence of water-in-oil emulsions. To reduce the deposition of wax in the
pipeline, the following are the recommendations made from this study to the policymakers
and future researchers.
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5.2.1 Recommendations to the Policymakers

Policymakers are all the people responsible for formulating or amending policies. They
often have the influence and opportunity to use research findings to alter or develop
policies, working hand-in-hand with the researchers. From the research findings, the
following recommendations are made to the designers of crude oil pipelines when
developing equipment or systems in the petroleum industry; used to transport petroleum
products:

1. Industry standards for pipeline design and operation should be established,
requiring the use of multiphase flow models and wax deposition prediction tools to
optimize flow parameters and minimize deposition risks. This research
demonstrates the efficacy of utilizing multiphase flow models and wax deposition
prediction tools. We recommend incorporating their use into standardized pipeline
design and operation protocols to ensure preventative measures are implemented
across the industry.

2. Appropriate insulation should be used to prevent heat loss through conduction. This
will ensure that the temperature of the waxy crude oil is maintained above the wax-
appearance temperature (WAT), hence preventing precipitation and deposition of
wax in the pipeline.

Furthermore, the main users of this study are the pipeline operators, mechanical engineers,
and geochemists. Thus, it is recommended to the consumers of the research findings that:

1. The proposed wax deposition model should be adopted to determine the thickness
of wax deposits in the crude oil pipeline. This will help achieve optimal pigging
frequency, which in turnwill inform policy decisions on the appropriate time to carry
out pigging operations. This will further ensure continuous transport of waxy crude
oil with very minimal production-downtime, thus minimizing losses in production
and capital investment.

2. Pipeline operators should find a balance between inlet velocity, pressure, and flow
parameters to maximize discharge and minimize deposition while considering the
impact on downstream equipment performance and energy consumption.

3. Utilize data on rates of heat and mass transfer, as well as friction between crude oil
and the pipe to determine the material and modifications for pipe walls that
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conserve energy and prevent/control deposition and corrosion. This will ensure
that the temperature of the waxy crude oil is maintained above the WAT, hence
preventing precipitation and deposition of wax.

Finally, the following are the recommendations to the governments (both national and
international) and the non-governmental organizations (NGOs):

1. Mandate pipeline operators to publicly report annual economic losses due to wax
deposition shutdowns, cleaning, and reduced flow rates. This data can inform
policy decisions regarding industry-wide cost burdens and potential savings
through preventative measures. Requiring public reporting of the pipeline losses
would highlight the economic impact and incentivize investment in mitigation
strategies.

2. Allocate funding for research and development of environmentally friendly wax
control technologies, such as biodegradable pour point depressants or bio-inspired
surface modifications. This study calls for environmentally friendly alternatives
to traditional wax control methods. We urge policymakers to invest in research and
development of such technologies tominimize environmental impact while ensuring
pipeline efficiency.

5.2.2 Recommendations for Future Research Studies

The knowledge gathered from this study can motivate the researchers in this field to study
this work with interest. Based on the assumptions of this study, it is recommended that
future researchers who aim to extend this work should:

1. Study non-axisymmetric flow of waxy crude oil with particle slip at the solid-liquid
boundary.

2. Study oil-water-gas three-phase flow in waxy crude oil pipeline transport systems.

3. Study the effect of flow geometry on wax deposition process, considering curved
pipes.

4. Optimize flow parameters in the model equations utilizing real-world pipeline
operation data and least-squares curve fitting techniques to achieve desired results
in field-scale crude oil pipeline transport systems.
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5. Investigate the effects of wax inhibitors, corrosion, and other solid materials such
as sediments on wax deposition in turbulent flow regimes.
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Appendix II: Pseudo-Single Phase Approach

Using the Pseudo-Single Phase (PSP) approach presented in detail in (Zheng et al., 2017),
the water-in-oil emulsion is treated as a single pseudo-fluid whose physical properties
are calculated by averaging the corresponding physical properties of oil, water and gel as
follows:

1. Volume-based averaging method:

ρmix = ϕoilρoil + ϕwaterρwater + ϕgelρgel

2. Weight-based averaging method:

(Cp)mix =
ϕoilρoil (Cp)oil + ϕwaterρwater (Cp)water + ϕgelρgel (Cp)gel

ρmix

3. Maxwell–Garnett correlation:

kmix = (kwater + kgel) + 2koil + 2ϕwater (kwater − koil) + 2ϕgel (kgel − koil)
(kwater + kgel) + 2koil − ϕwater (kwater − koil) − ϕgel (kgel − koil)

koil
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Appendix III: Standard Vector Operations in Cylindrical
Coordinates

The following standard vector operations presented in (Leal, 2007) are used in this study
to convert the governing equations to cylindrical coordinates.

Gradient operator: ∇⃗ψ = ∂ψ

∂r
r̂ + 1

r

∂ψ

∂θ
Θ̂ + ∂ψ

∂z
k̂,

Divergence operator: ∇⃗ · A⃗ = 1
r

∂

∂r
(rAr) + 1

r

∂Aθ

∂θ
+ ∂Az

∂z
,

Laplace operator: ∇2ψ = ∇⃗ ·
(
∇⃗ψ

)
= 1
r

∂

∂r

(
r
∂ψ

∂r

)
+ 1
r2
∂2ψ

∂θ2 + ∂2ψ

∂z2 .

Curl operator: ∇⃗ × A⃗ = 1
r

∣∣∣∣∣∣∣∣∣∣
r̂ rθ̂ k̂
∂

∂r

∂

∂θ

∂

∂z
Ar rAθ Az

∣∣∣∣∣∣∣∣∣∣
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Appendix IV: Derivation of Michigan Model for Deposit
Aging

Assuming that the thickness (δ(t)) of the gel layer is uniform, the effective radius of the
pipeline is given as

Reff(t) = R − δ(t) (5.1)

The mass balance relationship of the molecular diffusion process is given in (Sun et al.,
2020) as:

d

dt

(
ρgelπ

[
R2 −R2

eff(t)
]
x
)

= 2πReffkm [C − Cd(Tint)] . (5.2)

The term km [C − Cd(Tint)] represents the wax molecule pair flow of crude oil to the oil-
gel interface. The weight fraction (x) of solid wax in the gel layer is defined in (Ramirez-
Jaramillo et al., 2004) as:

x = mass of wax in the gel layer
mass of wax in the gel layer + mass of oil trapped in the gel layer

(5.3)

The effective radius Reff and weight fraction (x) are both functions of operation time t.
Thus, expanding the derivatives involved in equation (5.2), we get

ρgelπ
[
R2 −R2

eff(t)
] dx
dt

− 2ρgelπReffx
dReff

dt
= 2πReffkm [C − Cd(Tint)] . (5.4)

Dividing equation (5.4) by 2ρgelπReff yields

[R2 −R2
eff(t)]

2Reff

dx

dt
− x

dReff

dt
= km [C − Cd(Tint)]

ρgel
. (5.5)

Eliminating Reff between equations (5.1) and (5.5) yields

δ (2R − δ)
2 (R − δ)

dx

dt
+ x

dδ

dt
= km [C − Cd(Tint)]

ρgel
. (5.6)

