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Abstract—In this paper, a bond graph dynamic model for a valve-
controlled hydraulic cylinder has been developed. A simplified bond
graph model of the inter-actuator interactions in a multi-cylinder
hydraulic system has also been presented. The overall bond graph
model of a valve-controlled hydraulic cylinder was developed by
combining the bond graph sub-models of the pump, spool valve and
the actuator using junction structures. Causality was then assigned
in order to obtain a computational model which could be simulated.
The causal bond graph model of the hydraulic cylinder was verified
by comparing the open loop state responses to those of an ODE
model which had been developed in literature based on the same
assumptions. The results were found to correlate very well both
in the shape of the curves, magnitude and the response times,
thus indicating that the developed model represents the hydraulic
dynamics of a valve-controlled cylinder. A simplified model for inter-
actuator interaction was presented by connecting an effort source with
constant pump pressure to the zero-junction from which the cylinders
in a multi-cylinder system are supplied with a constant pressure from
the pump. On simulating the state responses of the developed model
under different situations of cylinder operations, indicated that such
a simple model can be used to predict the inter-actuator interactions.

Keywords—Bond graphs, Inter-actuator interactions, Valve-
controlled hydraulic cylinder.

I. INTRODUCTION

MOBILE hydraulic systems such as excavators, hydraulic
cranes, hydraulic robots, among others, consist of ma-

nipulator joints which are powered by hydraulic cylinders.
More than one cylinders are consequently powered by one
hydraulic pump.

Among the characteristics which must be captured by the
dynamic model of a mobile hydro-mechanical system with
an articulated arm are the actuator interactions which are
important since they significantly affect the overall response of
the system [1]. The interaction between the different actuators
occurs due to the fact that they are powered by a single power
engine. When multiple actuators request flow simultaneously,
the power demand may exceed the capacity of the engine.
The hydraulic system is forced to reduce the flow to the
cylinders to keep the engine from stalling. Therefore the
actuator interaction is an important part of system dynamics
and must be modeled.

Singh et al. [2] used a simple approach to handle the flow
distribution between multiple hydraulic actuators. The authors
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assumed a fixed pump flow (even though pumps vary their
output), and assumed that the circuit with a valve closest to
the pump gets all the flow it requires, and that the remaining
flow is distributed among the rest. This approach is valid
when the cylinders have similar force loads, but not when the
cylinders have very different force loads. There is no literature
available on how to model the flow distribution of multiple
cylinders without resorting to detailed model. This research
work addresses this shortcoming.

The relatively new bond graph modeling technique, has
been proposed to successfully model the interaction of power
between elements on a system. Bond graphs model the power
flow in a system and the state equations are formulated directly
from this graphical representation. As this paper demonstrates,
bond graphs can quickly and accurately model and simulate
the dynamics in a hydraulic system, including the dynamic
interaction of the actuators involved.

Once the bond graph model is ready, the system equations
can be derived from it algorithmically in a systematic manner.
This process is usually automated using appropriate softwares
such as ENPORT, CAMP-G, TUTSIM 20-SIM, SYMBOLS
2000, etc which support bond graphs.

The concept of bond graphs was originated by Paynter [3].
The idea was further developed by Karnopp and Rosenberg
in their textbooks [4]–[6], such that it could be used in
practice. By means of the formulation by Breedveld [7] of
a framework based on thermodynamics, bond graph model
description evolved to a systems theory. More information
about bond graphs can be found in [4]–[10].

In this paper, the hydraulic dynamics of a valve-controlled
hydraulic cylinder is developed and validated, and then a
simplified model of inter-actuator interactions on a multi-
cylinder hydraulic system is presented. The models are derived
from first principles in order to contribute to educational
material regarding the bond graph modeling tool.

II. MODELING THE DYNAMICS OF A DOUBLE ACTING
VALVE-CONTROLLED HYDRAULIC CYLINDER

A. Bond Graph model Development

The hydraulic dynamics to be modeled are the actuator
dynamics, which herein refer to the dynamics of the hydraulic
pump, spool valves and the hydraulic actuator as shown in
Fig. 1.

