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ABSTRACT 

In this study, a magnetohydrodynamic convection flow of an electrically conducting 

heat generating fluid past a semi-infinite vertical porous plate with variable suction is 

considered. The fluid flow is unsteady and a variable magnetic field is transversely 

applied to the plate. Evaluation of velocity gradients, temperature gradients and 

concentration gradients across the plate is done. Observations and discussions of the 

effects of various parameters on flow variables is done. The non-dimensional parameters 

observed and discussed are Hall parameter, M; Magnetic number, M
2
; Eckert number, 

Ec; Rotational parameter, Er; Suction parameter, S and Injection parameter, w. 

 

The velocity profiles, temperature profiles and concentration profiles are presented 

graphically for both convectional heating and free convectional cooling of the plate. The 

skin friction and rate of heat transfer values are obtained and presented in tables. 

 

For free convectional heating and cooling of the plate, the Grashof number is taken as 

constants -5 and 5 respectively. Prandtl number is 0.71 which corresponds to air. The 

variation of the parameters mentioned above is noted to increase or decrease or had no 

effect on the skin friction, mass transfer, rate of heat transfer, the velocity profiles, 

concentration profiles and temperature profiles. 
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CHAPTER ONE 

INTRODUCTION AND LITERATURE REVIEW 

1.0 INTRODUCTION  

 There are three classes of matter, that is, solid, liquid and gas. Liquids or gases are 

termed as fluids. A solid is a matter in which the distance between its molecules does not 

change when a force is applied on it. A fluid (liquid or gas) is the matter in which the 

distance between its molecules changes on application of some force. Fluids undergo 

deformation whenever forces applied on but the mass remains constant. There are two 

types of fluids, that is, Newtonian fluids where viscosity does not change with the rate of 

deformation and non-Newtonian fluids where viscosity varies with the rate of 

deformation.  

 

Fluid mechanics is a broad branch of science and mathematics which deals with 

dynamics of liquids and gases. Fluid mechanics is divided into three branches, that is, 

fluid kinematics, fluid statics and fluid dynamics. Fluid kinematics exists when fluid is 

in motion and displacement, velocities and acceleration play a significant role. Fluid 

statics is the study of fluids that are stationary or at rest.  

 

Fluid dynamics is the branch of science which deals with forces that causes the motion 

of fluids. Some types of fluid flows are steady flow and unsteady flow, uniform flow and 

non-uniform flow (or varied flow), laminar flow and turbulent flow and lastly subcritical 

flow, critical flow and supercritical flow. The flow could also be rotational or 
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irrotational. A steady flow is a flow where density, pressure, velocity including other 

thermodynamic properties are independent of time, that is, 0




t

p
 where p may be 

velocity, density, pressure, temperature, etc. In unsteady flow 0




t

p
 and in this case 

condition and properties associated with the fluid motion vary with time. In uniform 

flow, the fluid particles have same velocity at each point along the flow region. If there 

exist different velocities at different points of a particular section of flow field, this type 

of flow is a non-uniform flow. 

 

A flow is said to be laminar flow if its Reynolds number in less than 500 and if it is 

more than 2000 then the flow is turbulent, but the transitional flow is where the 

Reynolds number is between 500 and 2000. Laminar flow is orderly and there is no 

mixing between different fluid layers (except by molecular motion which is negligible).  

The turbulent flow is characterized by strong mixing of particles in the direction normal 

to the boundary. The main flow is superimposed by subsidiary motion at right angles to 

it and thus there is creation of transverse mixing of fluid particles. On the other hand, the 

fluid in laminar flow appears to have layers which move smoothly and orderly in 

defined paths as opposed to the case of turbulent flow where fluid has irregular 

fluctuations of velocity at every point. 

When the flow is mainly influenced by gravitational force we obtain three types of 

flows, that is, subcritical flow, critical flow and supercritical flow and in this case, 

Froude number (Fr) is used to determine the type of flow. So if Fr<1 the flow is 
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subcritical, Fr=1 the flow is critical and Fr>1, the flow is supercritical (or rapid or 

shooting or torrential). Lastly we have Barotropic flow in which the pressure is a 

function of the density. 

The fluid flow depends on the geometry of the surface the fluid is flowing on. For 

example, flow in pipes and channels are controlled by geometry of cross-section, surface 

roughness and velocity distribution. In channels the flow is due to gravity force while in 

pipes it takes place at the expense of hydraulic pressure where the pressure decreases in 

the direction of the flow. For geometrical cross-sections, pipes are generally circular 

while in open channels they could be triangular, rectangular, trapezoidal, parabolic, 

elliptic etc. As such the maximum velocity in pipes is at the centre while for channels it 

is just below the surface of the fluid. The velocity decrease towards the surface of the 

container. 

 

In fluid flow, fluid currents which could be regular or irregular could equalize 

temperature in the entire fluid. There are two types of convection heat transfer. These 

are free (or natural) and forced convection. Free convection flow takes place when 

density varies due to concentration and temperature gradients. In forced convection heat 

transfer is due external forces. Conduction takes place when there exist free or partially 

free electrons (quasi-free electrons) which can be moved under the action of magnetic 

fields or electric fields. In solids, electrons are bound but can move for a restricted and 

specific distance before collision occurs within the crystal lattice. Dynamical effects 

such as conduction and Hall effects are observed when fields are applied to the solid 
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conduction, though the motion of mass does not occur in general. The effect of the 

applied magnetic fields on the atoms translates into stresses in the structure of the lattice. 