Due to the existence of the temperature gradient between the oil-gel interface and the inner
wall of the pipeline, a concentration gradient of wax molecules exists inside the gel layer.
Therefore, some wax molecules continue to diffuse from the oil-gel interface into the gel
layer, leading to a gradual increase in the wax content inside the gel layer. The increase in
the weight fraction of wax in the gel layer with time is called deposit aging (or hardening
of the gel layer). According to mass balance, the process of formation of the gel layer can
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be expressed mathematically as (Sun et al., 2020):

−2ρgelπxReff
dReff

dt
= 2πReffkm [C − Cd(Tint)] − 2πReff

−De
∂Cd

∂r

∣∣∣∣∣
r=Reff

 . (5.7)

The effective diffusivity (De) of wax inside the gel layer is calculated by the Cussler
correlation given in (Cussler et al., 1988; Gupta & Sircar, 2017) as:

De = Dd

1 + α2
avg

(
x2

1−x

) = f(x)Dd. (5.8)

The function f(x) is the coefficient describing diffusion in a porous network (i.e., the gel
layer) and is given as:

f(x) = 1 − x

α2
avgx

2 − x+ 1
, (5.9)

where αavg denotes the average aspect ratio of the wax crystals (or the wax crystal shape
factor) and can be obtained by observing the wax crystal form of the gel layer. It is given
in (Sun et al., 2020) as:

αavg = −0.323 lnQ+ 1.684. (5.10)

where Q is the volumetric flow rate of the mixture fluid. Substituting equation (5.8) into
equation (5.7) yields

−2ρgelπxReff
dReff

dt
= 2πReffkm [C − Cd(Tint)] + 2πRefff(x)Dd

(
∂Cd

∂r

)
r=Reff

. (5.11)

Dividing equation (5.11) by 2πReffρgel yields

−xdReff

dt
= km [C − Cd(Tint)]

ρgel
+ f(x)

ρgel
Dd

(
∂Cd

∂r

)
r=Reff

. (5.12)

Eliminating Reff between equations (5.1) and (5.12) yields

x
dδ

dt
= km [C − Cd(Tint)]

ρgel
+ f(x)

ρgel
Dd

(
∂Cd

∂r

)
r=Reff

. (5.13)

Using chain rule of differentiation for derivatives involving Cd, equation (5.13) becomes:

x
dδ

dt
= km [C − Cd(Tint)]

ρgel
+ f(x)

ρgel
Dd

(
dCd

dT

∂T

∂r

)
r=Reff

. (5.14)
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Eliminating
dδ

dt
between equations (5.6) and (5.14) and making

dx

dt
the subject yields

dx

dt
= − 2 (R − δ)

δ (2R − δ)
f(x)
ρgel

Dd

(
dCd

dT

∂T

∂r

)
r=Reff

. (5.15)

Equation (5.15) is the Michigan model presented in (Gupta & Sircar, 2017) as the specific
equation governing the aging of the gel layer for water-oil two-phase flow in crude oil
transportation pipeline.
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Appendix V: Computer Simulations

This section presents the MATLAB® code for the bivariate Chebyshev spectral collocation
method presented in subsection 3.11.2 for the spatial discretization coupled with Adams-
Bashforth and Crank-Nicolson time discretization. The Chebyshev differentiation matrix
is computed by the M-file cheb.m, which is taken from Trefethen (2000) with permission.

Listing 5.1: FDM_Spectral_Collocation_PhD_Oketch.m
1 function FDM_Spectral_Collocation_PhD_Oketch()
2 clear ; % Erases all the variables in the computer memory to create more space
3 clc ; % Clears the command window
4 clf ; % Clears the figure handles
5 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 % INPUT
7 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 M = 19; % No. of collocation points in r̂
9 N = 15; % No. of collocation points in ẑ
10 Tfinal = 2000; % No. of time steps
11 nProfiles = 4; % No. of profiles in each figure
12 increment = 1; % Common difference for the varied parameter
13 tolerance = 1e−6; % Prescribed error tolerance
14 %%
15 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 % Grid setup
17 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18 lambda = 1−0.20; beta0 = 1e−5; beta1 = 0.90; % beta0−>0, beta1−>1
19 r0 = 0; rend = lambda; dr = (rend−r0)/M;
20 z0 = 0; zend = 10; dz = (zend−z0)/N;
21 dt = (1e−3)*(1/2)*(dr^2+dz^2); % stability condition
22 %%
23 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 % Declaration and Initialization
25 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 nDependentVars = 6; % No. of dependent variables in the numerical schemes
27 color = { 'b−', ' k: ' , ' g−−','r−. ' , 'm', ' c ' }; % Colours of the profiles
28 legendMatrix = { ' null ' }; % Stores the legends of each profile
29 solMatrix = zeros (nDependentVars*(M+1),(N+1),nProfiles) ; % matrix to store the solutions
30 rIndex = floor (0.78*(M+1)); % At the effective pipeline radius i .e ., at r = Reff
31 zIndex = floor (0.50*(N+1)); % At the center of computational domain
32 %%
33 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
34 % Flow parameters
35 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36 Ec = 1.2; % Eckert number
37 Grt = 5; % Thermal Grashof num1ber
38 Grc = Grt; % Mass Grashof number
39 Da = 1e+4; % Darcy number
40 Pr = 6.9; % Prandtl number
41 Re = sqrt (Grt) ; % Reynolds number
42 Pe = Re*Pr; % Peclet number
43 Ri = Grt /(Re^2);% Richardson number, [ for mixed convection , Ri=1]
44 Sc = 1.5; % Schmidt number
45 St = 1.5; % Stanton number
46 We = 1.0; % Weber number
47 alpha = pi /12; % Angle of inclination of the pipeline to the horizontal
48 %%
49 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
50 % Physical Properties
51 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
52 oAPI = 18; % API gravity of waxy crude oil
53 Cwall = 910; % Concentration of wax at the pipeline wall , [kg/m^3]
54 Cinf = 905; % Equillibrium concentration of wax in crude oil , [kg/m^3]
55 R = 0.25; % Inner Radius of the pipeline , [m]
56 Dp = 4.8e−3; % Shear dispersion coefficient , [m]
57 d_bar = 1e−2; % Diameter of water droplet , [m]
58 Q = 1; % Volumetric flow rate of crude oil
59 alpha_avg = − 0.323*log(Q) + 1.684; % Average aspect ratio of wax crystals
60 phiWater = 0.01; % Volume fraction of water
61 phiOIL = 0.8; % PLACE HOLDER − Remove it
62 phiGel = 1 − (phiOIL + phiWater) ; % Volume fraction of gel layer
63 rhoOil = 950; rhoWater = 997.1; rhoGel = 900; % Density of oil , water , and gel layer ,