The following is a summary of the assumptions that were
made when developing the bond graph dynamic model of a
valve-controlled hydraulic cylinder;
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Fig. 1. Schematic diagram of a valve controlled hydraulic cylinder.

• The hydraulic pump delivers a constant supply pressure,
irrespective of the oil flow demand. This implies that PS

is constant.
• The reservoir (tank) pressure is constant and at atmo-

spheric pressure. Since gauge pressures are considered
then Pr = 0.

• The flows through the valves are turbulent.
• The leakage flow through the clearance between the

cylinder and the piston is laminar.
• Possible dynamical behavior of the pressure in the trans-

mission lines between valves and actuators are assumed
to be negligible. This means that PA = P1, and PB = P2.

• The spool valve is matched and symmetrical. Its band-
with is much higher than the band-width of the cylinder,
so that the valve dynamics due to inertia can be neglected.
[11]

• External leakage Qel between the piston rod and the ex-
ternal seals is neglected. This is because external leakage
on the cylinder must be avoided by use of improved
sealing technology.

• Inefficient volumes, i.e., the volume of the fluid in the
hoses between the valve and the actuator, and the volume
of oil existing in the cylinder, are neglected.

• The cylinder chambers are assumed to be rigid, i.e., no
compliance in the walls. The stiffness of the cylinder
chambers is more than five times higher than that of
the hydraulic oil. Therefore when operating at the same
pressure range, the compliance effect from cylinder walls
is negligible compared to the oil compliance.

• Viscous friction effects in the piston seals are assumed
to be dominant compared to the coulomb friction ef-
fects. Hydraulic oil lubricates the sliding passages in the
cylinder and this greatly reduces the effects of coulomb
friction.

B. Pump

The pump is assumed to be an ideal source of power capable
of supplying constant pressure at any flow required. An ideal
power source is capable of supplying constant pressure at any
flow required. Real pressure sources on the other hand, have
limits on the power that they can supply. In practical hydraulic
pump analysis, leakage flows and friction are counted as
sources of power loss in pumps. Although this is certainly true
in reality, hydraulic machines are quite efficient. For piston
pumps, their efficiencies are always around 90% within the
normal operating range. Therefore the pump is assumed to be
an ideal source of power and can be modeled in bond graph
form as an effort source, as shown in Fig. 2.

Fig. 2. Constant pressure pump bond graph model

C. Spool Valves

One of the criteria in selecting valves is to consider their
response time. If the resonant frequency of the spool valve
is very high, its dynamic behavior is negligible compared to
the relatively low resonant frequency of the system [12]. A
typical industrial manipulator has a natural frequency in the
range of 1− 5Hz, while the cut-off frequency of the selected
valves when operating under maximum command must be in
the range of 10− 15Hz [13]. Thus only the resistive effect of
the valve is considered.

To model the dynamics of the spool valve due to its resistive
effect to the fluid flow, the following two assumptions are
made for analysis;

• The hydraulic fluid is ideal, non-viscous and incom-
pressible. This assumption is close to reality under most
conditions and is also justified as far as phenomena inside
the valve are considered.

• Valve geometry is ideal. This implies that the edges
of the metering orifices are sharp and that the working
clearances are zero, hence no-internal leakage condition
is assumed [14]–[16].

The orifice flow equation governing flow and pressure drop
across an orifice (for turbulent flow) is known to be [15],

Q = CdAO

√
2
ρ
ΔP (1)

Where;
• Q is the flow rate through the orifice,
• ΔP is the pressure drop across the orifice,
• Cd is the discharge coefficient,
• ρ is the fluid density,
• AO is the area of the orifice opening.