In fluids, there exist both electrons and ionized particles and when magnetic fields are 

imposed on the fluid, dynamical effects are very significant and interestingly the fluid 

itself will move, resulting in bulk motion of the medium (fluid). The motion of the 

medium (fluid) alters the magnetic and electric field magnitudes through their 

interaction. The motion of the fluid do alter the strength and direction of electromagnetic 

fields in terms of strength and direction.  

The electrons are accelerated by the applied (magnetic) fields but, their directions are 

changed by collisions, so that the motion of electrons are opposed by an effective 

frictional force (= mv ), where   is an effective collision frequency; m is the mass of 

an electron and v is the velocity of the electrons. Units of   is s
-1

, m is kg and v is m/s 

and hence unit of mv  is Newton, which is the unit of force. Ohm’s law gives a balance 

of applied magnetic force from fields and effective frictional force on the electrons (the 

frictional drag). When frequency of the applied magnetic fields are comparable to 

effective collision frequency (of electrons), the electrons accelerate and decelerate 

between the collisions, and thus the inertial effects occurs and the conductivity becomes 

very complex. If the frequencies of the magnetic fields are above the collision 

frequency, the electrons and ions are accelerated in the opposite directions by electric 

fields and tend to separate and this creates strong electrostatic restoring forces which 

creates oscillation in the charge density. These oscillations are called plasma oscillation 

and exist only when frequency of the magnetic field is higher than frequency of the 
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electron collisions. If the frequency of the fields is lower than collision frequency, there 

is no charge separation and the name of these lower frequencies is 

magnetohydrodynamics waves. 

 

In conducting fluids, collision frequency is well above field frequency and for extremely 

good fluid conductors then there is a wider frequency range and thus the Ohm’s law 

becomes valid to be applied. The electrons and ions move together without being 

separated because collision frequency is far greater than frequency of the fields. Now, 

since electrons and ions move together, electric fields arise due to the motion of the fluid 

which ignites a current flow created by magnetic fields which are varying with time or 

charge distributions external to the fluid. The mechanical motion of the system can now 

be described in terms of a single conducting fluid using hydrodynamic variables of 

density, pressure and velocity. At low frequency of magnetic fields, displacement 

current in Ampere’s Law is neglected and this means the mechanical motion of the 

system will be expressed without displacement current. Thus, the mechanical motion of 

the system is an approximation without displacement current and this approximation is 

called magnetohydrodynamics. 

 

In magnetohydrodynamic there is very dense ionized gases and the collision frequencies 

are extremely high compared to the frequencies of the magnetic fields, but, in less dense 

ionized gases the collision frequency is far smaller compared to the frequency of the 

field, though, in these low dense ionized gases may exist low frequency domain where 
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magnetohydrodynamic equations are applicable to quasi stationary processes. In 

astrophysical applications we do not neglect charge separation, displacement current and 

inertial effects of electron and ions are not neglected as done in Magnetohydrodynamics. 

Thus, the separate inertial effects of the electrons and ions must be included in the 

description of the motion and this is the discipline called plasma physics.  

 

1.1.1 THE HALL EFFECT  

The current in metal is carried by electrons. If a conductor is in magnetic field, such that 

the direction of flow of current is at right angle to the magnetic field, a voltage is 

developed across the conductor in the direction perpendicular to both current and field. 

The phenomenon by which such voltage is developed is called Hall Effect and voltage 

itself is Hall voltage. 

 

1.1.2 HYDROMAGNETIC  

Dynamics is the movement of an object due to the applied forces while hydrodynamics 

is movement of fluid when forces are applied. Electromagnetism is the study of the 

interaction between electric fields and magnetic fields. Thus, the definition of 

hydromagnetics is the study of interaction between hydrodynamics (fluid dynamics) and 

electromagnetism. 

  

1.1.3 FREE   CONVECTION   FLOW  

Due various applications in engineering and universe, MHD free convection flow has 
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become significant. A fluid flow in which the motion is as a result of body force acting 

on the fluid in which there are density gradients is called a free convection flow. 

Temperature or concentration gradients existing in the fluid yields to density gradients 

while the gravitational force yields to the body force. Thus the action of the body force 

on the fluid amounts to buoyancy that eventually induces free convection current. 

  

1.1.4 FORCED CONVECTION FLOW  

The forced convention flow is the flow in which the buoyancy force is insignificant 

while the velocity of the main stream is significant. 

 

1.1.5 HEAT TRANSFER  

Heat transfer is basically due to temperature difference in a body or different bodies. 

Heat transfer takes place in three modes, that is, conduction, convention and radiation 

(only at higher temperatures). If the fluid motion is due to buoyancy effects, which are 

due to density variation caused by the temperature difference in the fluid, the heat 

transfer is called free or natural convention. Radiation is the type of heat transfer which 

occurs at high temperatures of a body and can be emitted from solids, or liquids or gases 

and can also be emitted through vacuum. This investigation shall consider free 

convention heat transfer which can be caused by temperature differences or 

concentration gradients.  
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1.1.6 MASS TRANSFER  

The relative motion of a mixture’s species as a result of concentration gradients is 

termed as mass transfer. Thus, mass transfer is caused by concentration difference of the 

species in a mixture. Modes of heat transfer that are similar to convection and 

conduction do exist.  

