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Abstract—In this research, contact force control of an one link
flexible arm is presented. A simple boundary feedback controller
consisting of bending moment at the base of the flexible arm proposed
by Endo et al. A gain adjustment control system using a neural
network is designed and its control performance examined and
compared by numerical simulation and experiment. In this study, we
designed the feedback gain to correspond to the coupling coefficient
of the neural network, and stabilized the learning by giving the
initial value to the coupling coefficient of the neural network, thereby
shortening the learning time. Also, in order to adjust the gain value in
real time, a sequential correction type (online learning) that repeats
learning at every sampling was adopted as the learning scheme of
the neural network. As a result, it was confirmed that by using
the using the neural network, the value of the feedback gain is
adaptively changed and the target contact force converges around
0.35 seconds. Comparing with the fixed gain results, it takes shorter
time for convergence to the target value by 0.8 seconds, the proposed
controller is confirmed to be more effective for the contact force
control of the flexible arm.

Keywords—Flexible arm, contact force control, neural networks,
gain tuning

I. INTRODUCTION

FOR heavy and highly rigid robotic arms used in factories
and the like, it is common to increase the rigidity by

increasing the wall thickness of the arm so as to obtain 
high accuracy in determining the position of the tip. In 
recent years, however, there has been an increasing demand 
for weight reduction of robot arms in order to realize high 
speed operation and energy saving. As the rigidity decreases 
accordingly, the influence of elastic deformation due to the 
flexibility of the arm becomes large, so that position error 
and elastic vibration cannot be ignored [1,2,3]. Against such 
a background, researches on control of flexible manipulators 
have been actively conducted.

In addition to the requirement mentioned above in regards 
to need for lightweight roots, use of nursing care robots and 
welfare robots under human-contacting environments is on the 
rise, so it is necessary to control the contact force in addition to 
the positioning control to work safely together with people[4].

In this paper, we examine the force control problem on
the constrained one-link flexible arms. In this conventional
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study, we propose to extend the simple boundary feedback 
consisting of a bending moment at the root of the flexible 
arm and its time derivative against the force control problem 
of the constrained one-link flexible arm earlier developed 
by Endo et als [5,6]. In their works, feedback control was 
used to obtain the exponential stability of the closed loop 
system. Researchers in [7,8,9] conducted several simulations 
to examine the effectiveness of feedback techniques involving 
tuning the feedback gains, but the method of adjusting the 
performance verification and feedback gain by the experiment 
of the proposed controller remained a problem.

Therefore, in this research, we developed a one-link flexible 
arms, first to experimentally verify the controller proposed by 
Endo et al. and confirmed its effectiveness. Next, we designed 
a control system using a neural network controller for auto-
tuning feedback gains. We experimentally verified compared 
and examined the control performance of the neuro controller 
against the fixed gain controller earlier proposed by Endo. 
Similar work in literature related to the control of flexible 
manipulator using neural networks includes [10,11,12].

II. MODELLING OF ONE LINK FLEXIBLE ARM

The model of one link Flexible Bernoulli-Euler Arm in this 
study is shown in Figure 1. The base of Flexible Bernoulli-

Fig. 1. Flexible Bernoulli-Euler Arm contact with an object

Euler Arm is equipped with a motor to rotate the arm, and
rotation is controlled by the actuator. Also, the tip of the arm
is in contact with the object. Variables used in the derivation
are; length of arm is l, linear density ρ of arm, secondary
moment of area I , Young’s modulus E, moment of inertia J
of the motor, torque of motor τa(t), motor rotation angle θ(t).
Further, w(x, t) is the transverse displacement of the point
x on the X axis of the arm at a certain time, the equation
of motion and the boundary condition of this model can be
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obtained as follows.

w(x, t) − xθ(t) = y(x, t)

y(x, t) +
EI

ρ
y′′′′(x, t) = 0

Jθ(t) = τa(t) − EIw′′(0, t) = τ(t)

y(0, t) = y(l, t) = y′′(l, t) = lθ(t) − w(l, t) = 0

EIw′′′(l, t) = λ(t)

To control the contact force of the tip of the arm, it is necessary
to consider boundary control. Here, denoting the target contact
force by λd and the target values are denoted as yd(x) and θd,
the following relational expression is obtained.

yd(x) =
λd

6EI
x(2l2 − 3lx+ x2) (1)

θd = −yd(0) = − l
2λd

3EI

The vibration suppression control law is obtained as follows 
[5].