Equation 1 shows that the relative flow rates are dependent
on the pressure drops across the valves, which in turn are
dependent on the forces acting on the actuator.
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Let the spool be given a positive displacement from the
neutral position, i.e, yv = 0 which is chosen to be the
symmetrical position of the spool in its sleeve. Using 1, the
flow rates through the metering orifices are,

Q1 = CdAO1

√
2
ρ
(PS − P1) (2)

Q2 = CdAO2

√
2
ρ
(PS − P2) (3)

Q3 = CdAO3

√
2
ρ
(P2 − Pr) (4)

and

Q4 = CdAO4

√
2
ρ
(P1 − Pr) (5)

The return pressure Pr = 0, since the tank pressure is taken to
be at atmospheric. Since the geometry of the valve is assumed
ideal and the valving orifices are matched and symmetrical
then Q2 = Q4 = 0, and AO1 = AO3 = AO(yv).

Note that from Fig. 1, the total supply flow (QS) is given
as;

QS = Q1 + Q2 = Q1 (6)

and also as;
QS = Q3 + Q4 = Q3 (7)

From Fig. 1, flow to the chamber A of cylinder and flow
out of chamber B of the cylinder are given as;

QA = Q1 − Q4

= Q1

= CdAO(yv)
√

2
ρ
(Ps − PA) (8)

and

QB = Q3 − Q2

= Q3

= CdAO(yv)
√

2
ρ
(PB − Pr) (9)

The area of the valve orifice opening is dependent on the valve
spool displacement (yv) as shown in Fig. 3.

Fig. 3. Variation of valve orifice area with spool movement

If the port is of radius r, the uncovered area of the orifice
where the fluid passes is given,

AO(yv) =
α

2π
πr2 − 1

2
(2r sin

α

2
)r cos

α

2

=
r2

2
(α − sinα) (10)

Where α varies with the valve displacement as shown below;

cos
α

2
=

r − (yv − yd)
r

α = 2 cos−1
(r − (yv − yd)

r

)
(11)

Equations 8 and 9 show that the flow that is transferred
from the pump to the cylinder is determined by the flow
coefficient, the area of the valve orifice and the pressure
difference. These equations are appropriate expressions for the
constitutive relations of orifice resistances to the flow rate to
and from the cylinder and can be represented as;

Ps − PA = ΔPA =
ρ

2C2
d(AO(yv))2

QA|QA| = R1QA|QA|
(12)

and

PB − Pr = ΔPB =
ρ

2C2
d(AO(yv))2

QB |QB | = R2QB |QB |
(13)

The absolute value sign has been used to correct the sign in
the pressure drop for negative flow rate.

Equations 12 and 13 show that the valve resistances are
equal, i.e.,

R1 = R2 =
ρ

2C2
d(AO(yv))2

(14)

Hence the valve resistances R1 and R2 given in 14 depend on
the position of the valve (yv). The bond graph representation
of the valve resistance effects to the fluid flow to and from the
cylinder are shown in Figs. 4 and 5.

Fig. 4. Bond graph representation of valve resistance to forward flow

Fig. 5. Bond graph representation of valve resistance to return flow

An active bond has been used to indicate that the valve
resistances depend on the valve displacements. An active bond
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is just like a signal in a block diagram, and is shown with a
full arrow. The active bond implies that no feedback effect
is considered, i.e., an effort or flow signal is transmitted in
one direction, the complimentary signal does not flow in the
opposite direction as in a normal bond [6].

D. Linear Cylinders

Figure 6 shows a schematic diagram of a hydraulic cylinder.
The cylinder piston has diameter Dp, area Ap and the rod has
diameter Dr and area Ar.

Fig. 6. Schematic diagram of the linear actuator

The chamber at the head side has a pressure PA and flow
rate QA, and are positive into the cylinder. The chamber at the
rod side has pressure PB and flow rate QB , and are positive
out of the cylinder.

Hydraulic cylinders transform hydraulic energy into me-
chanical energy, i.e., the pressure difference at the two cylinder
chambers provide mechanical force which drives the piston.
Bond graph method identifies this transformation in terms of
transformer elements, which can be represented as shown in
Fig. 7.