Mass transfer by free convection is studied in this study. In natural convection, external 

forces are not required since effects of buoyancy and the force of gravity induce the 

motion thereby resulting in the heat transfer. Thus both heat transfer and fluid flow due 

to convection rely on the fundamental principles of heat transfer and fluid flow. 

Significant laws of convection includes: conservation of mass, momentum conservation 

and energy conservation law.  

 

1.1.7 BOUNDARY LAYER 

When a real fluid (viscous fluid) flows on a stationary solid boundary, a layer of fluid 

which comes in contact with the boundary surface, adheres to it (on account of viscosity) 

and condition of “no slip” occurs (The “no slip” condition means that the velocity of 

fluid at a solid boundary must be same as that of the boundary itself). Thus, if the layer 

of fluid which cannot slip away from the boundary surface undergoes retardation, this 

retarded layer further causes retardation for the adjacent layers of the fluid. Hence there 

is a development of a small region around the boundary surface where the velocity of the 

flowing fluid increases rapidly from zero at the boundary surface and approaches the 

velocity of main stream. The layer adjacent to the boundary is known as boundary layer. 
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Boundary layer is formed whenever there is relative motion between the boundary and 

the fluid. Viscous shear stress takes place at the boundary layer.  

 

In any fluid flow over a surface, there exist three boundary layers that is, velocity, 

thermal and concentration boundary layers. When velocity is zero and then increases to 

maximum this region is called velocity boundary layer. If fluid is in contact with 

isothermal plate (heated plate) the fluid in contact with the plate attain isothermal 

equilibrium at the plate’s surface temperature. The particles on the plate pass heat 

energy to the adjoining fluid layers and a temperature gradient is developed. This 

thermal region is called thermal boundary layer. If there exist concentration gradients in 

the fluid between the plate and the free stream, then we have concentration boundary 

layer. We shall consider laminar flow to investigate convection mass transfer, 

convection heat transfer and surface friction.  

 

1.1.8 MAGNETOHYDRODYNAMICS  

The word magnetohydrodynamics consists of the words magneto-meaning magnetic, 

hydro-meaning water (or liquid) and dynamics meaning the motion of an object under 

influence of forces. Magnetohydrodynamics occurs when effective collision frequency 

of electrons is far more than the frequency of the applied fields and also where inertial 

effects and displacement currents are neglected.  If frequencies of applied fields are far 

higher than effective collision frequency the displacement current, separate electrons 

from ions and inertial effects are considered (this is plasma physics). Then briefly, we 
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can define magnetohydrodynamics as study of fluid flow in the presence of magnetic 

field where an induced electric field is created. MHD can also be defined as the physical 

mathematical framework where equations of the electromagnetic fields and dynamics 

are coupled. Thus, in MHD the currents induced in the matter (fluid) modify the field 

which has created it (electromagnetic fields). In MHD displacement current is neglected. 

Lastly, the significance of MHD theory is that conductive fluids can support magnetic 

fields where the presence of magnetic fields leads to forces that in turn get on the fluid 

thereby potentially altering the geometry and the strength of the magnetic fields 

themselves.  

 

1.2 LITERATURE REVIEW 

Faraday (1832) performed an experiment with mercury flowing in a glass tube placed 

between poles of a magnet; he discovered that a voltage was induced across the 

magnetic field perpendicular to both the direction of the flow and the magnetic field. In 

1938, Hartman discussed both experimentally and theoretically the hydromagnetic flow 

between two parallel plates. But Alfuen in 1942 established transverse waves in 

electrically conducting fluids and explained its applications in astrophysics. Thus he 

deduced that electromagnetic theory and fluid dynamics interact resulting to 

hydromagnetics. 

The interaction between the two branches (i.e. electromagnetic and fluid dynamics) 

which resulted to non-dimensional numbers was introduced by Linguistics in 1952. The 

non dimensional number √BL(σμe/ρ )
1/2

, where B is the magnetic field, L is the 
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characteristic length, σ is the electrical conductivity, μe is the magnetic permeability and 

ρ is the fluid density was found to be significant. 

 

Chaturverdi (1996) studied MHD flow past an infinite porous plate with variables 

suction. Jha and Prasad (1992) investigated MHD free convection and Mass transfer 

flow through a porous medium with heat source. Ram et al. (1990) studied Heat and 

Mass transfer of viscous heat generating fluid with Hall currents. Takhar et al.. (1995) 

investigated the hydromagnetic convective flow of a heat generating fluid past a vertical 

plate with Hall current and heat flux through a porous medium. Kinyanjui et al. (2000) 

investigated MHD free convection heat and mass transfer of a heat generating fluid past 

an impulsively started infinite vertical porous plate with Hall current and radiation 

absorption. Kwanza et al. (2003) Studied MHD Stokes free convection flow past an 

infinite vertical porous plate subjected to constant heat flux with ion-slip current and 

radiation absorption. Hydromagnetic flow past parallel porous plate was studied by 

Kafousia (1985) and Dorch (2007) explained the effect of magnetic field on a rotating 

porous plate.  