[kg/m^3]
64 muOil = 0.5; muWater = 8.9e−4; muGel = 0.82;
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65 betaTOil = 0.9; betaTWater = 256.32e−6; betaTGel = 1.2;
66 betaCOil = 0.9; betaCWater = 1; betaCGel = 1.2;
67 CpOil = 2300; CpWater = 4179.6; CpGel = 2900;
68 kOil = 0.1; kWater = 0.608; kGel = 0.25;
69 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
70 % Thermophysical Properties
71 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
72 rho_f = (1−phiWater)*rhoOil + phiWater*rhoWater;
73 rho_mix = (1−phiGel)*rho_f + phiGel*rhoGel;
74 mu_f = (1−phiWater)*muOil + phiWater*muWater;
75 mu_mix = (1−phiGel)*mu_f + phiGel*muGel;
76 betaT_f = (1−phiWater)*betaTOil + phiWater*betaTWater;
77 betaT_mix = (1−phiGel)*betaT_f + phiGel*betaTGel;
78 betaC_f = (1−phiWater)*betaCOil + phiWater*betaCWater;
79 betaC_mix = (1−phiGel)*betaC_f + phiGel*betaCGel;
80 Cp_f = ((1−phiWater)*(rhoOil*CpOil) + phiWater*(rhoWater*CpWater))/rho_f;
81 Cp_mix = ((1−phiGel)*(rho_f*Cp_f) + phiGel*(rhoGel*CpGel))/rho_mix;
82 k_f =

((kWater+2*kOil+2*phiWater*(kWater−kOil))/(kWater+2*kOil−phiWater*(kWater−kOil)))*kOil;
83 k_mix = ((kGel+2*k_f+2*phiGel*(kGel−k_f))/(kGel+2*k_f−phiGel*(kGel−k_f)))*k_f;
84 %%
85 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
86 % Constants (DON'T change)
87 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
88 phi0 = (Cinf − rhoGel) /(Cwall − Cinf);
89 phi1 = (Cwall − Cinf)/rhoGel;
90 lambda1 = rho_f /rho_mix;
91 lambda2 = (mu_mix/mu_f)*lambda1;
92 lambda3 = betaT_mix/betaT_f;
93 lambda4 = betaC_mix/betaC_f;
94 lambda5 = (k_mix/k_f)*lambda1*(Cp_f/Cp_mix);
95 lambda6 = lambda1*(Cp_f/Cp_mix);
96 lambda7 = (mu_mix/mu_f)*lambda6;
97 ep = Dp/R; % Shear dispersion parameter .
98 MWoil = 6084/(oAPI − 5.9); % Molecular weight of waxy crude oil
99 Sf = (0.0077.*MWoil − 1.737); c1 = 0.981; c2 = 0.0677; c3 = − 0.0208; % Constants
100 epsilon = 1e−5; % Small parameter to avoid division by zero
101 %%
102 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
103 % Chebyshev Differentiation Matrices and Collocation Points
104 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
105 [D_cheb,r_hat] = cheb(M);
106 [d_cheb,z_hat] = cheb(N);
107 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
108 % D_cheb: Standard first −order Chebyshev differentiation matrix
109 % of size (M + 1) × (M + 1)
110 % d_cheb: Standard first −order Chebyshev differentiation matrix
111 % of size (N + 1) × (N + 1)
112 % r_hat: Collocation points , r̂ ∈ [−1, 1]
113 % z_hat: Collocation points , ẑ ∈ [−1, 1]
114 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
115 r0 = r0 + epsilon ; % to avoid division by zero
116 r = (( rend−r0)/2)*r_hat + (rend+r0) /2; % Linear transformation for r
117 z = ((zend−z0)/2)*z_hat + (zend+z0)/2; % Linear transformation for z
118 I = eye(M+1); % Identity matrix
119 D = (2/( rend−r0))*D_cheb; % Scaling the differentiation matrix D_cheb
120 d = (2/( zend−z0))*d_cheb; % Scaling the differentiation matrix d_cheb
121 D2 = D^2; d2 = d^2; % Secod−order Chebyshev differentiation matrices
122 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
123 % Initial conditions ( at t = 0)
124 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
125 [Ukm,Vkm,Tkm,Ckm,alphaMkm,Pkm] = deal(zeros(M+1,N+1));
126 [phiOILkm] = ones(M+1,N+1) − phiWater;
127 [DELTAkm,Xkm] = deal(0.1*ones(1,1));
128 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
129 % Start the computations
130 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
131 tic % Start timing
132 for p = 1: nProfiles
133 t = 0;
134 for k = 1: Tfinal % Time−stepping by AB and CN formula
135 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
136 % Initialize the coefficient matrix and the right−hand side vector
137 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
138 [A1,A2,A3,A4,A5,A6,A7] = deal(cell(N+1,N+1)); % create cell arrays
139 [R1k,R2k,R3k,R4k,R5k,R6k,R7k] = deal(zeros(M+1,N+1));
140 [R8k,R9k] = deal ( zeros (1,N+1));
141 for j=1:N+1
142 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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143 % Construct the matrix of coefficints
144 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
145 % r−momentum Eq.
146 a0kj = − dt*lambda2/Re; a1kj = − (dt*lambda2/Re) .*(1./ r ) ;
147 a2kj = 1 + (dt*lambda2/Re) .*(1./( r .^2) ) + dt*lambda2/(2*Re*Da);
148 a3kj = − dt*lambda2/(2*Re);
149 A1j = diag(a0kj)*D2 + diag(a1kj)*D + diag(a2kj)*I ; % Square matrix of size (M+1)
150 A1{j, j} = A1j + a3kj .*( d2(j , j )*I) ; % diagonal cells
151 % z−momentum Eq.
152 b0kj = − dt*lambda2/(2*Re); b1kj = − (dt*lambda2/(2*Re)) .*(1./ r ) ;
153 b2kj = 1 + dt*lambda2/(2*Re*Da); b3kj = − dt*lambda2/Re;
154 A2j = diag(b0kj)*D2 + diag(b1kj)*D + diag(b2kj)*I ; % Square matrix of size (M+1)
155 A2{j, j} = A2j + b3kj .*( d2(j , j )*I) ; % diagonal cells
156 % Energy Eq.
157 d0kj = − dt*lambda5/(2*Pe); d1kj = − (dt*lambda5/(2*Pe)) *(1./ r ) ;
158 d2kj = 1 + St*dt*lambda6/(2*d_bar); d3kj = − dt*lambda5/(2*Pe);
159 A4j = diag(d0kj)*D2 + diag(d1kj)*D + diag(d2kj)*I ; % Square matrix of size (M+1)
160 A4{j, j} = A4j + d3kj .*( d2(j , j )*I) ; % diagonal cells
161 % Species concentration Eq.
162 A5j = I ; A5{j, j} = A5j; % diagonal cells
163 % Precipitation kinetics Eq.
164 A6j = I ; A6{j, j} = A6j; % diagonal cells
165 % Oil volume fraction Eq.
166 A7j = I ; A7{j, j} = A7j; % diagonal cells
167 %
168 for n = 1:N+1
169 if (n ~= j ) % non−diagonal cells
170 A1{j,n} = a3kj .*( d2(j ,n) .* I ) ; % r−momentum Eq.
171 A2{j,n} = b3kj .*( d2(j ,n) .* I ) ; % z−momentum Eq.
172 A4{j,n} = d3kj .*( d2(j ,n) .* I ) ; % Energy Eq.
173 A5{j,n} = zeros (M+1); % Species concentration Eq.
174 A6{j,n} = zeros (M+1); % Precipitation kinetics Eq.
175 A7{j,n} = zeros (M+1); % Oil volume fraction Eq.
176 end
177 end
178 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
179 % Construct the right−hand side vector
180 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
181 [SUMZ1Ukm,SUMZ1Vkm,SUMZ1Pkm,SUMZ1Tkm,SUMZ1Ckm,SUMZ1alphaMkm,SUMZ1phiOILkm,...
182 SUMZ2Ukm,SUMZ2Vkm,SUMZ2Tkm,SUMZ2phiOILkm] = deal(zeros(size(r)));
183 for n=1:N+1
184 SUMZ1Ukm = SUMZ1Ukm + d(j,n).*Ukm(:,n);
185 SUMZ1Vkm = SUMZ1Vkm + d(j,n).*Vkm(:,n);
186 SUMZ1Pkm = SUMZ1Pkm + d(j,n).*Pkm(:,n);
187 SUMZ1Tkm = SUMZ1Tkm + d(j,n).*Tkm(:,n);
188 SUMZ1Ckm = SUMZ1Ckm + d(j,n).*Ckm(:,n);
189 SUMZ1alphaMkm = SUMZ1alphaMkm + d(j,n).*alphaMkm(:,n);
190 SUMZ1phiOILkm = SUMZ1phiOILkm + d(j,n).*phiOILkm(:,n);
191 SUMZ2Ukm = SUMZ2Ukm + d2(j,n).*Ukm(:,n);
192 SUMZ2Vkm = SUMZ2Vkm + d2(j,n).*Vkm(:,n);
193 SUMZ2Tkm = SUMZ2Tkm + d2(j,n).*Tkm(:,n);
194 SUMZ2phiOILkm = SUMZ2phiOILkm + d2(j,n).*phiOILkm(:,n);
195 end
196 for n=1:N+1
197 RKkm(:,n) = −(((D*phiOILkm(:,n)).^2 + SUMZ1phiOILkm.^2).^(−3/2))...
198 .*((( D*phiOILkm(:,n)).^2) .*(((1./ r ) .*(D*phiOILkm(:,n))+SUMZ2phiOILkm))...
199 −2*(D*phiOILkm(:,n)).*(SUMZ1phiOILkm.*(D*SUMZ1phiOILkm))...
200 + (SUMZ1phiOILkm.^2).*(D2*phiOILkm(:,n) + (1./r).*(D*phiOILkm(:,n))));
201 Cdkm(:,n) = (1/Sf) *((c1+c2*Tkm(:,n)) ./(1+c3*Tkm(:,n))) ; % Solubility of wax