Fig. 7. Bond graph representation of the pressure difference in cylinder
chambers

The piston and rod mass of the cylinder, is modeled as a
I−element which is attached to the 1−junction with the piston
velocity (ẋ) as the common variable.

1) Modeling Oil Compressibility in a Hydraulic Cylinder:
The influence of the finite oil stiffness on the dynamics of
hydraulic system is similar to that of a spring compressibility
in mechanical systems. A measure of oil compressibility is
the bulk modulus, which relates the variation of pressure and
volume of oil in a closed vessel as shown below [15],

Δp = β
(−ΔV

V

)
(15)

where
• β is the Bulk Modulus of the fluid
• ΔV is the decrease in volume of the fluid due to pressure
• V is the volume itself.

Equation 15 is usually considered the constitutive law of a
linear one port C−element of compliance C = V

β , attached
to the zero junction representing the hydrostatic pressure [17],
as shown in Fig. 8.

Fig. 8. C-element representing fluid compressibility

Application of 15 to the chambers of a hydraulic cylinder
however reveals a problem with respect to a correct bond
graph representation, since the chamber volume depends on
the displacement x of the piston. Therefore,

Δp = β
−ΔV

Vo + Apxp
(16)

where
• Vo is the volume of chamber at start position x = xo

• Ap is the area of the piston.
The compliance Vo+Apx

β can be considered as a displacement
dependent compliance (C(x)), i.e.,

C(x) =
Vo + Apx

β
(17)

Equation 17 can be depicted in the bond graph by means of
a modulation signal as shown in Fig. 9.

Fig. 9. Displacement Modulated C element

The displacement dependent compliance in 17 has been
taken into account without expressing the modulation in the
bond graph [18], but this means that the bond graph does not
properly correspond to the mathematical model in use.

Each chamber therefore has displacement dependent com-
pliance CA and CB given as;

CA =
VA

β
=

Apx

β
(18)

and
CB =

VB

β
=

(Ap − Ar)(Lcy − Lp − x)
β

(19)

Equations 18 and 19 can be represented in bond graph form
as in Figs. 10 and 11,

Fig. 10. Displacement Modulated C element of cylinder chamber A
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Fig. 11. Displacement Modulated C element of cylinder chamber B

2) Modeling the Leakage Flows: There is always some
clearance between the cylinder and the piston to allow relative
motion. Even though these clearances are small in comparison
with the normal cross-sectional area of the oil flow in a circuit,
they act as leakage paths when pressure drops are imposed
[11]. Internal leakage occurs in hydraulic cylinders as result
of a pressure difference existing between the two chamber.

The fluid flow rate in the clearance can be obtained from
Hagen-Poisseille equation as;

Qil =
πDpc

3

12μLp
(PA − PB) (20)

where c and μ are the radial clearance between the piston and
the cylinder wall, and the coefficient viscosity of the hydraulic
fluid respectively.

Equation 20 can be depicted in bond graph form as shown
in Fig. 12.

Fig. 12. Bond graph model representing the leakage in piston and cylinder
wall clearance

Where
Ril =

12μLp

πDpc3
(21)

3) Modeling the Viscous Friction: Another object in devel-
oping a correct bond graph model of a double acting hydraulic
cylinder is the viscous friction which generally oppose the
piston movements. This viscous friction has been considered
by few authors, e.g. in [17], [19], often it is simply neglected.

Viscous friction due to piston movement is described by
Newton’s law as [15],

FN = μ
A

c

∂x

∂t
= μ

πDpLp

c
ẋ (22)

This viscous friction due to the piston movement is modeled
as a R−element attached to the 1−junction with the piston
velocity (ẋ) as the common variable. This is shown in Fig.
13,

Fig. 13. Bond graph model representing the viscous friction due to piston
movement

Where
RN =

μπDpLp

c
(23)

E. Overall Bond Graph Model of a Valve Controlled Double
Acting Cylinder

Figure 14 shows the overall bond graph model of a valve-
controlled hydraulic cylinder with causality assigned using
Sequential Causality Assignment Procedure (SCAP) as clearly
illustrated in [7], [8], [10]. The bonds are numbered for easier
analysis purposes.
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Fig. 14. A causal bond graph model for the cylinder during extension.