Chartuverdi (1996) investigated the flow of an incompressible viscous fluid past an 

impulsively started horizontal plate and Magnetohydrodynamics flow past an infinite 

plate with a constant and variable suction. He also studied the finite difference of MHD 

stokes problem for a vertical infinite plate in a dissipative heat generating fluid with Hall 

and Ion-slip current. Kinyanjui  et al. (1998) studied the MHD stokes problem for a 

vertical infinite plate in a dissipative rotating fluid with Hall current and they later 
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investigated the effect of both Hall and Ion-slip currents on the flow of heat generating 

rotating fluid system. They observed that for an Eckert value of 0.02, there was a 

decrease in the primary velocity profile with an increase in Rotational parameter. In the 

case of secondary velocity profiles there is initially a decrease with an increase in 

Rotational parameter and as the distance from the plate increases, the secondary velocity 

profile increased. They also observed that an increase in Hall parameter has no effect on 

the temperature profile but an increase in times causes an increase in the temperature 

profiles. 

 

Polhhausen (1921) studied the free convention flow past a semi-infinite vertical plate by 

the momentum integral method. But the similarity solution to free convection flow past 

a semi-infinite vertical plate was first presented by Ostrach (1953) who solved the non-

linear coupled ordinary differential equations numerically on a computer.  The fluid 

considered was air.  

Kinyanjui et al. (1998) studied the finite difference analysis of free convection effects on 

MHD problem for a vertical plate in a dissipative rotating fluid system with constant 

heat flux and Hall current. Kinyanjui et al. (1999) also did a finite difference analysis of 

MHD stokes problem for a vertical infinite plate in a dissipative fluid with constant heat 

and Hall current. Takhar and Soundalgekar (1976) did a study on the viscous dissipation 

effects on heat transfer in boundary layer flow past a semi infinite horizontal flat plate. 
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Takhar and Soundalgekar (1972) studied a forced and free convective flow past a semi-

infinite vertical plate and also (1977b) the MHD and heat transfer over a semi-infinite 

plate under a transverse magnetic field. Some of their other works include MHD free 

convection past a semi-infinite vertical plate with suction and injection. MHD free 

convection flow past a vertical semi-infinite plate with a uniform free –stream in 1985 

and MHD free convection flow past a semi-infinite plate with uniform heat flux also in 

1985.  

 

Takhar, et al. (2000) did a study on the effects of radiation on the free convection flow 

past a semi-infinite vertical plate with mass transfer. They observed that both the 

temperature and velocity decreased as the distance from the plate’s leading edge 

increased and that an increase in radiation parameter leads to a decrease in the 

temperature and velocity. Ram et al. (1998) solved the MHD stokes problem of a 

convective flow past a vertical infinite plate in a rotating fluid. They investigated the 

problem of hydro magnetic free convective flow and mass transfer through a porous 

medium bounded by an infinite vertical porous plate with constant heat flux and he 

(1990) solved the MHD stokes problem for a vertical infinite plate with Hall and ion-slip 

currents by explicit finite difference method. He observed that an increase in the Hall 

parameter leads to an increase in primary velocity profiles and it lead to a decrease in the 

secondary profiles. He also noted that an increase in hall parameter or Ion slip parameter 

lead to an increase in the temperature profiles.  
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Soundalgekar et al. (1985) used finite difference method to investigate free convection 

effects on Stokes problem for a vertical plate in a dissipative fluid with constant heat 

flux and he (1976) also studied free convection effects on the stokes problem for an 

infinite vertical plate. They also studied the free convection effects on MHD stokes 

problem for a vertical plate. Jha and Prasad (1992) investigated MHD free convection 

and mass transfer through a porous medium with heat source.  

 

Kafousia et al. (1981) studied unsteady hydro magnetic layer flow past a non-conducting 

infinite vertical porous plate in the presence of a transverse magnetic field taking into 

account the effect of heat source on the free convection flow. He investigated the heat 

transfer in viscous incompressible and electrically conducting fluid. Reddy (1964) 

discussed the fluctuating MHD flow past an infinite porous flat plate by introducing the 

slip flow boundary condition.  Sterwatson (1951) did a study on the flow of an 

incompressible viscous fluid past an impulsively started semi-infinite horizontal plate.   

 

Takhar et al. (1980) investigated the hydro magnetic flow of a heat generating fluid past 

a vertical plate with Hall current and heat flux through a porous medium. Agrawal et al. 

(1983) studied the effect of Hall current on steady hydro magnetic free convective flow 

past an infinite vertical porous plate in a rotating viscous fluid system. 

Despite the intensive investigation done on various areas of MHD by the above 

mentioned scientists and mathematicians, little attention has been directed to my main 

objective of this study. Not much has been done in the MHD free convection heat and 
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Mass transfer problem for a heat generating fluid past a semi – infinite vertical porous 

plate with variable suction. 

 

1.3 STATEMENT OF THE RESEARCH PROBLEM 

When an unsteady, heat generating electrically conducting fluid flows past a semi-

infinite vertical porous plate with variable suction; velocity, temperature, rates of mass 

heat transfer, concentration and skin friction are affected.  

The intention in this study is to obtain an approximate velocity profiles, temperature 

profiles, and concentration profiles of a heat generating fluid past a semi-infinite vertical 

porous plate with variable suction. This study, the magnetic field is applied transversely 

to the direction of the flow and suction is variable, see figure 2.1. 