in crude oil
202 Cd1km(:,n) = (1/Sf) *((c2−c1*c3)./(1+c3*Tkm(:,n)) .^2) ; % First derivative of

Cd wrt Theta
203 Cd2km(:,n) = (1/Sf)*(−2*c3*(c2−c1*c3)./(1+c3*Tkm(:,n)).^3); % Second

derivative of Cd wrt Theta
204 K1km(:,n) = c1*Tkm(:,n)+c2; K2km(:,n) = (c3*Tkm(:,n)) .^2; % Positive

functions of temperature
205 fXkm = (1−Xkm)./(alpha_avg^2*Xkm.^2−Xkm+1); % Coefficient describing

diffusion in the gel layer
206 end
207 for n=1:N+1
208 % Euler ' s forward scheme
209 Uk(:,n) = Ukm(:,n) + dt *(...
210 − Ukm(:,n).*(D*Ukm(:,n)) − Vkm(:,n).*SUMZ1Ukm − D*Pkm(:,n)...
211 + (lambda2/Re)*(2*(D2*Ukm(:,n))+SUMZ2Ukm +D*SUMZ1Vkm

+(2./r).*(D*Ukm(:,n))...
212 − (2./( r .^2) ) .*Ukm(:,n)) − (lambda2/(Re*Da))*Ukm(:,n)...
213 + (lambda3*Grt/(Re^2))*cos(alpha)*Tkm(:,n) ...
214 + (lambda4*Grc/(Re^2))*cos(alpha)*Ckm(:,n) ...
215 + (lambda1/We)*RKkm(:,n).*(D*phiOILkm(:,n))...
216 ) ;

157



217 Vk(:,n) = Vkm(:,n) + dt *(...
218 − Ukm(:,n).*(D*Vkm(:,n)) − Vkm(:,n).*SUMZ1Vkm − SUMZ1Pkm...
219 + (lambda2/Re)*(D2*Vkm(:,n) + 2*SUMZ2Vkm +

D*SUMZ1Ukm+(1./r).*SUMZ1Ukm...
220 − (1./ r ) .*(D*Vkm(:,n))) − (lambda2/(Re*Da))*Vkm(:,n) ...
221 + (lambda3*Grt/(Re^2))*sin(alpha)*Tkm(:,n) ...
222 + (lambda4*Grc/(Re^2))*sin(alpha)*Ckm(:,n) ...
223 + (lambda1/We)*RKkm(:,n).*SUMZ1phiOILkm...
224 ) ;
225 Pk (:, n) = Pkm(:,n) ;
226 Tk (:, n) = Tkm(:,n) + dt *(...
227 − Ukm(:,n).*(D*Tkm(:,n)) − Vkm(:,n).*SUMZ1Tkm...
228 + (lambda5/Pe)*(D2*Tkm(:,n)+(1./r) .*(D*Tkm(:,n))+SUMZ2Tkm)...
229 + (lambda7*Ec/Re)*(2*((D*Ukm(:,n)).^2)+ 2*((Ukm(:,n) ./ r ) .^2) +

2*(SUMZ1Vkm.^2)...
230 + (D*Vkm(:,n) + SUMZ1Ukm).^2) − St*lambda6/(d_bar)*Tkm(:,n)...
231 ) ;
232 Ck(:,n) = Ckm(:,n) + dt *(...
233 − Ukm(:,n).*(D*Ckm(:,n)) − Vkm(:,n).*SUMZ1Ckm...
234 +

ep*((1−alphaMkm(:,n)).*((Ckm(:,n)−Cdkm(:,n)).*(D2*Vkm(:,n)+(1./r) .*(D*Vkm(:,n)))) ...
235 + ((1−alphaMkm(:,n)).*(D*Ckm(:,n)−Cd1km(:,n).*(D*Tkm(:,n)))...
236 − (Ckm(:,n)−Cdkm(:,n)).*(D*alphaMkm(:,n))).*(D*Vkm(:,n))) ...
237 +