Next is to check if the bond graph model developed embod-
ies the basic laws of mass continuity (continuity equation) and
the equation of motion for mechanical moving parts (Newton’s
second law).

The continuity equation [15] can be represented as;
∑

Qin −
∑

Qout =
dV

dt
+

V

β

dP

dt
(24)

Where
•

∑
Qin is the total input flows of the fluid

•
∑

Qout is the total output flows of the fluid
• V is the volume of the fluid subjected to compression
• dV

dt is the flow consumed by the expansion of control
volume

• V
β

dP
dt is the compressibility flow and describes the flow

resulting from pressure changes.
From the bond graph model of the cylinder shown in Fig. 14

e3 = e4 = e5 = e12 = PA

e4 =
1

CA

∫
f4dt

f4 =
Apx

β

(dPA

dt

)

f1 = f2 = f3 = Q1 = CdAO(yv)
√

2
ρ
(PS − PA)

f6 = f7 = f8 = f9 = f10 = ẋ

f5 =
1
r1

ẋ = Apẋ

e6 =
1
r1

e5 = ApPA

e7 = RNf7 =
μπDpLp

c
ẋ

e8 = FL

e9 = Mpḟ9 = Mpẍ

e11 = e14 = e15 = e16 = PB

e15 =
1

CB

∫
f15dt
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f15 =
(Ap − Ar)(Lcy − Lp − x)

β

(dPB

dt

)

e10 = r2e11 = (Ap − Ar)PB

f11 = r2ẋ = (Ap − Ar)ẋ

f16 = f17 = f18 = Q3 = CdAO(yv)
√

2
ρ
PB

e13 = e12 − e14 = PA − PB

f12 = f13 = f14 =
1

RHP
e13 =

πDpc
3

12μLp
(PA − PB)

Summing the flow variables in the 0-junction with common
head side pressure (PA), we get;

f3 = f4 + f5 + f12

CdAO(yv)
√

2
ρ
(PS − PA) =

Apx

β

(dPA

dt

)
+ Apẋ

+
πDpc

3

12μLp
(PA − PB)

Apẋ +
Apx

β

(dPA

dt

)
= CdAO(yv)

√
2
ρ
(PS − PA)

−πDpc
3

12μLp
(PA − PB) (25)

Equation 25 shows that the continuity equation at the head
side of the cylinder is satisfied.

Summing the flow variables in the 0-junction with common
rod side pressure (PB), we get;

f11 + f14 = f15 + f16

(Ap − Ar)ẋ +
πDpc

3

12μLp
(PA − PB)=CdAO(yv)

√
2
ρ
PB +

(Ap − Ar)(Lcy − Lp − x)
β

(dPB

dt

)

−(Ap − Ar)ẋ +
(Ap − Ar)(Lcy − Lp − x)

β

(dPB

dt

)
=

πDpc
3

12μLp
(PA − PB) − CdAO(yv)

√
2
ρ
PB (26)

Equation 26 above shows that the continuity equation at the
rod side of the cylinder is satisfied.

Summing the effort variables in the 1-junction with common
piston velocity, we get;

e9 + e10 + e7 = e8 + e6

Therefore,

e9 = e6 − e10 − e7 + e8

Mpẍ = ApPA − (Ap − Ar)PB − μπDpLp

c
ẋ − FL (27)

Equation 27 shows that the Newton’s second law of motion
is satisfied.

F. Checking the Bond Graph model

The bond graph model of the hydraulic dynamics of the
actuator was validated by comparing the open loop state
responses of the cylinder obtained from simulating the bond
graph model, to those obtained by simulating the Ordinary
Differential Equation (ODE) model of a cylinder developed by
Nguyen [11] based on the same assumptions. The parameters
of the arm cylinder as shown in table I, together with hydraulic
parameters in table II were used in simulating the two models.