 

1.4 JUSTIFICATION 

MHD free convection flow past a semi-infinite vertical porous plate with variable 

suction is a study which has many applications such as in MHD pumps, MHD power 

generator, purification of crude oil in petroleum industries, polymer technology and 

aerodynamic heating and accelerators. In the study of MHD free convection flow of a 

heating generating fluid past a semi-infinite vertical porous plate with variable suction 

finds very many applications in cooling of electronic devices (e.g. mobiles, computers 

etc.) and solar panels. Some of other applications in this study are design of; flow 

meters, MHD generators, heat exchangers, space vehicle, propulsion and breaking, 

electromagnetic pumps and MHD electrical power generation. Fluid flow involving 
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rotation is observed in earth’s atmosphere and in oceans. Meteorologist can use this 

study to understand dynamics of meteorology and air pollution. It is in the light of this 

that this study will be useful to welfare of mankind. The general governing equations 

used are momentum equation, Energy conservation equation, Concentration equation 

and Induction equation. 

 

1.5 OBJECTIVES OF THE STUDY 

1)  To investigate the effect of various parameters on the flow variables in the flow 

of heat generating electrically conducting fluid past a semi – infinite vertical 

porous plate in the presence of a variable suction 

2) To analyze the skin friction,  rate of heat transfer and mass transfer 

3) To determine the velocity and temperature profiles and concentration profiles. 

4) To investigate the effect of mass diffusion (mass transfer), Hall current (induced 

current) and heat source parameters of a heat generating fluid past a semi – 

infinite vertical porous plate with variable (inhomogeneous) suction. 
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CHAPTER TWO 

GOVERNING EQUATIONS 

2.0 INTRODUCTION 

The basic conservation laws are mass conservation, momentum conservation and energy 

conservation. These conservation laws must be satisfied fully to obtain the governing 

equations which are used to analyze the fluid flow. In order to analyze MHD free 

convection heat and mass transfer of a Heat generating fluid past a semi-infinite vertical 

porous plate with variable suction, the equations of continuity (conservation of mass), 

equation of motion, energy equation, induction equation (which obtained both from  

Maxwell’s equations and  Ohm’s law equations). Numerical Techniques (finite 

difference method) is used to obtain solution of the systems of equations derived. The 

governing equations in dimensional form are by using none non-dimensionalised by 

using non-dimensional parameters. 

 

2.1 CONSERVATION EQUATIONS 

2.1.1 Mass conservation equation 

Equation of mass conservation is also known as the equation of continuity and applies to 

all fluids which have no chemical reactions and also variations of all fluid properties are 

completely ignored except density since it influenced by gravitational force ( g ) 

The equation of the conservation of mass is written as  

1.2.................................................................................................0. 


q
Dt

D



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Since the density is constant, then this reduces to  

      2.2..........................................................................................................0



q

t



 

In this case study, it is assumed the fluid is incompressible and so mass, volume and 

hence density remains constant. The above equation is a partial differential equation and 

therefore it means that the velocity is continuous. 

 

Since the flow under consideration is incompressible, then density is taken as a constant 

so that 0




t


 and the above equation (2.2) reduces to 

  3.2........................................................................................................................0.  q  

 

2.1.2 Momentum equation 

The principle of conservation of momentum is the application of Newton’s second law 

of motion to an object (or element of any fluid) which is explained or stated as the rate at 

which momentum of the fluid is changing equal to the net external force acting on the 

mass. 

The momentum equation can be written as 

 

eFFu
Dt

Du 
 21




..………………………………………………………2.4 
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The body force 


F  comes from gravitational force, (  gF


) and the 

electromagnetic force (


 BXJFe


) and finally the above equation can be re-written as 

 



















BJpgqqq

t

q
s

**2 



……………………………………..2.5 

 

2.1.3 Conservation of energy equation 

This equation results from the first law of thermodynamics which states that the amount 

of heat added to a system dQ equals to the change in internal energy deplus the work 

done dW i.e. dWdedQ  . The energy equation can be expressed mathematically as: 

2.6...................................................................................................................dVpeddQ 

 

 

The above equation can be re-written as 




























u

t
uqQhu

t

h



 .:.. ……………………..……………..2.7 

and where tensor identity :u is given by  

    8.2..................................................................................................:   uuu  

The equation above need to be simplified to contain measurable variables as 

Temperature. The term from heat generation is specified independently. Heat flux due to 

radiation is assumed to be negligible. Conductive heat flux which is formulated by 

Fourier’s law is expressed as 
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9.2.........................................................................................................................Tkq 

 

Where q is conductive heat flux, k is coefficient of thermal conductivity of the fluid and 

T is the temperature of the fluid. Enthalpy is directly proportional to temperature and 

pressure and can be written as  

h = h (T, P)………………………………………………………………………….2.10 

Specific heat capacity found at some mean pressure in the fluid flow is defined as 

Cp = 11.2........................................................................................................pP
T

h
C




  

 

The dissipative heat generated by electric current is given as


2j
. 