(1/( Re*Sc))*(Cd1km(:,n).*(D2*Tkm(:,n)+(1./r ) .*(D*Tkm(:,n))+SUMZ2Tkm)...
238 + Cd2km(:,n) .*((D2*Tkm(:,n)).^2 + (SUMZ1Tkm).^2))...
239 ) ;
240 alphaMk(:,n) = alphaMkm(:,n) + dt *(...
241 − Ukm(:,n).*(D*alphaMkm(:,n)) − Vkm(:,n).*SUMZ1alphaMkm...
242 + (1−alphaMkm(:,n)).*K1km(:,n) ...
243 − (Re/lambda2)*alphaMkm(:,n).*(D*Vkm(:,n)).^2.*K2km(:,n) ...
244 ) ;
245 phiOILk(:,n) = phiOILkm(:,n) + dt *(...
246 − Ukm(:,n).*(D*phiOILkm(:,n)) − Vkm(:,n).*SUMZ1phiOILkm...
247 ) ;
248 TempGradkm(:,n) = D*Tkm(:,n); VelGradkm(:,n) = D*Vkm(:,n);
249 DELTAk = DELTAkm + dt*(...
250 phi1*((1−fXkm)./Xkm).*((1/(Re*Sc))*Cd1km(rIndex,n).*TempGradkm(rIndex,n))...
251 ) ;
252 Xk = Xkm + dt *(...
253 phi1*fXkm*(2*(1−DELTAkm)./(DELTAkm*(2−DELTAkm)))....
254 *((1/( Re*Sc))*Cd1km(rIndex,n).*TempGradkm(rIndex,n)...
255 +

ep*(1−alphaMkm(rIndex,n))*(Ckm(rIndex,n)−Cdkm(rIndex,n)).*VelGradkm(rIndex,n))...
256 ) ;
257 end
258 [SUMZ1Uk,SUMZ1Vk,SUMZ1Pk,SUMZ1Tk,SUMZ1Ck,SUMZ1alphaMk,SUMZ1phiOILk,SUMZ2Uk,...
259 SUMZ2Vk,SUMZ2Tk,SUMZ1RKk,SUMZ2Pk,SUMZ2phiOILk] = deal(zeros(size(r)));
260 for n=1:N+1
261 SUMZ1Uk = SUMZ1Uk + d(j,n).*Uk(:,n);
262 SUMZ1Vk = SUMZ1Vk + d(j,n).*Vk(:,n);
263 SUMZ1Pk = SUMZ1Pk + d(j,n).*Pk(:,n);
264 SUMZ1Tk = SUMZ1Tk + d(j,n).*Tk(:,n);
265 SUMZ1Ck = SUMZ1Ck + d(j,n).*Ck(:,n);
266 SUMZ1alphaMk = SUMZ1alphaMk + d(j,n).*alphaMk(:,n);
267 SUMZ1phiOILk = SUMZ1phiOILk + d(j,j).*phiOILk(:,j);
268 % SUMZ1RKk = SUMZ1RKk + d(j,n).*RKk(:,n);
269 SUMZ2Uk = SUMZ2Uk + d2(j,n).*Uk(:,n);
270 SUMZ2Vk = SUMZ2Vk + d2(j,n).*Vk(:,n);
271 SUMZ2Pk = SUMZ2Pk + d2(j,n).*Pk(:,n);
272 SUMZ2Tk = SUMZ2Tk + d2(j,n).*Tk(:,n);
273 SUMZ2phiOILk = SUMZ2phiOILk + d2(j,j).*phiOILk(:,j);
274 end
275 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
276 % Right−hand side
277 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
278 RKk(:,j ) = − (((D*phiOILk(:,j) ) .^2 +

SUMZ1phiOILk.^2).^(−3/2)).*(((D*phiOILk(:,j)) .^2) .*...
279 (((1./ r ) .*(D*phiOILk(:,j) )+SUMZ2phiOILk))...
280 −2*(D*phiOILk(:,j)) .*(SUMZ1phiOILk.*(D*SUMZ1phiOILk))...
281 + (SUMZ1phiOILk.^2).*(D2*phiOILk(:,j) + (1./r ) .*(D*phiOILk(:,j) ) ) ) ;
282 Cdk(:, j ) = (1/Sf) *((c1+c2*Tk(:, j ) ) ./(1+ c3*Tk(:, j ) ) ) ; % Solubility of wax in crude

oil
283 Cd1k(:, j ) = (1/Sf) *((c2−c1*c3)./(1+c3*Tk(:, j ) ) .^2) ; % First derivative of Cd wrt

Theta
284 Cd2k(:, j ) = (1/Sf)*(−2*c3*(c2−c1*c3)./(1+c3*Tk(:,j)) .^3) ; % Second derivative of

Cd wrt Theta
285 K1k(:, j ) = c1*Tk(:, j ).^4+c2; K2k(:, j ) = (c3*Tk(:, j ) ) .^2; % Positive functions

of temperature
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286 fXk = (1−Xk)./(alpha_avg^2*Xk.^2−Xk+1); % Coefficient describing diffusion in the
gel layer

287 % r−momentum Eq.
288 R1k(:, j ) = Uk(:, j ) + dt *(...
289 −((3/2)*Uk(:, j ) .*(D*Uk(:,j) )−(1/2)*Ukm(:,j) .*(D*Ukm(:,j))) ...
290 − ((3/2) *Vk(:, j ) .*SUMZ1Uk − (1/2)*Vkm(:,j).*SUMZ1Ukm) − D*Pk(:,j)...
291 + (lambda2/Re)*(D2*Uk(:,j)+(1/2)*SUMZ2Uk+D*SUMZ1Vk+(1./r).*(D*Uk(:,j))...
292 − (1./( r .^2) ) .*Uk(:, j ) ) − (lambda2/(2*Re*Da))*Uk(:,j) ...
293 + (lambda3*Grt/(Re^2))*cos(alpha)*Tk(:, j )+

(lambda4*Grc/(Re^2))*cos(alpha)*Ck(:, j ) ...
294 +

(lambda1/We)*((3/2)*RKk(:,j) .*(D*phiOILk(:,j) )−(1/2)*RKkm(:,j).*(D*phiOILkm(:,j))) ...
295 ) ;
296 % z−momentum Eq.
297 R2k(:, j ) = Vk(:, j ) + dt *(...
298 − ((3/2) *Uk(:, j ) .*(D*Vk(:,j) )−(1/2)*Ukm(:,j) .*(D*Vkm(:,j))) ...
299 − ((3/2) *Vk(:, j ) .*SUMZ1Vk − (1/2)*Vkm(:,j).*SUMZ1Vkm) − SUMZ1Pk...
300 + (lambda2/Re)*((1/2)*D2*Vk(:,j)+SUMZ2Vk+D*SUMZ1Uk+(1./r).*SUMZ1Uk...
301 − (1./(2* r ) ) .*(D*Vk(:,j) ) ) − (lambda2/(2*Re*Da))*Vk(:,j) ...
302 + (lambda3*Grt/(Re^2))*sin(alpha)*Tk(:, j )+

(lambda4*Grc/(Re^2))*sin(alpha)*Ck(:, j ) ...
303 +

(lambda1/We)*((3/2)*RKk(:,j) .*SUMZ1phiOILk−(1/2)*RKkm(:,j).*SUMZ1phiOILkm)...
304 ) ;
305 % Energy Eq.
306 R4k(:, j ) = Tk (:, j ) + dt *(...
307 − ((3/2) *Uk(:, j ) .*(D*Tk(:,j ) )−(1/2)*Ukm(:,j) .*(D*Tkm(:,j))) ...
308 − ((3/2) *Vk(:, j ) .*SUMZ1Tk − (1/2)*Vkm(:,j).*SUMZ1Tkm)...
309 + (lambda5/(2*Pe))*(D2*Tk(:,j ) +(1./ r ) .*(D*Tk(:,j ) )+SUMZ2Tk)

−St*lambda6/(2*d_bar)*Tk(:,j)...
310 + (lambda7*Ec/Re)*(2*((3/2)*(D*Uk(:,j) ) .^2−(1/2)*(D*Ukm(:,j)).^2) ...
311 + 2*((3/2) *(Uk(:, j ) ./ r ) .^2−(1/2)*(Ukm(:,j) ./ r ) .^2) + 2*((3/2) *(SUMZ1Vk).^2....
312 − (1/2)*(SUMZ1Vkm).^2) + (3/2)*(D*Vk(:,j)+SUMZ1Uk).^2 −