To simulate the state responses of the hydraulic cylinder
from bond graph model, the causal bond graph model of the
hydraulic cylinder shown in Fig. 14 under no load FL = 0,
was first converted into block diagram using the Fakri method
[9]. The block diagram representing the bond graph was then
simulated on SIMULINK to obtain the state responses of the
hydraulic cylinder on extension/retraction and under no load.

The ODE model of a hydraulic cylinder developed by
[11] based on first principles of the basic laws of mass
continuity (continuity equation) and the equation of motion
for mechanical moving parts (Newton’s second law), has the
following state space representation;

ẏ1 = y2 (28)

ẏ2 =
1

Mp

[
y3Ap − y4(Ap − Ar) − μπDpLp

c
y2 − FL

]
(29)

ẏ3 =
β

Apy1

[
CdAO(yv)

√
2
ρ
(PS − y3) − Apy2 − Cip

(y3 − y4)
]

(30)

ẏ4 =
β

(Ap − Ar)(Lcy − Lp − y1)

[
− CdAO(yv)

√
2
ρ
y4

+(Ap − Ar)y2 − Cip(y3 − y4)
]

(31)

where a state vector was defined as;⎛
⎜⎜⎝

y1

y2

y3

y4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

x
ẋ

PA

PB

⎞
⎟⎟⎠ (32)

Equations 28 to 31 can be solved using MATLAB ODE-
solvers, and then the state responses simulated. The open loop
state responses of the cylinder on extension and retraction are
shown in Figs. 15, and 16 respectively.

The results are seen to correlate very well both in the
shape of the curves, magnitude and the response times, thus
indicating that the developed model represents the hydraulic
dynamics of a valve controlled cylinder
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Fig. 15. Simulated open loop responses of the cylinder for extension case;
(a) Head side chamber pressure (b) Rod side chamber pressure (c) Piston
displacement (d) Piston velocity
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Fig. 16. Simulated open loop responses of the cylinder for retraction case;
(a) Head side chamber pressure (b) Rod side chamber pressure (c) Piston
displacement (d) Piston velocity

III. INTER-ACTUATOR INTERACTION

Among the characteristics which must be captured by the
dynamic model of a mobile hydro-mechanical system with an
articulated arm, such as excavators, hydraulic cranes, hydraulic
robots, among others, are the actuator interactions which are
important since they significantly affect the overall response
of the system

Since the pump was modeled as a constant pressure supply,
the it supplies a constant pressure to all cylinders connected
to it regardless of the flow demand across each actuator.
Therefore an Effort Source with constant pressure as the
source (that is, SE : PS), is connected to the zero junction
from which the cylinders are supplied with constant pressure.

To demonstrate the inter-actuator interaction, two cylinders
being driven by one hydraulic pump as shown in Fig. 17 were

considered.

1LF 2LF

Fig. 17. Hydraulic circuit for two cylinders powered by one pump.

The bond graph model representing the actuators is shown
in Fig. 18.
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Fig. 18. Bond graph models of two hydraulic cylinders powered by one
pump.

Using the parameters of the boom and arm cylinders as
given in table I together with hydraulic parameters in table II,
the open loop responses of the hydraulic actuators under step
inputs were simulated for four cases, that is,

• Case 1: When the two cylinders are moving no load and
their directional control valves are equally displaced.

• Case 2: When the two cylinders are moving no load and
one directional control valve, i.e., for cylinder 1 is closed.

• Case 3:When the cylinders are moving no load and the
step inputs to the cylinders are different.

• Case 4: When the two cylinders are moving different
loads.

