
  
Abstract-With the increase in the use of mobile devices fitted with 
wireless local area networks (WLANS) technologies there is need for 
accelerated studies on these systems to improve on the quality of 
service (QoS) provided to the users. Different methods have been used 
in signal modeling including deterministic and empirical models. This 
study is aimed at comparing the performance of predicting Wi-Fi 
signal propagation along a corridor using Particle Swarm Optimization 
(PSO) trained Adaptive Neural Fuzzy Inference System (ANFIS), 
ANFIS and PSO trained ANFIS with a random input. The mean square 
error, root mean square and standard deviation of the predicted signal 
were determined and compared. The study was undertaken using a Wi-
Fi router as the transmitter and a mobile phone as the receiver in the 
process of data collection. The measured values were then used in the 
modeling. It was found that the predicted values based on PSO trained 
ANFIS with a random input were close to actual measured values as 
from the undertaken analysis giving the best prediction.  
Keywords; Wi-Fi, QoS, WLANS, ANFIS, PSO-ANFIS 
 

I. INTRODUCTION 
Wi-Fi networks form one of the largest market segments of 

wireless networks. Coverage in line of sight (LOS) 
environments is limited both by physical obstacles and 
structural barriers, while in built environments, the main 
obstacles are walls [1]. What is common for both is interference 
in the wireless spectrum. The most commonly used ISM bands 
for Wi-Fi networks are at 2.4 GHz and 5 GHz, and the signals 
at such high frequencies do not easily pass through the 
obstacles. To increase connectivity and extend coverage, Wi-Fi 
networks use limited transmission powers, typically up to 100 
mW. This gives connectivity of a few tens of meters, even 
through walls. At the same time, LOS connectivity may reach 
significantly greater distances, causing far away nodes to 
interfere in very unusual patterns.  
ANFIS is one of the most current techniques used in function 
approximation besides other very many applications like 
classification. The technique is obtained by combining the 
Neural Networks and Fuzzy Logic concepts which are based on 
numerical analysis and natural language respectively [3].  
PSO originally by Doctor Kennedy and Eberhart in 1995, used 
to train ANFIS and other AI processes is based on the 
intelligence of swarms as they move in search of food [9].  
This study investigated the prediction of signal coverage of Wi-
Fi networks using PSO trained ANFIS. 
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A. Statement of the problem 
WLANS are increasingly becoming a very important concept in 
our lives at home and work equally. Scientists have done 
various studies in regard to this technology and continue to do 
the same to ensure quality of service (QoS) is improved to the 
ever growing number of users. In view of this, the idea of also 
adding to the progressing research in this field led to this study. 
PSO trained ANFIS is commonly used in approximating 
functions because of their advantages that include high 
accuracy and better computational efficiency. 
 

B. Research objectives 
Main objective; 
To Compare the performance of PSO trained ANFIS with a 
random input, PSO trained ANFIS and ANFIS. 
Specific objectives 
1. Measure signal strength with variation of distance along a 

corridor.  
2. Obtain graphical comparisons for the performance of PSO 

trained ANFIS with a random input, PSO trained ANFIS and 
ANFIS. 

 
 

II. LITERATURE REVIEW 
A. Introduction  

Wireless networking works by sending radio transmissions on 
specific frequencies where listening devices can receive them. 
The necessary radio transmitters and receivers are built into Wi-
Fi enabled equipment like routers, laptops and phones. 
Antennas are also key components of these radio 
communication systems, picking up incoming signals or 
radiating outgoing Wi-Fi signals [4], [5]. Some Wi-Fi antennas, 
particularly on routers, may be mounted externally while others 
are embedded inside the device's hardware enclosure [2], [6].  
ANFIS combines the advantages of both neural network and 
fuzzy logic in its operation resulting to a powerful tool in 
approximating functions [3]. 
PSO finds the optimal solution by simulating the social 
behavior of groups as fish schooling or bird flocking. A group 
can achieve the objective effectively by using the common 
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information of every particle (global), and the information 
owned by the particle itself (personal) [9]. 
 
 

B. Other methods used in Wi-Fi signal prediction 
1. COST231 One-Slope Model  

Empirical models describe the signal level loss by empirical 
formulas with empirical parameters optimized by measurement 
campaigns in various buildings to make the empirical 
parameters of the model as universal as possible. The COST231 
One-Slope model (OSM) is the simplest approach to signal loss 
prediction, because it is based only on the distance between the 
transmitter and the receiver. This simplest prediction model 
does not take into account the position of obstacles, the 
influence of which is respected only by the power decay factor 
(2). Factor n and the signal loss at a distance d0 from the 
transmitter L(d) in equation (1) increase for a more lossy 
environment, but they are constant for the whole building [15], 
[16], [17]. 
 