(1/2)*(D*Vkm(:,j)+SUMZ1Ukm).^2)...
313 ) ;
314 % Species concentration Eq.
315 R5k(:, j ) = Ck(:, j ) + dt *(...
316 − ((3/2) *Uk(:, j ) .*(D*Ck(:,j ) )−(1/2)*Ukm(:,j) .*(D*Ckm(:,j))) ...
317 − ((3/2) *Vk(:, j ) .*SUMZ1Ck − (1/2)*Vkm(:,j).*SUMZ1Ckm)...
318 +

ep *((3/2) *(1−alphaMk(:,j)) .*(( Ck(:, j )−Cdk(:,j) ) .*(D2*Vk(:,j) +(1./ r ) .*(D*Vk(:,j) ) ) ) ...
319 −

(1/2)*(1−alphaMkm(:,j)) .*((Ckm(:,j)−Cdkm(:,j)) .*(D2*Vkm(:,j)+(1./ r ) .*(D*Vkm(:,j)))) ...
320 + (3/2) *((1−alphaMk(:,j) ) .*(D*Ck(:,j )−Cd1k(:,j) .*(D*Tk(:,j ) ) ) ...
321 − (Ck(:, j )−Cdk(:,j) ) .*(D*alphaMk(:,j)) ) .*(D*Vk(:,j) ) ...
322 − (1/2)*((1−alphaMkm(:,j)) .*(D*Ckm(:,j)−Cd1km(:,j).*(D*Tkm(:,j))) ...
323 − (Ckm(:,j)−Cdkm(:,j)) .*(D*alphaMkm(:,j))) .*(D*Vkm(:,j))) ...
324 + (1/( Re*Sc))*(3/2)*(Cd1k(:, j ) .*(D2*Tk(:,j ) +(1./ r ) .*(D*Tk(:,j ) )+SUMZ2Tk)...
325 + Cd2k(:, j ) .*(( D2*Tk(:,j ) ) .^2 + (SUMZ1Tk).^2))...
326 −

(1/(Re*Sc))*(1/2)*(Cd1km(:,j) .*(D2*Tkm(:,j)+(1./ r ) .*(D*Tkm(:,j))+SUMZ2Tkm)...
327 + Cd2km(:,j) .*(( D2*Tkm(:,j)).^2 + (SUMZ1Tkm).^2))...
328 ) ;
329 % Precipitation kinetics Eq.
330 R6k(:, j ) = alphaMk(:, j ) + dt *(...
331 − ((3/2) *Uk(:, j ) .*(D*alphaMk(:,j)) − (1/2)*Ukm(:,j) .*(D*alphaMkm(:,j))) ...
332 − ((3/2) *Vk(:, j ) .*SUMZ1alphaMk − (1/2)*Vkm(:,j).*SUMZ1alphaMkm)...
333 + (1−alphaMk(:,j) ) .*K1k(:, j ) ...
334 − (Re/lambda2)*((3/2)*(alphaMk(:, j ) .*(D*Vk(:,j) ) .^2) .*K2k(:, j ) ...
335 − (1/2)*(alphaMkm(:,j) .*(D*Vkm(:,j)).^2) .*K2km(:,j) ) ...
336 ) ;
337 % Oil volume fraction Eq.
338 R7k(:, j ) = phiOILk(:, j ) + dt *(...
339 −((3/2)*Uk(:, j ) .*(D*phiOILk(:,j) ) − (1/2)*Ukm(:,j) .*(D*phiOILkm(:,j))) ...
340 −((3/2)*Vk(:, j ) .*SUMZ1phiOILk − (1/2)*Vkm(:,j).*SUMZ1phiOILkm)...
341 ) ;
342 % Deposit growth rate Eq.
343 TempGradk(:,j) = D*Tk(:,j ) ; VelGradk (:, j ) = D*Vk(:,j) ;
344 R8k(j) = DELTAk + dt*(...
345 − (phi1/(2*Re*Sc))*(3*((1−fXk)./Xk).*Cd1k(rIndex,j ) .*TempGradk(rIndex,j) ...
346 −((1−fXkm)./Xkm).*Cd1km(rIndex,j).*TempGradkm(rIndex,j))...
347 ) ;
348 % Deposit aging rate Eq.
349 R9k(j) = Xk + dt *(...
350 (3/2) *phi1*fXk*(2*(1−DELTAk)./(DELTAk*(2−DELTAk)))....
351 *((1/( Re*Sc))*Cd1k(rIndex,j) .*TempGradk(rIndex,j) ...
352 +

ep*(1−alphaMk(rIndex,j))*(Ck(rIndex, j )−Cdk(rIndex,j)) .*VelGradk(rIndex, j ) ) ...
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353 − (1/2)*phi1*fXkm*(2*(1−DELTAkm)./(DELTAkm*(2−DELTAkm)))....
354 *((1/( Re*Sc))*Cd1km(rIndex,j).*TempGradkm(rIndex,j) ...
355 +

ep*(1−alphaMkm(rIndex,j))*(Ckm(rIndex,j)−Cdkm(rIndex,j)).*VelGradkm(rIndex,j)) ...
356 ) ;
357 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
358 % Impose the boundary conditions
359 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
360 %−−−−: BCs at r = r0 and r = rend :−−−−−−−−−−−−
361 for n = 1:N+1
362 % zero the first row of each cell
363 A1{j,n }(1,:) = 0; A2{j,n }(1,:) = 0;
364 A4{j,n }(1,:) = 0; A5{j,n }(1,:) = 0; A6{j,n }(1,:) = 0;
365 A7{j,n }(1,:) = 0; A8{j,n }(1,:) = 0; A9{j,n }(1,:) = 0;
366 % zero the last row of each cell
367 A1{j,n}(end ,:) = 0; A2{j,n}(end ,:) = 0;
368 A4{j,n}(end ,:) = 0; A5{j,n}(end ,:) = 0; A6{j,n}(end ,:) = 0;
369 A7{j,n}(end ,:) = 0; A8{j,n}(end ,:) = 0; A9{j,n}(end ,:) = 0;
370 end
371 %−−−−: At r = r0 (pipeline centerline ) :−−−−−−−−−−
372 A1{j, j }(end ,:) = D(end ,:) ; R1k(end,j) = 0; % BC: u′(r0, z, t)
373 A2{j, j }(end ,:) = D(end ,:) ; R2k(end,j) = 0; % BC: v′(r0, z, t)
374 A4{j, j }(end ,:) = D(end ,:) ; R4k(end,j) = 0; % BC: Θ′(r0, z, t)
375 A5{j, j }(end ,:) = D(end ,:) ; R5k(end,j) = 0; % BC: ϕ′(r0, z, t)
376 A6{j, j }(end ,:) = D(end ,:) ; R6k(end,j) = 0; % BC: α′