τ(t) = −k1EI[y′′(0, t) − y′′d (0)] − k2EIẏ
′′(0, t) (2)

Where the feedback gains k̃1 and k̃2 are positive constants.
In this control law 2, the first item is the bending moment
EIy′′(0, t) of the base of the arm, we desire that the bending
moment will approach the target value EIy′′d (0, t) in a manner
that is asymptotic. The second item is a term for vibration
suppression.

This section shows that for flexible arms with one end
fixed to the control motor and the other end free, this has the
effect of suppressing the vibration of the arm [9]. The Laplace 
transform of the equation of motion, the boundary condition, 
and the control law is as follows.

y(x, s) = w(x, s) − xθ(s)

0 = s2y(x, s) +
EI

ρ
y′′′′(x, s) (3)

Js2θ(s) = τa(s) − EIw′′(x, s) = τ(s)

y(0, s) = y(l, s) = y′′(l, s) = lθ − w(l, s) = 0

λ(s) = EIw′′′(l, s)

τ(s) = −k̃1EI[y′′(0, s) − 1

s
y′′d (0)] − k̃2sEIy

′′(0, s)

(4)

Solving for y(x, s) from equation 3 where F1(s), F2(s), F3(s)
and F4(s) are unknowns and j is the complex operator for
imaginary values, yields

y(x, s) =F1(s)e−j(
s2E3I3ρ

EI )
1
4
x

+ F2(s)e−j(
s2E3I3ρ

EI )
1
4
x

+ F3(s)ej(
s2E3I3ρ

EI )
1
4
x

+ F4(s)ej(
s2E3I3ρ

EI )
1
4
x

(5)

and with
s2θ(s) =

τ(s)

J
(6)

Substituting 4 into equation 6 and taking k1 = k̃1/J , k2 =
k̃2/J

s2θ(s) = −k1EI[y′′(0, s) − 1

s
y′′d (0)] − k2sEIy

′′(0, s) (7)

From 5

y′′(0, s) = − F1(s)
√
−s2E3I3ρ

E2I2
+
F2(s)

√
−s2E3I3ρ

E2I2

− F3(s)
√

−s2E3I3ρ

E2I2
+
F4(s)

√
−s2E3I3ρ

E2I2
(8)

From 1
y′′d (0) =

λdl

sEI
(9)

Substituting equations 8 and 9 into the equation 7

s2θ(s) = − 1

EIs
(−k1F1(s)

√
−s2E3I3ρs

+ k1F2(s)
√
−s2E3I3ρs

− k1F3(s)
√

(−s2E3I3ρs

+ k1F4(s)
√

−s2E3I3ρs

+ k1λdlEI − k2
√
−s2E3I3ρF1(s)

+ k2s
2
√

−s2E3I3ρF2(s)

− k2s
2
√
−s2E3I3ρF3(s)

+ k2s
2
√
−s2E3I3ρ)F4(s)) (10)

θ(s) =
−s(k1 + sk2)(−F1(s) + F2(s) − F3(s)

EIs3

+
F4(s))

√
−s2E3I3ρ− k1λdlEI (11)

EIs3 Substituting 
equations 5 and 11 into equation 3

w(x, s) =F1(s)e−j(
s2E3I3ρ

EI )
1
4
x

+ F2(s)e−j(
s2E3I3ρ

EI )
1
4
x

+ F3(s)e−j(
s2E3I3ρ

EI )
1
4
x

+ F4(s)e−j(
s2E3I3ρ

EI )
1
4
x

− x(−s(k1 + sk2)(F1(s))
√

−s2E3I3ρ− k1λdlEI)

EIs3

+
x(−s(k1 + sk2)F2(s)(

√
−s2E3I3ρ− k1λdlEI))

EIs3

− x(−s(k1 + sk2)F3(s)(
√
−s2E3I3ρ− k1λdlEI))

EIs3

+
x(−s(k1 + sk2)F4(s)(

√
−s2E3I3ρ− k1λdlEI))

EIs3
(12)

w′′′(l, s) =
1

E3I3
[(−s2E3I3ρ)