𝐿𝐿𝑂𝑂𝑂𝑂𝑂𝑂 = (𝑑𝑑0) + 𝑛𝑛10 � 𝑑𝑑

𝑑𝑑0
�              (1) 

where: LOSM..............Predicted signal loss (dB)  
L0(d0)............Signal loss at distance d from transmitter (dB)   
n....................Power decay factor (-)   
d....................Distance between antennas (m)   
d0...................Reference distance between antennas (usually 1 
m) (m) 
 

2. Dual-Slope Model 
The path loss in dB is given by experimentally. 
 
𝐿𝐿𝑑𝑑𝑑𝑑 = 𝐿𝐿0,𝑑𝑑𝑑𝑑 +

�
10𝑛𝑛1𝑙𝑙𝑙𝑙𝑙𝑙10𝑑𝑑, 1𝑚𝑚 < 𝑑𝑑 ≤ 𝑑𝑑𝑏𝑏𝑏𝑏

10𝑛𝑛1𝑙𝑙𝑙𝑙𝑙𝑙10𝑑𝑑 + 10𝑛𝑛2𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝑑𝑑
𝑑𝑑𝑏𝑏𝑏𝑏

� , 𝑑𝑑 > 𝑑𝑑𝑏𝑏𝑏𝑏
   (2) 

 
Basically, this model divides the distances into one line-of-sight 
(LOS) and one obstructed LOS region. The break point distance 
dbp takes into account that in indoor environments the 
ellipsoidal Fresnel zone can be obstructed by the ceiling or the 
walls, anticipating the LOS region: 
𝑑𝑑𝑑𝑑𝑏𝑏 = 4ℎ𝑏𝑏ℎ𝑚𝑚

𝜆𝜆
                  (3) 

 
where hb and hm denote the shortest distance from the ground 
or wall of the access point (AP) and station (STA), respectively 
[25]. 
 

3. Partitioned Model 
The path loss in dB is given by 

𝐿𝐿𝑑𝑑𝑑𝑑 = 𝐿𝐿0,𝑑𝑑𝑑𝑑 +

⎩
⎪
⎨

⎪
⎧

20𝑙𝑙𝑙𝑙𝑙𝑙10𝑑𝑑, 1𝑚𝑚 < 𝑑𝑑 ≤ 10𝑚𝑚
20 + 30𝑙𝑙𝑙𝑙𝑙𝑙10 �

𝑑𝑑
10
� , 10𝑚𝑚 < 𝑑𝑑 ≤ 20𝑚𝑚

29 + 60𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝑑𝑑
20
� , 20𝑚𝑚 < 𝑑𝑑 ≤ 40𝑚𝑚

47 + 120𝑙𝑙𝑙𝑙𝑙𝑙10 �
𝑑𝑑
40
� , 𝑑𝑑 > 40𝑚𝑚

 (4) 

 

This model uses pre-determined values for the path loss 
exponents and breakpoint distances, according to previous field 
measurement campaigns [15]. 
 

4. Average Walls Model  
This model is based on the Cost-231 multi-wall except that the 
loss due to obstructing walls is aggregated in just one parameter 
L. Therefore, for a single floor environment, the path loss 
estimated by (5) is modified to 
 
𝐿𝐿𝑑𝑑𝑑𝑑 = 20𝑙𝑙𝑙𝑙𝑙𝑙10𝑑𝑑 + 𝑘𝑘𝑤𝑤𝐿𝐿𝑤𝑤             (5) 
 
where kw denotes the number of penetrated walls. In order to 
determine the parameter Lw, each wall obstructing the direct 
path between the receiver and the transmitter antennas must 
have its loss measured as follows. 
The loss of the first wall in dB is given by: 
 
𝐿𝐿1 = 𝐿𝐿 − 𝐿𝐿0,𝑑𝑑𝑑𝑑 − 20𝑙𝑙𝑙𝑙𝑙𝑙10𝑑𝑑            (6) 
 
Where L0,dB is the path loss obtained at 1 meter distant from the 
transmitter; L denotes the measured total loss from 1 meter 
distant after the obstructing wall.   For the second wall the loss 
of the first wall also must be taken into account. Therefore, the 
loss in dB of the second obstructing wall can be estimated as 
 
𝐿𝐿2 = 𝐿𝐿 − 𝐿𝐿0,𝑑𝑑𝑑𝑑 − 20𝑙𝑙𝑙𝑙𝑙𝑙10𝑑𝑑 − 𝐿𝐿1          (7) 
 
Keeping on the above methodology, the ith wall loss is given 
by 
 
𝐿𝐿𝑖𝑖 = 𝐿𝐿 − 𝐿𝐿0,𝑑𝑑𝑑𝑑 − 20𝑙𝑙𝑙𝑙𝑙𝑙10𝑑𝑑 − ∑ 𝐿𝐿𝑗𝑗𝑖𝑖=1

𝑗𝑗=1         (8) 
 
where the sum spans the losses of walls obtained previously. 
After all wall losses of the environment had been obtained, then 
the wall losses average value is computed and assigned to the 
parameter Lw [15]. 
 