Now, Equation 2.7 simplifies to; 

12.2....................................................................
2




j
QTKTu

t

T
Cp 













  

If it is assumed that Q=0 and 0
2




j
(since it is assumed that no heat is dissipated) for a 

range of temperatures, then the equation of Newtonian fluid (Fluids for which the 

shearing stress is linearly related to the rate of shearing strain) become; 




 2

pC

K
u

t 
……………………………………………….………….2.13 

and hence equation 2.13 becomes; 

14.2.................................................................................................2



u

t
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Where 
pC

k


   

2.2 ELECTROMAGNETISM EQUATIONS 

Electromagnetism constitutes of interaction between rapid varying electric and magnetic 

fields. Using electromagnetic theory, the following equations which are named as 

Maxwell’s equations are formulated; 

 

J
t

D
H

j

t

B

B


























0

0

0

                         …………...…………………………………2.15 

Where        16.2..............................................................................HB o


  

Where B


 is magnetic field flux, Wb, H


 is magnetic field intensity, wbm
-2

 

       17.2....................................................................................................................EJ 


 

 

2.3 OHM’S LAW 

When magnetic field is present in an electrically conducting fluid or a time varying 

magnetic field is present in a stationary electrically conducting fluid, electromotive force 

(e.m.f) is induced and magnitude of e.m.f is directly proportional to the size of magnetic 

field, B and velocity of the fluid, V. The induced e.m.f is given as .


BV  
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E.m.f = .


BV …………………………………………………………………………2.18 

The current density, J of stationary electrically conducting fluid is expressed as: 

       19.2....................................................................................................................EJ





 

Where displacement current, D is negligible as in the MHD cases. 

In general, current density J, of an electrically conducting fluid (due to an externally 

applied magnetic field) is expressed as 



J  = 










BVE …………………………...………………………………………..2.20 

2.4 INDUCTION EQUATION 

The generalized Ohms law is 

  vBvEJ e         ………………..2.21 

Neglecting the displacement current and taking the curl of equation yields 

  BvEJ         ………………..2.22 

Where curl means the cross product of del and a vector. Substituting the Maxwell’s 

equation (2.15) and (2.17) yields    

   












 Bv

t

H
H





      ………………..2.23 

and substituting HB e   and simplify using cross-product rule 

      cbabcacba ..    
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       0.
1

..
11 2  BSinceBBBB

eee


. LHS 

         ………………..2.24 

   HvCurl
t

H
Hv

t

H
ee 









       RHS ………………..2.25 

   Hv
t

H
B ee

e





 


21

     ………………..2.26 

Substituting HB e in 2.26 yields 

 

 



















HHvCurl
t

H

HHvCurl
t

H

2

2

1





      ………………..2.27                                                                                     

Where  `e   

Expanding the first term on RHS of equation 2.27 using vector cross product yields 

    HHqqH
t

H 21
.. 






                                               ………………..2.28 

The induction equation is expressed as 

     HqHHq
t

H
H

2.. 



      ………………..2.29 

The constant H  is called the magnetic diffusivity and  is the reciprocal of electrical 

diffusivity of the fluid. Substituting   1
 eH   in the above equation yields  

     HqHHq
t

H

e

21
.. 






     ………………..2.30 
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Neglecting the magnetic diffusivity (since as η= μe →∞ as  →∞   then 1/ μe →0 and 

hence 0×∆
2
H=0) 

The induction equation (2.29) is modified by substituting the magnetic field intensity H 

with the magnetic induction vector B. We consider that B is in the direction of H and 

HB e  yielding 

     0



qBBq

t

B
     ………………..……….2.31 

Simplifying the induction equation (2.31) using the dot product rule yields 

    HuHHu
t

H
e

e

ee
e 






 21





………………………………………..2.32 

    HuHeHu
t

H
ee




21







  

    HuHHu
t

H
e




21
















  

    HuHHu
t

H

e




21







………………………………………………...2.33 

This equation can be expanded as follows: 









































































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













































































































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
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


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Using the fact that    zzyx HHHHH ,0,0,,   and that the fluid flow depends on z and t 

only while the applied magnetic field depends on x and t, then 0 wu . Then the above 

equation reduces to  

  0














y

u
B

x

B
u

t

B
y

yy
    ………………………………...2.35 

 

 

2.5 FINAL SET OF GOVERNING EQUATIONS 

The study in this thesis is MHD free convection heat and mass transfer of a heat 

generating fluid past a semi-infinite vertical porous plate with variable suction. A strong 

variable magnetic field H


is applied to the semi-infinite vertical plate with variable 

suction. We chose the y-axis to be the co-ordinate along the plate and the x-axis to be 

the co-ordinate perpendicular to the plate. The plate is semi-infinite in x direction thus 

the x-component of the velocity profiles is invariant in the direction parallel to the plate. 

The equation of continuity is 

      36.2....................................................................................................................0. 


q  

The body force term is included and is given as 

         F= 37.2....................................................................................................................g  

Density variations are essential and are included 

       38.2............................................................................................................ D   

Where   is a constant. 
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The gravitational acceleration is derived from a potential g and so 

    39.2............................................................... gDDgF   

 

The density,   is directly proportional to temperature, T 

40.2..................................................................................................................DTD  
 

The momentum equation become 

BJTgu
ΡDt

Du 
  21

………………………………………………2.41 

Where  is the coefficient of expansion of the fluid. 