3
4 IF1(s)ej(

s2E3I3ρ
EI )

1
4
x

− F2(s)ej(
s2E3I3ρ

EI )
1
4
x

− IF3(s)ej(
s2E3I3ρ

EI )
1
4
x

1
4
x

(13)+ F4(s)e
j( s

2E
E

3

I
I3ρ ) ] 

Substituting equation 13 into equation 4

λ(s) =
1

E2I2
[(−s2E3I3ρ)

3
4 (IF1(s)ej(

s2E3I3ρ
EI )

1
4
x

− F2(s)ej(
s2E3I3ρ

EI )
1
4
x

− IF3(s)ej(
s2E3I3ρ

EI )
1
4
x

1
4
x

+ F4(s)ej( s
2E
E

3

I
I3ρ ) )] (14) 

By substituting the four unknowns F1(s), F2(s), F3(s), F4(s) 
from the simultaneous equations of the equation 4 into 12, we
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get the general solution of w(x, s). Based on the above, the
block diagram of the 1-link Flexible Arm system is shown in
Figure 2.

Fig. 2. Block diagram of 1 link flexible Bernoulli-Euler Arm

III. DETERMINATION OF FEEDBACK GAINS k̃1 , k̃2 BY
SIMULATION

In the simulation, the cross sectional area A = bh (m2), the
geometrical moment of inertia I = bh3

12 (m4), the linear density
ρ (kgm−1) is obtained as ρ = ρabh. The feedback gain to be 
used is set to k1 = 1.2 and k2 = 0.5 obtained by trial and 
error. Hereinafter, assuming that the target contact force λd = 
1N , the results of the deflection distance at the arm t ip of the 
model, the rotation angle of the motor, and the time response 
of the contact force exerted on the object by the arm tip are 
shows in Figure 3.

Fig. 3. Numerical result of moment-PD control.

As can be seen from Figure 3, since the contact force at the 
tip of the arm converges to the target value around 2.3 seconds, 
the moment-PD control is also effective for this model. From 
this result, the values of feedback gain used in this research 
are set to k1 = 1.2 and k1 = 0.5.

IV. DESIGN OF CONTROL SYSTEM USING NEURAL
NETWORK

For the purpose of shortening the convergence time from 
that observed using the feedback gain determined by trial and 
error as an initial value, we designed a control system that 
tunes gain adaptively. In this research, we take advantage of 
the numerous strengths on the artificial neural network, primar-
ily, that it can be used to approximate any nonlinear function. 
The neural network to be used is a three-layer hierarchical 
type having three units in the input layer, one hidden neuron 
and one neuron in the output layer corresponding to the driving 
torque. Also, the input is the target value and the present value 
of the bending moment of the base of the arm and the present 
value of deflection, a nd t he s igmoid f unction i s u sed f or the 
output function of the hidden layer and the output layer. As 
the learning method, the error backpropagation method is used 
and the steepest descent method is used for the updating the 
coupling coefficient between the units in an online version. 
Figure 3 shows the block diagram of the control controller.

Fig. 4. Neural network control system.

Input Hidden Output
layer layer layer

w1

w2

w3

w4

i1

i2

i3

h1 o1

Fig. 5. Three-layered neural network.

V. DESIGN EXPERIMENTAL SETUP

Figure 4 shows the overall view of the 1-link flexible arm to 
be controlled. The material of the arm is aluminum (3003), the 
sectional shape is a rectangle, the distance from the root is l = 
0.275 m. A brushed DC motor equipped with a metal gearbox 
with a gear ratio of 50:1 and equipped with an integrated type 
orthogonal encoder is attached at the root of the arm to provide 
the driving torque. The resolution of the encoder is 64 counts
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TABLE I
SYSTEM PARAMETERS

Parameter Symbol Dimension
Height h 0.02 m
Breadth b 0.00447 m
Length l 1.05 m
Density ρa 7874 kgm-3
Mass moment of inertia Iρ 2.79×10−4kgm
Young’s modulus E 2.06×10−11 Pa

per rotation of the motor shaft (corresponding to 3200 counts 
per shaft rotation of gearbox output). In order to measure the 
elastic deformation in the direction of rotation of the motor, the 
strain gauge is attached in a 2-gauge method. The parameters 
used in this study are shown in Table I.