5. Multi-Wall Model  
The OSM is insufficiently accurate for most applications, due 
to the usually inhomogeneous structure of building with long 
waveguiding corridors or large open spaces on one side and 
small complex rooms with many obstacles on the other side. 
For such cases, the more accurate, but still partly empirical, 
Multi Wall model (MWM) employing a site-specific building 
structure description can be used.  
The Multi-Wall model takes into account wall and floor 
penetration loss factors in addition to the free space loss (9). 
The transmission loss factors of the walls or floors passed by 
the straight-line joining the two antennas are cumulated into the 
total penetration loss LWalls (10) or L (11), respectively. 
Depending on the model, either homogenous wall or floor 
transmission loss factors or individual transmission loss factors 
can be used. The more detailed the description of the walls and 
floors, the better the prediction accuracy. The penetration losses 
are optimized as other empirical parameters from 
measurements, so they are not equal to the real obstacle 
transmission losses, but only correspond to the appropriate 
empirical attenuation factors of the obstacles. 
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𝐿𝐿𝑂𝑂𝑀𝑀𝑂𝑂 = 𝐿𝐿1 + 20𝑙𝑙𝑙𝑙𝑙𝑙10(𝑑𝑑) + 𝐿𝐿𝑀𝑀𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 + 𝐿𝐿𝐹𝐹𝑊𝑊𝐹𝐹𝐹𝐹𝐹𝐹𝑊𝑊…………...(9) 
𝐿𝐿𝑀𝑀𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = ∑ 𝑎𝑎𝑤𝑤𝑖𝑖𝑘𝑘𝑤𝑤𝑖𝑖

𝑊𝑊
𝑖𝑖=1 ……………………..…….….........(10) 

𝐿𝐿𝑀𝑀𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑎𝑎𝑓𝑓𝑘𝑘𝑓𝑓……………………….……………......….(11) 
 
LMWM.........Predicted signal loss (dB)   
L1...............Free space loss at a distance of 1m from transmitter 
(dB) 
LWalls..........Contribution of walls to total signal loss (dB)   
LFloors.........Contribution of floors to total signal loss (dB)   
awi..............Transmission loss factor of one wall of i-th kind 
(dB)  
kwi...............Number of walls of i-th kind (-)   
I..................Number of wall kinds (-)   
af................Transmission loss factor of one floor (dB)  
kf…………Number of floors (-) 
 
Since the MWM considers the positions and specific 
transmission loss factor of walls, its results are more accurate 
than those of OSM. However, the shadowing effect of more 
closely adjacent walls are often overestimated, because their 
cumulated transmission loss factors lead to very small values of 
predicted signal level behind these elements. In other words the 
real signal may not follow a straight-line between antennas, but 
it can go around the walls. The computation time of the MWM 
is also quite short, and the sensitivity of the model to the 
accuracy of the description of the building is limited due to the 
simple consideration of only the number of obstacles passed by 
a straight line. 
 

6. Artificial Neural Networks 
According to [2] indoor radio propagation is a very complex 
and difficult radio propagation environment because the 
shortest direct path between transmit and receive locations is 
usually blocked by walls, ceilings or other objects. Signals 
propagate along the corridors and other open areas, depending 
on the structure of the building. In modeling indoor 
propagation, the following parameters must be considered: 
construction materials (reinforced concrete, brick, metal, glass, 
etc.), types of interiors (rooms with or without windows, 
hallways with or without door, etc.), locations within a building 
(ground floor, nth floor, basement, etc.) and the location of 
transmitter and receiver antennas (on the same floor, on 
different floors, etc.). An alternative approach to the field 
strength prediction in indoor environment is given by prediction 
models based on artificial neural networks. 
 During last years, Artificial Neural Networks (ANN) have 
experienced a great development. ANN applications are already 
very numerous. Although there are several types of ANN’s all 
of them share the following features: exact analytical formula 
impossible; required accuracy around some percent; medium 
quantity of data to process; environment adaptation that allows 
them to learn from a changing environment and parallel 
structure that allows them to achieve high computation speed. 
All these characteristics of ANN’s make them suitable for 
predicting field strength in different environments. The 
prediction of field strength can be described as the 
transformation of an input vector containing topographical and 
morphographical information (e.g. path profile) to the desired 