The momentum, energy and induction equations governing the fluid flow are as shown 

below: 

Momentum: ρ  





























BJpgqqq

t

q
 2 …………….………2.42 

Energy:    


 2.
pC

K
u

t 
………………………….………….…………….2.43 

Induction:  HuHHu
t

H
H

2




















 

 ……………..…………..…………2.44 

 

2.6 ANALYSIS OF THE PROBLEM 

In this section, mathematical analysis and method of solution are presented. The flow of 

a viscous incompressible free convection heat generating fluid past an impulsively 
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started semi-infinite vertical porous plate with variable suction in presence of variable 

magnetic field is considered. 

 

Consider flow of a viscous incompressible MHD free convection heat generating fluid 

past an impulsively started semi-infinite vertical porous plate with variable suction in 

presence of variable magnetic field. The plate is suddenly set into motion in its own 

plane with constant velocity. It is assumed that the variable magnetic field is applied 

perpendicular to the direction of the flow as illustrated in the figure below (Fig 2.1) 
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An assumption is made that the induced magnetic field is negligible such 

that  zHH ,0,0 . This assumption is justified owing to the fact that the Magnetic 

Reynold’s number of a partially ionized fluid is very small. 

We consider the system to be rotating with uniform angular velocity about the z-axis 

which is taken normal to the plate. Since the plate is semi-infinite in length, the variables 

are functions of y
+ 

and t
+
 only. At time 0t , the plate start moving impulsively in its 

own plane with constant velocity ov  and its temperature instantaneously increased or 

w 

u 

0 0 0 

 

0 0 0 

 

0 0 0 

 

0 0 0 

 

0 0 0 

 

0 0 0 

 

       u 

    Vertical 

    Porous                    

    plate 

  H  

Variable magnetic 

field 

v Fig 2.1: The flow configuration with the co-ordinate system of 

magnetohydrodynamic free convention flow of a heat generating 

fluid past a semi-infinite vertical porous plate with variable suction 
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decreased to w
  which is maintained constant later. Initially the temperature of the 

fluid and the plate are assumed to be the same. 

The equation of conservation of electric charge 0. J


 gives tConszJ tan


 

where   JzJyJxJ ,,


. This constant is assumed to be equal to zero since 

0Jz  at the plate which is electrically non-conducting. Thus 0Jz  everywhere in the 

flow. The generalized ohm’s law must be modified to include the effects of Hall currents 

and variable magnetic field as follows: 









 e

e

yey

o

ee
P

e
HqEHJ

H
J .

1




 
 ………...…...2.45 

Where eee e  ,,,, and eP  is the electric conductivity, the magnetic permeability, 

the cyclotron frequency, the collision time, the electric charge, the number density of 

electron and the electron pressure respectively. 

It is assumed that 1ee . The induced magnetic field is assumed to be zero and the 

pressure gradient may be neglected. The ion-slip and thermoelectric effects are also 

neglected. Thus equation (2.45) yields 

     ooeoxoy

o

ee
yx HuHvHJHJ

H
JJ    ,,, 


 ……………………...2.46 

Equating the x  and the y component in the above equation gives: 




















oexeey

oeyeex

HuJJ

HvJJ







…………………...……………...2.47 

Solving for 
xJ  and 

yJ  by first eliminating 
yJ yields 
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






 


 muv
m

eHooJx
21


 ………………………………………...2.48 

And consequently eliminating 
xJ  

  


 umv
m

H
J

oeo
y

21


…………………………………...……………2.49 

When the effect of rotation is considered, the Coriolis force has to be included in the 

momentum equation. Considering a rotating frame of reference with a uniform angular 

velocity,  , the equations of motion become: 

   













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
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
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u
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2





  ……………….....2.50 
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
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
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In the dimensionalization process the following set of general scaling variables are 

utilized in our study 
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The initial boundary conditions are 
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For 0t : 
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Let Q be the internal heat generation. The internal heat generation is assumed to be of 

the form 
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On substituting equations (2.48) and (2.49) into equations (2.50) and (2.51), the system 

of equations governing the problem becomes: 
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2.7 NON- DIMENSIONAL PARAMETERS 

The following non-dimensional numbers play a significant role in this study: 

2.7.1 Magnetic Reynolds number 

It represents the diffusion of magnetic field 
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2.7.2 Prandtl number 

This is a non-dimensional parameter which represents the ratio of momentum 

diffusivity   to thermal diffusivity,   this number is given by; 
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2.7.3 Grashof number 

This gives the ratio of buoyancy to viscous force; 
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2.7.4 Eckert number 

This is a measure of kinetic energy of the flow relative to the enthalpy 

differences across the field; 
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2.7.5 Hartmann number 

It is the ratio of magnetic force to viscous force;  
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2.7.6 Magnetic parameter 

It is the ratio of magnetic force to inertial force 
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2.7.7 Schmidt number, Sc 

This is the ratio of relative velocity and contraction boundary layer thickness for 

convection mass transfer in laminar flows. 
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2.7.8 Nusselt number, Nu 

It provides a measure of convection heat transfer occurring at the surface; 
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2.7.9 Rotation Parameter, Er 

This gives the gross measure of how the Coriolis force compares to the viscous force. It 

is given by the relation; 

Uo

r

v
E

3


  

2.8 THE PROCESS OF NON-DIMENSIONALIZATION SCHEME 

The non-dimensionalization process allows us to apply results obtained for a surface 

experiencing a set of conditions to a geometrically similar surface experiencing entirely 

same conditions. Due to the fluid nature, size of the surface or the fluid velocity, the 

conditions may vary. 