m(r0, z, t)
377 %−−−−: At r = rend (pipeline wall) :−−−−−−−−−−−−−−
378 A1{j, j }(1,:) = I (1,:) ; R1k(1,j ) = 0; % BC: u(rend, z, t)
379 A2{j, j }(1,:) = I (1,:) ; R2k(1,j ) = 0; % BC: v(rend, z, t)
380 A4{j, j }(1,:) = I (1,:) ; R4k(1,j ) = 1; % BC: Θ(rend, z, t)
381 A5{j, j }(1,:) = I (1,:) ; R5k(1,j ) = 1; % BC: ϕ(rend, z, t)
382 A6{j, j }(1,:) = I (1,:) ; R6k(1,j ) = 1; % BC: αm(rend, z, t)
383 %
384 %−−−−−−−−−−−: BCs at z = 0 (pipeline inlet) :−−−−−−
385 A1{end,j} = zeros (M+1); A1{end,end} = I;
386 R1k(:,end) = zeros ( size ( r ) ) ; % BC: u(r, z0, t)
387 A2{end,j} = zeros (M+1); A2{end,end} = I;
388 R2k(:,end) = ones( size ( r ) ) ; % BC: v(r, z0, t)
389 A4{end,j} = zeros (M+1); A4{end,end} = I;
390 R4k(:,end) = zeros ( size ( r ) ) ; % BC: Θ(r, z0, t)
391 A5{end,j} = zeros (M+1); A5{end,end} = I;
392 R5k(:,end) = zeros ( size ( r ) ) ; % BC: ϕ(r, z0, t)
393 A6{end,j} = zeros (M+1); A6{end,end} = I;
394 R6k(:,end) = zeros ( size ( r ) ) ; % BC: αm(r, z0, t)
395 A7{end,j} = zeros (M+1); A7{end,end} = I;
396 R7k(:,end) = ones( size ( r ) ) − phiWater; % BC: ϕoil(r, z0, t)
397 end
398 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
399 %Merge the cell arrays to form bigger matrices
400 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
401 A1 = cell2mat (A1); A2 = cell2mat (A2);
402 A4 = cell2mat (A4); A5 = cell2mat (A5); A6 = cell2mat (A6);
403 A7 = cell2mat (A7);
404 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
405 % Reshape the right−hand side vectors to form column vectors
406 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
407 R1 = reshape(R1k,(M+1)*(N+1),1); R2 = reshape(R2k,(M+1)*(N+1),1);
408 R4 = reshape(R4k,(M+1)*(N+1),1); R5 = reshape(R5k,(M+1)*(N+1),1);
409 R6 = reshape(R6k,(M+1)*(N+1),1); R7 = reshape(R7k,(M+1)*(N+1),1);
410 R8 = reshape(R8k,(N+1),1); R9 = reshape(R9k,(N+1),1);
411 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
412 % Solve the matrix equations
413 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
414 U = A1\R1; % un+1

415 V = A2\R2; % vn+1

416 T = A4\R4; % Θn+1

417 C = A5\R5; % ϕn+1

418 alphaM = A6\R6; % αn+1
m

419 phiOIL = A7\R7; % ϕn+1
oil

420 Delta = R8(zIndex); % δn+1

421 X = R9(zIndex); % xn+1

422 error = norm([U;V;T;C] − [Uk(:);Vk(:) ;Tk(:) ;Ck(:) ], Inf ) ; % =
max(max(abs(Ukp1−Uk)));

423 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
424 % Solve the PPE (pressure Poisson Eq.)
425 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
426 %{−
427 c0kj = 1; c1kj = 1./ r ; c2kj = 1;
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428 A3j = diag(c0kj)*D2 + diag(c1kj)*D; % Square matrix of size (M+1)
429 A3{j, j} = A3j + c2kj .*( d2(j , j )*I) ; % insert diagonal cells
430 RK(:,j ) = −((D*phiOIL(:,j) ) .^2 +

SUMZ1phiOIL.^2).^(−3/2).*(((D*phiOIL(:,j)) .^2) .*...
431 (((1./ r ) .*(D*phiOIL(:,j ) )+SUMZ2phiOIL))...
432 −2*(D*phiOIL(:,j)) .*(SUMZ1phiOIL.*(D*SUMZ1phiOIL))...
433 + (SUMZ1phiOIL.^2).*(D2*phiOIL(:,j) + (1./ r ) .*(D*phiOIL(:,j ) ) ) ) ;
434 R3k(:, j ) = − (2./( r .^2) ) .*(U(:, j ) .^2) ...
435 − 2*(SUMZ1Ukm.*(D*V(:,j)))...
436 + (lambda1/We)*(RK(:,j) .*(D2*phiOIL(:,j) +(1./ r ) .*(D*phiOIL(:,j ) ) ...
437 + SUMZ2phiOIL) + (D*RK(:,j).*(D*phiOIL(:,j))+d(j, j )*RK(:,j ) .*SUMZ1phiOIL))...
438 +

(lambda3*Grt/(Re^2))*(cos(alpha)*(D*T(:, j ) +(1./ r ) .*T (:, j ) )+sin(alpha)*SUMZ1T)...
439 +

(lambda4*Grc/(Re^2))*(cos(alpha)*(D*C(:,j ) +(1./ r ) .*C (:, j ) )+sin(alpha)*SUMZ1C);
440 %}
441 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
442 % Reshape the results onto 2D grid and update the previous solutions
443 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
444 Ukm = reshape(Uk,M+1,N+1); Uk = reshape(U,M+1,N+1);
445 Vkm = reshape(Vk,M+1,N+1); Vk = reshape(V,M+1,N+1);
446 Pkm = reshape(Pk,M+1,N+1); Pk = reshape(P,M+1,N+1);
447 Tkm = reshape(Tk,M+1,N+1); Tk = reshape(T,M+1,N+1);
448 Ckm = reshape(Ck,M+1,N+1); Ck = reshape(C,M+1,N+1);
449 alphaMkm = reshape(alphaMk,M+1,N+1); alphaMk = reshape(alphaM,M+1,N+1);
450 phiOILkm = reshape(phiOILk,M+1,N+1); phiOILk = reshape(phiOIL,M+1,N+1);
451 DELTAkm = reshape(DELTAk,1,1); DELTAk = reshape(Delta,1,1);
452 Xkm = reshape(Xk,1,1); Xk = reshape(X,1,1) ;
453 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
454 % Check whether a steady−state solution has been reached
455 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
456 if ( error < tolerance )
457 fprintf ( ' Steady−state solution has been reached\n ' )
458 break;
459 else
460 t = t + dt ; % Update time
461 end
462 end
463 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
464 % The approximate solutions
465 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
466 baru = Uk; % Radial velocity
467 barv = Vk; % Axial velocity
468 Theta = Tk; % Temperature
469 phi = Ck; % Total wax concentration
470 Am = alphaMk; % Aggregaion degree of wax
471 phiOil = phiOILk; % Volume fraction of oil
472 delta = DELTAk; % Deposit thickness
473 x = Xk; % weight fraction of wax in gel layer
474 DdeltaDt = 0; % Deposit growth rate
475 DxDt = 0; % Deposit aging rate
476 Cd = Cdk; % Concentration of dissolved wax crystals
477 Cnon = (1−Am).*(phi−Cd); % Concentration of non−aggregated wax crystals
478 Ca = phi − Cd − Cnon; % Concentration of aggregated wax crystals
479 Cp = Ca + Cnon; % Concentration of precipitated wax crystals
480 C = Cd (:,:, tIndex ) + Cp; % Total wax concentration
481 Cfr = Cfr (:,:, tIndex ) ; % Skin−friction coefficient along r−direction
482 Cfz = Cfz (:,:, tIndex ) ; % Skin−friction coefficient along z−direction
483 Nu = Nu (:,:, tIndex ) ; % local Nusselt number ( rate of heat transfer )
484 Sh = Sh (:,:, tIndex ) ; % local Sherwood number (rate of mass transfer )
485 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
486 % Store the soluions for plotting purpose
487 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
488 solMatrix (:,:, p) = [baru;barv;Theta;phi ;Am;phiOil];
489 Dsol (:, p) = delta ;
490 Xsol (:, p) = x;
491 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
492 % Vary the flow parameters
493 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
494 % => Change the variedParameter and its name (3 instances ) <=
495 variedParameter = Re; % Change the varied parameter <<<−−−−−
496 variedParameterName = 'Re' ; % Change the varied parameter <<<
497 legendMatrix = [legendMatrix , strcat (variedParameterName, ' = ' ,...
498 num2str(variedParameter ) ) ];
499 fprintf ([variedParameterName '=%.2f: CfRe = %.4f, Nu = %.4f, Sh = %.4f\n ' ],...
500 variedParameter ,CfRe,Nu,Sh) % Print skin− friction coefficient , Nusselt and Sherwood