output value. The unknown transformation is a scalar function 
of many variables (several inputs and a single output), because 
a huge amount of input data has to be processed. Owing to the 
complexity of the influences of the natural environment, the 
transformation function cannot be given analytically. It is 
known only at discrete points where measurement data are 
available or in cases with clearly defined propagation 
conditions which allow applying simple rules like free space 
propagation, etc. 
The problem of predicting propagation loss between two points 
may be seen as a function of several inputs and a single output 
[20]. The inputs contain information about the transmitter and 
receiver locations, surrounding buildings, frequency, etc while 
the output gives the propagation loss for those inputs. From this 
point of view, research in propagation loss modeling consists in 
finding both the inputs and the function that best approximate 
the propagation loss. Given that ANN’s are capable of function 
approximation, they are useful for the propagation loss 
modeling. The feedforward neural networks are very well 
suited for prediction purposes because do not allow any 
feedback from the output (field strength or path loss) to the 
input (topographical and morphographical data).  
The presented studies develop a number of Multilayer 
Perceptron Neural Networks (MLP-NN) and Generalized 
Radial Basis Function Neural Networks (RBF-NN) based 
models trained on extended data set of propagation path loss 
measurements taken in an indoor environment. The 
performance of the neural network based models is evaluated 
by comparing their prediction error (µ), standard deviation (σ) 
and root mean square error (RMS) between their predicted 
values and measurements data. Also a comparison with the 
results obtained by applying an empirical model is done [2]. A 
drawback with multilayered feed-forward networks that contain 
numerous neurons in each layer is the required training time. 
Furthermore, an overly complex ANN may lead to data 
overfitting and, hence, generalization problems [19]. 

C. Adaptive Neuro-Fuzzy Inference System (ANFIS) 
Adaptive Neuro-Fuzzy Inference System (ANFIS) otherwise 
referred to as Adaptive Network-based Fuzzy Inference System 
was proposed in [7]. ANFIS is a blend of Fuzzy Logic (FL) and 
Artificial Neural Network (ANN) that captures the strengths 
and offsets the limitations of both techniques for building 
Inference Systems (IS) with improved results and enhanced 
intelligence. Fuzzy logic is associated with the theory of fuzzy 
set, which relates to classes of objects with rough boundaries in 
which membership is a matter of degree. It is an extensive 
multivalued logical system that departs in concept and 
substance from the traditional multivalued logical systems. 
Much of fuzzy logic may be viewed as a platform for computing 
with words rather than numbers. The use of words for 
computing is closer to human intuition and exploits the 
tolerance for imprecision, thereby lowering the cost of the 
solution [8]. However, there are no known appropriate or well-
established methods of defining rules and membership 
functions based on human knowledge and experience. Artificial 
Neural Networks are made up of simple processing elements 
operating concurrently. These elements model the biological 
nervous system, with the network functions predominantly 
determined by the connections between the elements. Neural 
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Networks have the ability to learn from data by adjusting the 
values of the connections (weights) between the elements. 
Merging these two artificial intelligence paradigms together 
offers the learning power of neural networks and the knowledge 
representation of fuzzy logic for making inferences from 
observations.   

Basic ANFIS Architecture  
The ANFIS architecture described here is based on type 3 fuzzy 
inference system (other popular types are the type 1 and type 
2). In the type 3 inference system, the Takagi and Sugeno's 
(TKS) if-then rules are used [3]. The output of each rule is 
obtained by adding a constant term to the linear combination of 
the input variables. Final output is then computed by taking the 
weighted average of each rule's output. The type 3 ANFIS 
architecture with two inputs (x and y) and one output, z, is 
shown in Fig. 1. 
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Fig. 1. Type 3 ANFIS Architecture. 