Four open loop state responses of the cylinders, that is,
chamber pressures, fluid flow rates, piston velocities, and
piston displacements (the integral of piston velocities), were
simulated to show how the dynamics of the two cylinders
interacted during the hydraulic system performance under the
above conditions.
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Case 1

In this case the two cylinders were given equal step inputs
equivalent to the maximum spool valve displacements, and
their open loop responses simulated when the cylinders were
assumed to move no load. Figure 19 shows the responses for
case 1.
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Fig. 19. Simulated open loop responses for case 1; (a) Piston displacements
(b) Piston velocities (c) Pump flow rate (d) Flow rate to cylinders (e) Head
sides chamber pressures (f) Rod side chamber pressures

As seen in Fig. 19, the only difference between the response
curves of the two cylinders is the speed of response. Cylinder
2 which has a smaller piston and rod mass, has a fast response
compared to cylinder 1 which has a relatively larger piston and
rod mass. This is what is expected practically since a body
with a large mass has a consequent large inertia which slows
down the response speed to movements.

Case 2

In this case, the spool valve controlling cylinder 1 remained
closed while cylinder 2 was given a step input equivalent to
the maximum spool valve displacement. Also the two cylinders
were assumed to move no load. Figure 20 shows the responses
for case 2.

0 0.05 0.1
0

0.005

0.01

0.015

0.02

0.025
(a)

D
is

pl
ac

em
en

t (
m

)

Time(secs)

Cylinder 1
Cylinder 2

0 0.05 0.1
0

0.05

0.1

0.15

0.2

0.25
(b)

V
el

oc
ity

 (m
/s

)

Time(secs)

Cylinder 1
Cylinder 2

0 0.05 0.1
0

2

4

6

8
x 10-4 (c)

Fl
ow

 ra
te

 (m
3 /s

)

Time(secs)

0 0.05 0.1
0

2

4

6

8
x 10-4 (d)

Fl
ow

 ra
te

 (m
3 /s

)

Time(secs)

To cylinder 1
To cylinder 2

0 0.05 0.1
0

5

10

15
x 106 (e)

P
re

ss
ur

e 
(p

a)

Time(secs)

Cylinder 1
Cylinder 2

0 0.05 0.1
0

1

2

3

4

5

6

7
x 106 (f)

P
re

ss
ur

e 
(p

a)

Time(secs)

Cylinder 1
Cylinder 2

Fig. 20. Simulated open loop responses for case 2; (a) Piston displacements
(b) Piston velocities (c) Pump flow rate (d) Flow rate to cylinders (e) Head
sides chamber pressures (f) Rod side chamber pressures

As seen in Fig. 20(d), there is no fluid flow to cylinder 1
since the spool valve controlling this cylinder is closed. Due
to this, there is no hydraulic pressures generated in cylinder 1
chambers as shown in Figs. 20(e) and (f), and subsequently the
piston of cylinder 1 remains stationary as illustrated in Figs.
20(a) and (b). The pump produces only the flow required to
operate cylinder 2. This flow creates a pressure drop across
cylinder 1 which moves the piston of the cylinder. This is
what is expected practically, since a hydraulic cylinder whose
spool valve is completely closed, has no flow into it and
subsequently no motion results, hence no response.

Case 3

In this case, cylinder 2 was given a step input equivalent
to the maximum spool displacement, while cylinder 1 was
given a step input equivalent to half of the maximum spool
displacement. This implies that, the spool valve controlling
cylinder 2 had a wider orifice opening than the one controlling
cylinder 1. Figure 21 shows the responses for case 3.
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Fig. 21. Simulated open loop responses for case 3; (a) Piston displacements
(b) Piston velocities (c) Pump flow rate (d) Flow rate to cylinders (e) Head
sides chamber pressures (f) Rod side chamber pressures

As seen in Fig. 21(d), cylinder 2 whose directional control
valve has a wider orifice opening area receives much fluid flow
from the pump as compared to cylinder 1. This is because the
larger the area of the orifice, the smaller the valve resistance to
fluid flow, and since the flow rate through the valve is inversely
proportional to the valve resistance as evident in 12, then it
follows that, flow rate through the valve is higher for large
orifice openings. This larger flow to cylinder 2 results in faster
pressure accumulation in the cylinder chambers as shown in
Figs. 21(e) and (f), and this subsequently leads to high piston
speeds as evident in Fig. 21(b).