numbers
501 fprintf ( ' \ t \ t Deposit growth rate = %e, Deposit aging rate = %e\n' ,...
502 DdeltaDt,DxDt) % Print deposit growth rate
503 variedParameter = variedParameter + increment ; % update the varied parameter
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504 Re = variedParameter ; % Change the varied parameter <<<−−−−−
505 end % Stop the computations
506 fprintf ( '−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n')
507 fprintf ( ' Time elapsed , t = %.6f ( units ) \n ' , t )
508 %%
509 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
510 % Plotting Section
511 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
512 %−−−3D Plots:
513 profile3D = { ' ū(r̄, z̄, t̄)',...
514 ' v̄(r̄, z̄, t̄)',...
515 'Θ(r̄, z̄, t̄)',...
516 'ϕ(r̄, z̄, t̄)',...
517 'αm(r̄, z̄, t̄)',...
518 'ϕoil(r̄, z̄, t̄)'};
519 for flowVariable = 1:nDependentVars
520 % Specify the range of rows of the flow variable in the solMatrix
521 rowsfV = (1:M+1)+(flowVariable−1)*(M+1);
522 % Plot the approximate solutions
523 figure ( flowVariable )
524 sp = spapi ({3,4},{ r (:) ,z (1:nz)}, solMatrix (rowsfV,1:nz, nProfiles ) ) ; % Spline interpolation

( bivariate )
525 fnplt (sp) , colorbar ; % Plot and show data−>color mapping
526 xlabel ( ' r̄', ' FontSize ' ,14, ' InterPreter ' , ' LaTeX');
527 ylabel ( ' z̄', ' FontSize ' ,14, ' InterPreter ' , ' LaTeX');
528 zlabel ( profile3D{flowVariable }, ' FontSize ' ,14, ' InterPreter ' , ' LaTeX');
529 end
530 %−−2D Plots
531 profile2D = { 'RADIAL VELOCITY, ū(r̄, z̄, t̄)',...
532 'AXIAL VELOCITY, v̄(r̄, z̄, t̄)',...
533 ' TEMPERATURE, Θ(r̄, z̄, t̄)',...
534 ' TOTAL CONCENTRATION, ϕ(r̄, z̄, t̄)',...
535 'AGGREGATION DEGREE, αm(r̄, z̄, t̄)',...
536 'VOLUME FRACTION OF OIL, ϕoil(r̄, z̄, t̄)',...
537 'DEPOSIT THICKNESS, δ̄(t̄)',...
538 'WEIGHT FRACTION OF WAX, x(t̄)'};
539 zIndex = floor (0.4*(N+1)); % Specify the index for z
540 for flowVariable = 1:nDependentVars
541 % Specify the range of rows of the flow variable in the solMatrix matrix
542 rowsfV = (1:M+1)+(flowVariable−1)*(M+1);
543 % Plot the approximate solutions
544 figure ( flowVariable+nDependentVars)
545 hold on
546 for p =1: nProfiles
547 sp = spapi (3, r , solMatrix (rowsfV,zIndex,p)) ; % Spline interpolation
548 fnplt (sp ,1.5, color{p})%,set(gca ,' Fontsize ',10)
549 end
550 hold off
551 axis ([0 Inf 0 Inf ]) ;
552 xlabel ( 'RADIAL DISTANCE, r̄','FontSize',14,'InterPreter ' , ' LaTeX');
553 ylabel ( profile2D{flowVariable }, ' FontSize ' ,14, ' InterPreter ' , ' LaTeX');
554 legend(legendMatrix {:,2: nProfiles +1});
555 %
556 %Magnify very close profiles
557 errorNorm = norm(solMatrix(rowsfV,zIndex, nProfiles ) ...
558 − solMatrix(rowsfV,zIndex,1) , Inf ) ; % compute norm infinity
559 if errorNorm < 0.03 && nProfiles >1
560 % zoomIn(r,solMatrix ,rowsfV, nProfiles , color ) % Zoom In (+) the profiles
561 end
562 end
563 figure (13)
564 hold on
565 for p =1: nProfiles
566 sp = spapi (3, t ,Dsol (:, p)) ; % Spline interpolation
567 fnplt (sp ,1.5, color{p})%,set(gca ,' Fontsize ',10)
568 end
569 hold off
570 axis tight
571 xlabel ( ' TIME, t̄', 'FontSize ' ,14, ' InterPreter ' , ' LaTeX')
572 ylabel ( profile2D{7}, ' FontSize ' ,14, ' InterPreter ' , ' LaTeX')
573 legend(legendMatrix {:,2: nProfiles +1});
574 %
575 figure (14)
576 hold on
577 for p =1: nProfiles
578 sp = spapi (3, t ,Xsol (:, p)) ; % Spline interpolation
579 fnplt (sp ,1.5, color{p})%,set(gca ,' Fontsize ',10)
580 end
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581 hold off
582 axis tight
583 xlabel ( ' TIME, t̄', 'FontSize ' ,14, ' InterPreter ' , ' LaTeX')
584 ylabel ( profile2D{8}, ' FontSize ' ,14, ' InterPreter ' , ' LaTeX')
585 legend(legendMatrix {:,2: nProfiles +1});
586 fprintf ( ' \nCPU time = %.6f seconds\n\n ' , toc ) % Display CPU time elapsed

Listing 5.2: cheb.m
1 % CHEB compute D = differentiation matrix , x = Chebyshev grid
2 function [D,x] = cheb(N)
3 if N==0, D=0; x=1; return , end
4 x = cos(pi *(0:N)/N) ';
5 c = [2; ones(N−1,1); 2].*(−1) .^(0: N) ';
6 X = repmat(x ,1,N+1);
7 dX = X−X';
8 D = (c *(1./ c) ') ./( dX+(eye(N+1))); % off−diagonal entries
9 D = D − diag(sum(D')) ; % diagonal entries
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