 
𝑅𝑅𝑅𝑅𝑙𝑙𝑅𝑅 1: 𝐼𝐼𝐼𝐼 𝑥𝑥 𝑖𝑖𝑖𝑖 𝐴𝐴1 𝑎𝑎𝑛𝑛𝑑𝑑 𝑦𝑦 𝑖𝑖𝑖𝑖 𝐵𝐵1, 𝑡𝑡ℎ𝑅𝑅𝑛𝑛 𝑧𝑧1 =  𝑝𝑝1𝑥𝑥 + 𝑞𝑞1𝑦𝑦 + 𝑟𝑟1 
𝑅𝑅𝑅𝑅𝑙𝑙𝑅𝑅 2: 𝐼𝐼𝐼𝐼 𝑥𝑥 𝑖𝑖𝑖𝑖 𝐴𝐴2 𝑎𝑎𝑛𝑛𝑑𝑑 𝑦𝑦 𝑖𝑖𝑖𝑖 𝐵𝐵2, 𝑡𝑡ℎ𝑅𝑅𝑛𝑛 𝑧𝑧2 =  𝑝𝑝2𝑥𝑥 + 𝑞𝑞2𝑦𝑦 + 𝑟𝑟2 

The ANFIS structure is the functional equivalent of a 
supervised, feed-forward neural network with one input layer, 
three hidden layers and one output layer, whose functionality 
are as described below:  

 
Layer 1 (Fuzzy Layer): Every node in this layer is an adaptive 
layer that generates the membership grades of the input vectors. 
Usually, a bell-shaped (Gaussian) function with maximum 
equal to 1 and minimum equal to 0 is used for implementing the 
node function: 
 

𝑂𝑂𝑖𝑖1 = 𝐼𝐼(𝑥𝑥, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐) = 𝜇𝜇𝐴𝐴𝑖𝑖(𝑥𝑥) = 1

1+|(𝑥𝑥−𝑐𝑐𝑖𝑖) 𝑊𝑊𝑖𝑖|⁄ 2𝑏𝑏𝑖𝑖
  

𝜇𝜇 𝐴𝐴𝑖𝑖(𝑥𝑥) = exp {− ��𝑥𝑥−𝑐𝑐𝑖𝑖
𝑊𝑊𝑖𝑖
�
2
�
𝑏𝑏𝑖𝑖

}     (12) 
  
Where 𝑂𝑂𝑖𝑖1 is the output of the 𝑖𝑖𝑡𝑡ℎnode in the first layer,  𝜇𝜇𝐴𝐴𝑖𝑖(𝑥𝑥) 
is the membership function of input   in the linguistic 
variable 𝐴𝐴𝑖𝑖. The parameter set {𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 , 𝑐𝑐𝑖𝑖} are responsible for 
defining the shapes of the membership functions. These 
parameters are called premise parameters.   
 
Layer 2 (Product Layer): Each mode in this layer determines 
the firing strength of a rule by multiplying the membership 
functions associated with the rules. The nodes in this layer are 
fixed in nature. The firing strength of a particular rule (the 
output of a node) is given by: 

 
𝑤𝑤𝑖𝑖 = 𝑂𝑂𝑖𝑖2 = 𝜇𝜇𝐴𝐴𝑖𝑖(𝑥𝑥). 𝜇𝜇𝑑𝑑𝑖𝑖(𝑦𝑦), 𝑖𝑖 = 1, 2    (13) 

 
Any other T-norm operator that performs fuzzy AND operation 
can be used in this layer.  
 
Layer 3 (Normalized Layer): This layer consists of fixed 
nodes that are used to compute the ratio of the ith rule's firing 
strength to the total of all firing strengths: 
 

𝑤𝑤� = 𝑂𝑂𝑖𝑖3 = 𝑤𝑤𝑖𝑖
𝑤𝑤1+𝑤𝑤2

 , 𝑖𝑖 = 1, 2,     (14) 
 
The outputs of this layer are otherwise known as normalized 
firing strength for convenience.  
 
Layer 4 (Defuzzify Layer): This is an adaptive layer with node 
function given by: 
 

𝑤𝑤𝚤𝚤���𝑧𝑧𝑖𝑖 = 𝑂𝑂𝑖𝑖4 = 𝑤𝑤𝚤𝚤���(𝑝𝑝𝑖𝑖𝑥𝑥 + 𝑞𝑞𝑖𝑖𝑦𝑦 + 𝑟𝑟𝑖𝑖)     (15) 
 
This layer essentially computes the contribution of each rule to 
the overall output. It is defuzzification layer and provides 
output values resulting from the inference of rules. The 
parameters in this layer {𝑝𝑝𝑖𝑖 , 𝑞𝑞𝑖𝑖 , 𝑟𝑟𝑖𝑖} are known as consequent 
parameters.  
 