Case 4

In this case, both cylinders were given similar step in-
puts equivalent to maximum spool displacements, while the
cylinder rods moved different external and translational loads.
Figure 22 shows the responses for case 4.
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Fig. 22. Simulated open loop responses for case 4; (a) Piston displacements
(b) Piston velocities (c) Pump flow rate (d) Flow rate to cylinders (e) Head
sides chamber pressures (f) Rod side chamber pressures

Cylinder 1 moves half of the force moved by cylinder 2. A
large pressure drop is required by cylinder 2 so as to produce
a force big enough to move the large external load. This large
pressure drop for cylinder 2 is evident in Figs. 22(e) and (f)
as compared to a relatively smaller pressure drop required to
move a lighter load by cylinder 1. Since the external force to
be moved offers a resistance to fluid flow to the actuators, then
it follows that the larger the load to be moved, the smaller the
fluid flow to the cylinder. This is the reason why fluid flow to
cylinder 2 is relatively small compared to the flow to cylinder
1 as shown in Fig. 22(d). This difference in fluid flow rates
to the cylinders results to different cylinder piston speeds as
shown in Fig. 22(b) with a large piston velocity produced by
the cylinder moving the smaller load.

IV. CONCLUSION

In this paper, a detailed model of a valve-controlled hy-
draulic cylinder has been quickly and accurately developed
using the relatively new bond graph modeling tool. The model
was developed from first principles, and hence this work can
be used as an educational tool on bond graphs.

Further, it was shown that, representing the multi-cylinder
hydraulic system bond graph models as shown in Fig. 18, can
predict what is practically expected regarding the inter-actuator
interaction in a simplified way. Although such representation
is expected to give an error in state responses of the overall
hydraulic and mechanical dynamic model of a mobile hydro-
mechanical system, since for several cylinders operating si-
multaneously, each one of them has its own requirement for
supply pressure depending on the load and speed required from
it, but for simplicity it was assumed that the supply pressure
for all the cylinders are equal and constant.

APPENDIX A
HYDRAULIC CYLINDER PARAMETERS

Table I shows the hydraulic cylinders parameters used in
simulations.

pL
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Fig. 23. Schematic diagram of hydraulic cylinders.

TABLE I
HYDRAULIC CYLINDER PARAMETERS.

Parameter description Units Boom Arm Bucket 
Length of cylinder barrel cyL mm 480 320 395

Length of rod, rL mm 450 290 365
Length of stroke, sL mm 430 270 345
Length of piston, pL mm 50 50 50

Diameter of piston,                pD mm 5.63 5.63 5.63

Diameter of rod,                    rD mm 5.28 5.28 5.28
Length of end cap1 , 1eL mm 30 30 30
Length of end cap2, 2eL mm 40 40 40
Length of bracket1, 1L mm 50 50 50
Length of bracket2, 2L mm 20 20 20

APPENDIX B
PUMP, VALVE AND HYDRAULIC FLUID PARAMETERS

Table II shows the pump, valve and hydraulic fluid param-
eters used in simulations.

TABLE II
PUMP, VALVE AND HYDRAULIC PARAMETERS.

Pump parameters 
Maximum operating pressure ( maxP ) 6100.17 Pa
Maximum flow rate ( maxQ ) 65 min/lit
Maximum speed ( maxN ) 2500 rpm

Supply pressure ( sP ) 6105.14 Pa
Directional control valve parameters 

Discharge coefficient ( dC ) 61.0
Diameter of ports (d ) 525.9 mm
Maximum flow rate ( maxQ ) 40 min/lit
Maximum operating pressure ( maxP ) 6100.35 Pa

Hydraulic fluid parameters 
Bulk mudulus ( ) 9106.1 Pa
Fluid density ( ) 850 3/mKg
Fluid absolute  viscosity ( ) at C025  4109.7 sm /2
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