Fig. 6. link flexible arm.

Figure 7 shows a conceptual diagram of the system config-
uration used in this study.

Fig. 7. Experiment system.

A control system consist of Laboratory Virtual Instrumen-

tation Engineering Workbench(LabVIEW) manufactured by 
National Instrument installed on a PC running Microsoft 
Windows 7 operating system. LabVIEW makes it easier to 
express complex logic on a diagram by using a graphical pro-
gramming approach to visualize every aspect of an application. 
Designing a distributed test, measurement and control system 
can be performed efficiently. F or t he c ontroller, N I myRIO 
(manufactured by National Instrument Corporation) embedded 
hardware device for education is used. For the force sensor, 
2 kg of load cell single point (beam type) manufactured by 
Sensor and Control is amplified b y a n a mplifier ci rcuit and 
used. It is placed so that it will be in vertical contact with the 
tip of the arm. Experiment is conducted with a dynamic strain 
measuring instrument (DPM 713 B made by Kyowa Denki) 
with the low pass filter set at 100 Hz, the measurement range 
set at 500µΩ, and the configuration v alue s et a t 500µε/2V. 
W1 = 1.7, W2 = 1.2, W3 = -1.0 are given to the initial 
value of the coupling coefficient o f t he n eural n etwork, and 
a random number is used for W4. Learning is performed at 
every sampling time of 2milliseconds, and the experiment is 
performed with the target value contact force λd set to 1N. 
Figure 8 shows temporal changes of the feedback gain (k1, k2), 
Figure 9 shows the distortion of the base of the arm, deflection 
of the arm tip, the rotation angle of the motor, and the contact 
force.

Fig. 8. Time response of feedback gain.

From Figure 9, the blue line is the moment-PD control and 
the red line is the NN-moment-PD control and is smoothed 
using the median filter t o m ake c omparison e asier. F rom this 
result, it is understood that the time required for convergence 
is 0.8 seconds earlier for the NN-moment-PD control that 
adaptively changes the gain than the fixed moment-PD control. 
In addition, it can be seen that the control system to which 
the NN-moment-PD control is applied stably converges to 
the target value. From the above, it is confirmed t hat by 
designing the control system using the neural network as the 
gain adjustment method, it is possible to adaptively change the 
value of the gain and to quickly converge to the target value 
of the contact force, and the controller proposed in the actual 
machine. These results confirms the effectiveness of this study 
in terms of enhancing the speed of convergence.

VI. CONCLUSION

In this research, focusing on force control by a constrained
one link flexible arm, we fabricated a one-link flexible arm and
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Fig. 9. Transient responses; blue line: Moment-PD; red line: NN-Moment-PD

developed a simple boundary feedback controller (Moment-
PD control) consisting of bending moment at the base of
the arm proposed by Endo et al. A control system using a
neural network was designed as a gain adjustment method, and
comparison and examination of control performance by nu-
merical simulation and actual machine were performed. First,
regarding moment-PD control, general solutions are derived
from the model by formulating a theoretical expression from
the model, and the value of the feedback gain to be used in this
research is determined using numerical simulation. Thereafter,
using those values on an experimental laboratory flexible
arm, it was confirmed that the target contact force converged
about 1.15 seconds. From this, we confirmed the effectiveness
of the moment-PD control proposed by Endo et al. Next,
we designed the control system applying the neural network
as the gain adjustment method to enhance the performance
obtained with fixed gains. Weight updating scheme adopted
in this work is the online error backpropagation in which
learning is repeated for each sampling for learning timing
of the neural network. Analyzing the experimental results, it
was confirmed that by using the control system employing the
neural network, the value of the feedback gain is adaptively
changed, and the target contact force converges around 0.35
seconds. Relative to the control law having fixed gains, we
succeeded in enhancing the time it takes for convergence to
the target value by 0.8 seconds confirming the effectiveness
of the controller proposed in the actual machine. The learning
rate employed in this is fixed, as a future prospect, we propose
to enhance learning by the introduction of adaptive learning
rate. This way, the learning rate will be set to higher values
when the error is high and to smaller values when the error
decrease to lower values. The learning will gradually decay
as the network learns and approach the target values. We also
plan to compare the performance of this scheme with other

popular machine learning schemes like support vector machine
and deep learning.
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