Layer 5 (Total Output Layer): There is only one fixed node 
in this layer. It computes the overall output as the summation of 
contribution from each rule: 
 

∑ 𝑤𝑤𝚤𝚤���𝑧𝑧𝑖𝑖𝑖𝑖 = 𝑂𝑂𝑖𝑖5 = ∑ 𝑤𝑤𝑖𝑖𝑧𝑧𝑖𝑖
∑ 𝑤𝑤𝑖𝑖𝑖𝑖

𝑖𝑖       (16) 
 
 

D. Particle Swarm Optimization (PSO) 
PSO is a global optimization technique that was developed by 
Eberhart and Kennedy in 1995 [12], the underlying motivation 
of PSO algorithm was the social behavior observable in nature, 
such as flocks of birds and schools of fish in order to guide 
swarms of particles towards the most promising regions of the 
search space. PSO exhibits a good performance in finding 
solutions to static optimization problems where it is considered 
to be better than other algorithms like Genetic Algorithm [14]. 
It exploits a population of individuals to synchronously probe 
promising regions of the search space. In this context, the 
population is called a swarm and the individuals (i.e. the search 
points) are referred to as particles. Each particle in the swarm 
represents a candidate solution to the optimization problem. In 
a PSO system, each particle moves with an adaptable velocity 
through the search space, adjusting its position in the search 
space according to own experience and that of neighboring 
particles, then it retains a memory of the best position it ever 
encountered, a particle therefore makes use of the best position 
encountered by itself and the best position of neighbors to 
position itself towards the global minimum. The effect is that 
particles “fly” towards the global minimum, while still 
searching a wide area around the best solution [11]. The 
performance of each particle (i.e. the “closeness” of a particle 
to the global minimum) is measured according to a predefined 
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fitness function which is related to the problem being solved. 
For the purposes of this research, a particle represents the 
weight vector of NNs, including biases. The dimension of the 
search space is therefore the total number of weights and biases 
[11]. 

The iterative approach of PSO can be described by the 
following steps: 

Step 1: Initialize a population size, positions and 
velocities of agents, and the number of weights and 
biases. 
Step 2: The current best fitness achieved by particle p 
is set as pbest. The pbest with best value is set as gbest 
and this value is stored. 
Step 3: Evaluate the desired optimization fitness 
function 𝐼𝐼𝑏𝑏 for each particle as the Mean Square Error 
(MSE) over a given data set. 
Step 4: Compare the evaluated fitness value 𝐼𝐼𝑏𝑏 of each 
particle with its pbest value. If 𝐼𝐼𝑏𝑏< pbest then pbest = 
𝐼𝐼𝑏𝑏 and bestxp= 𝑥𝑥𝑏𝑏,  𝑥𝑥𝑏𝑏 is the current coordinates of 
particle p, and bestxp is the coordinates corresponding 
to particle p’s best fitness so far. 
Step 5: The objective function value is calculated for 
new positions of each particle. If a better position is 
achieved by an agent, pbest value is replaced by the 
current value. As in Step 1, gbest value is selected 
among pbest values. If the new gbest value is better 
than previous gbest value, the gbest value is replaced 
by the current gbest value and this value is stored. 
If 𝐼𝐼𝑏𝑏< gbest then gbest = p, where gbest is the particle 
having the overall best fitness over all particles in the 
swarm. 
Step 6: Change the velocity and location of the 
particle according to Equations 9 and 10, respectively. 
Step 7: Fly each particle p according to Equation 9.  
Step 8: If the maximum number of predetermined 
iterations (epochs) is exceeded, then stop; otherwise 
Loop to step 3 until convergence.  
 
𝑉𝑉𝑖𝑖 = 𝑤𝑤𝑉𝑉𝑖𝑖−1 + 𝑎𝑎𝑐𝑐𝑐𝑐 ∗ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() ∗ �𝑏𝑏𝑅𝑅𝑖𝑖𝑡𝑡𝑥𝑥𝑏𝑏 − 𝑥𝑥𝑝𝑝� 

                            +𝑎𝑎𝑐𝑐𝑐𝑐 ∗ 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑() ∗ �𝑏𝑏𝑅𝑅𝑖𝑖𝑡𝑡𝑥𝑥𝑥𝑥𝑏𝑏𝑥𝑥𝑊𝑊𝑡𝑡 − 𝑥𝑥𝑝𝑝�   
 (17) 

 
Where acc is the acceleration constant that controls how 
far particles fly from one another, and rand returns a 
uniform random number between 0 and 1. 

 
𝑥𝑥𝑝𝑝 = 𝑥𝑥𝑝𝑝𝑝𝑝 + 𝑉𝑉𝑖𝑖       (18) 

 
𝑉𝑉𝑖𝑖 is the current velocity, 𝑉𝑉𝑖𝑖−1 is the previous velocity, 𝑥𝑥𝑝𝑝 is the 
present location of the particle, 𝑥𝑥𝑝𝑝𝑝𝑝 is the previous location of 
the particle, and i is the particle index. In step 5 the coordinates 
best𝑥𝑥𝑝𝑝 and bestxgbest are used to pull the particles towards the 
global minimum [11]. 
 
Learning by PSO 
To develop an accurate process model using ANFIS, the 
training, and validation processes are among the important 
steps. In the training process, a set of input-output patterns is 
repeated to the ANFIS. From that, weights of all the 

interconnections between neurons are adjusted until the 
specified input yields the desired output. Through these 
activities, the ANFIS learns the correct input-output response 
behavior [11]. 
The way PSO will be employed for updating the ANFIS 
parameters is explained in this section. The ANFIS has two 
types of parameters which need training, the antecedent part 
parameters and the conclusion part parameters. The 
membership functions are assumed Gaussian as in equation 
(3.4), and their parameters are {𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 , 𝑐𝑐𝑖𝑖}, where 𝑎𝑎𝑖𝑖 is the 
variance of membership functions and 𝑐𝑐𝑖𝑖 is the center of 
membership functions (MFs). Also is 𝑏𝑏𝑖𝑖  a trainable parameter. 
The parameters of conclusion part are trained and here are 
represented with {𝑝𝑝𝑖𝑖 , 𝑞𝑞𝑖𝑖 , 𝑟𝑟𝑖𝑖} [11]. 

 
Applying PSO for Training ANFIS parameters  
There are 3 sets of trainable parameters in antecedent part 
{𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 , 𝑐𝑐𝑖𝑖}, each of these parameters has N genes. Where, N 
represents the number of MFs. The conclusion parts parameters 
({𝑝𝑝𝑖𝑖 , 𝑞𝑞𝑖𝑖 , 𝑟𝑟𝑖𝑖}) also are trained during optimization algorithm. 
The fitness is defined as mean square error (MSE) [11].  
Parameters are initialized randomly in first step and then are 
being updated using PSO algorithms. In each iteration, one of 
the parameters set are being updated i.e. in first iteration for 
example 𝑎𝑎𝑖𝑖s are updated then in second 𝑏𝑏𝑖𝑖iteration are updated 
and then after updating all parameters again the first parameter 
update is considered and so on [11], [21]. 
 
Evaluation Criteria 
The performance of the proposed approach will be evaluated by 
measuring the estimation accuracy. The estimation accuracy 
can be defined as the difference between the actual and 
estimated values. The first typical fitting criterion (MSE) is 
defined as in Equation 11: 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2𝑁𝑁
𝑖𝑖=1       (19) 

 
where N is the total number of data, y is actual target value, 

and 𝑦𝑦� its estimated target value. 
The experiments will be implemented many times to ensure that 
MSE converges to a minimum value. 
The initial values for weights will randomly be assigned within 
the range [-1; 1]. The training accuracy is expressed in terms of 
the mean absolute error, standard deviation (SD) and root mean 
squared error (RMSE). The absolute mean error (ME) is 
expressed as 
 

𝑅𝑅𝑖𝑖 = |𝑃𝑃𝑚𝑚𝑥𝑥𝑊𝑊𝑊𝑊𝑚𝑚𝐹𝐹𝑥𝑥𝑑𝑑 − 𝑃𝑃𝑊𝑊𝑖𝑖𝑚𝑚𝑚𝑚𝑊𝑊𝑊𝑊𝑡𝑡𝑥𝑥𝑑𝑑|, 
�̅�𝑅 = 1

𝑁𝑁
∑ 𝑅𝑅𝑖𝑖𝑁𝑁
𝑖𝑖=1 ,      (20) 

 
where terms measured and simulated denote received signal 
strength that are obtained by measurement and simulated by 
ANFIS, while N is total number of samples. Standard deviation 
is given by 
 

𝜎𝜎 = � 1
𝑁𝑁−1

(𝑅𝑅𝑖𝑖 − �̅�𝑅)2      (21) 
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The root mean squared error (RMSE) is calculated 
according to the expression 
 

𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 = √𝜎𝜎2 + �̅�𝑅2       (22) 
 
 
 

III. RESEARCH METHODOLOGY 
A. Practical Measurement of PR 

Distance in metres

Router 

Mobile phone

 
Fig. 2: Diagram of the experimental Set up 
 

 
Fig. 3: Image for the experimental Set up 
 

 
Fig. 4: Image for the experimental Set up in a corridor 
 
The steps for carrying out the experiment are as follows; 

i. A tape measure was used to measure a distance of 42m 
that was subdivided into 42 points each 1m apart. 

ii. The Tecno R7 mobile device was moved metre by 
metre away from the D-link router and took the 
readings for every 1m to 42m. 

 
B. Data analysis 

For this study, the content analysis technique was employed to 
analyze the data. Matlab graphical representation techniques 
were used to analyze quantitative data. The full analysis on the 
key findings of this study is presented in the section below. 
 

IV. FINDINGS AND DISCUSSIONS 
A. Results 

For the LOS case, the results were as shown in fig. 5 below; 
 

 
Fig. 5: LOS received signal variation with distance 
 
Based on the measurement and Matlab analysis, the following 
graphs were generated for training and testing. 
 

 
Fig. 6: Training LOS received signal variation with distance 
 
 
 
 
 

0 5 10 15 20 25 30 35 40 45
-65

-60

-55

-50

-45

-40

-35

Distance in metres

M
e
a
s
u
re

d
 R

S
S

I 
in

 d
B

Measured RSSI in dB against Distance in metres

0 5 10 15 20 25 30 35 40 45

Distance in metres

-70

-65

-60

-55

-50

-45

-40

-35

rs
s
i 
in

 d
B

Training
rssi versus distance

281

Proceedings of the Sustainable Research and Innovation Conference, 
JKUAT Main Campus, Kenya 

2 - 4 May, 2018



 
Fig. 7: Training Predicted and measured received signal 
variation with distance 
 
TABLE I: TRAINING PARAMETERS  

 MSE RMSE Standard 
deviation 

ANFIS 6.6383 2.5765 1.6893 
PSO-ANFIS 6.7002 2.3875 2.4127 
PSO-ANFIS 
with random 
input 

0.015114 0.12294 0.12422 

 

 
Fig. 8: Testing Predicted and measured received signal 
variation with distance 
 
TABLE II: TESTING PARAMETERS  

 MSE RMSE Standard 
deviation 

ANFIS 7.709 2.7765 1.8682 
PSO-ANFIS 8.7614 2.9583  2.6985 
PSO-ANFIS 
with random 
input 

0.30325 0.55068  0.55915 

 
The graphs generated using the values obtained during the 
experiment and predicted are as shown above. The signal 

strength reduces gradually as expected due to the increase in 
distance between the transmitter and the receiver. For LOS 
propagation the time graphs show a variation in signal strength. 
This is due to variations in the channel conditions. The 
channel's transfer characteristics may vary due to movements 
of the transmitter, receiver or people in the indoor environment. 
The transmitted signal may reach the receiver through multiple 
reflected paths. These reflected signals may add up to 
strengthen each other or they may add up to cancel each other. 
Also, presence of objects in the path between the transmitter 
and the receiver also reduces the signal power arriving at the 
receiver. All this manifest themselves in the fluctuations in the 
power levels of different received signals. 
This manifests in the first graph which has variations from the 
first to the last points. 
Fig. 7 is the training predicted signal using PSO trained ANFIS 
with a random input, PSO trained ANFIS and ANFIS prediction 
tools. The variation is smooth trying to follow the actual 
measured values for PSO trained ANFIS with a random input 
tool. The same applies to the testing graph as shown in fig. 8. 
The different parameters obtained by comparing the measured 
and predicted values for the training and testing plots are given 
as; 
The training, mean square error (MSE) was obtained as 
0.015114, root mean squared error (RMSE) as 0.12294 and 
standard deviation (SD) as 0.12422 for PSO trained ANFIS 
with a random input, 6.7002, 2.3875 and 2.4127 for PSO 
trained ANFIS and 6.6383, 2.5765 and 1.6893 for ANFIS 
while the testing mean square error (MSE) was obtained as 
0.30315, root mean squared error (RMSE) as 0.55068 and 
standard deviation (SD) as 0.55915 for PSO trained ANFIS 
with a random input, 8.7614, 2.9583  and 2.6985 for PSO 
trained ANFIS and 7.709, 2.7765 and 1.8682 for ANFIS. 
 

V. CONCLUSIONS AND RECOMMENDATIONS 
A. Conclusion 

From experiment and calculations performed as a result 
thereof, it can be stated that the power of a signal transmitted in 
free space decreases with increase in distance from the source 
for both predicted and measured values.  

The values obtained above indicate the closeness of predicted 
to the measured values indicating that the PSO trained ANFIS 
is very accurate in modelling wireless prediction. 

 
 

B. Limitations of the study   
The major limitation of the study was random behavior of the 

received signal. 
 

C. Areas of further study   
Future research should include the use of different training 

methods and compare the resulting parameters. 
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