Consider the components of equations (2.50) and (2.51) which yield: 
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Similarly 
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On substitution of equations2.65 to 2.69 into equations (2.50) and (2.51) we obtain 
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On using the non-dimensional variables defined in (2.55), equations (2.56) and (2.57) 

yields 
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On multiplication of equation (2.74) by the complex number i (the complex number 

defined by 1i ) and adding to equation (2.75) we obtain: 
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This can be written as 
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On substitution of relevant non-dimensional variables in equation (2.62), the following 
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By multiplying equation (2.83) by  


TTUo
2


yields 

  
























































222

2

2

z

u

z

v

TTC

Uo

tCpz
w

t p

o





………………...…….2.84 

On using the defined non-dimensional parameters defined, equation (2.84) yields: 
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This simplifies to 
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Substituting all these in equation (2.83) we obtain 
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Where in this case   viuq 


 is the complex velocity. 

Again, non-dimensionalising equation (2.35) and substituting the magnetic Reynolds 

number yields 
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The non-dimensional forms of the initial and boundary conditions are: 

t < 0:  q (z,0) = 0, θ (z,0) = 0,  C (z, 0) =0 ……………..………….2.90 

t > 0:  q (0,t) = 1, θ (0,t) = 1,  C (0, t) = 1 ………………...............2.91 

q (∞,t) = 0, θ (∞,t) = 0,  C (∞, t) = 0   ………………...............2.92 
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CHAPTER THREE 

METHOD OF SOLUTION 

3.0 INTRODUCTION 

To effectively combine hydromagnetic theory and physical conditions of the flow, a 

mathematical model was formulated. Due to the presence of variable magnetic field and 

suction, equations that are non-linear in nature are generated that cannot be solved by 

analytical methods. Numerical methods such as finite difference method are used in 

solving these equations. The Non-linear equations are Non-dimensionalized, then the 

equations are written in finite difference form where they are solved iteratively using a 

computer program. 

 

Finite difference method is applied to solve the system of non-linear partial differential 

equations governing the flow problem. Initial and boundary conditions are determined 

before the process of solving numerically the non-linear partial differential equations. 

The velocity, concentration and temperature profiles are used to solve skin friction, rate 

of heat transfer and mass transfer respectively. Before the system of equations is solved, 

the initial and boundary conditions need to be determined. 

 

3.1 ASSUMPTIONS 

The following assumptions are taken into account in order to simplify the governing 

equations; 

a) B = e  H, where B is magnetic field and H is magnetic field intensity. 
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b) The  fluid is incompressible 

c) The fluid flow is laminar 

d) The displacement current is negligible since magnetic and electrical fields 

frequencies are insignificant compared to frequency of electron  

e) Lorentz force 


BXJ  due to magnetic field is dominant as compared to force due 

to electric field  (F= Ee  force per unit volume) 

f) Boussinesq  approximations for this study are: 

i. The density gradients caused by temperature and concentration 

gradients causes buoyancy 

ii. Density is directly proportional to both Temperature and 

concentration. 

iii. Variation of density of fluid from   is insignificant. 

iv. Heat transfer by conduction and radiation is negligible. 

 

3.2 FINITE DIFFERENCE APPROXIMATION 

We consider the explicit finite difference method. In this method, partial differential 

equations are approximated by a set of linear equations relating to the values of the 

function at each mesh point and then the set of algebraic equations solved. An iteration 

procedure is developed that takes into account the non-linear character of the equation. 

We partition the interval [a, ∞] and [c, ∞] of the z and t axes respectively, into equal 
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parts of width h and k. A grid is then defined by drawing vertical and horizontal lines 

through the points with co-ordinates (zi, tj) such that  

              1.3.............................................................................
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with grid lines ti and zj intersecting at mesh points (zi, tj). Using Taylor’s expansion in the 

variables z and t at the points (zi+1, tj) and (zi-1, tj) about (zi, tj) we obtain 
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In which case 
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On eliminating uz from equation (3.2) we obtain the difference formula as: 
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On eliminating uz from equation (3.2) yields 
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On eliminating ut from equation (3.3) yields 
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And eliminating ut from equation (3.3) yields 
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yielding the first and second order central differences in z and t. By choosing small 

values of h and k minimizes truncation errors O (h
2
) and O (k

2
). 

 

3.3 DEFINITION OF MESH 

In order to give an explicit relation between the partial derivatives in the final set of 

equations and the function values at the adjacent nodal points, a uniform mesh is 

considered whereby the rectangular region of interest is subdivided into uniform 

rectangular elements centered about the mesh points (i, j) as depicted in Figure 3.1 

below: 
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  Fig 3.1 Definition of mesh  

 From Figure 3.1 above, the x-axis denotes variable (velocity) along the y-axis while the 

y-axis represents time t. The exact solutions for the equations governing our flow 

problem are not possible since they are non-linear. Hence to solve these equations, we 

use the finite difference scheme and we use the mesh system defined in Fig 3.1, the final 

set of non-dimensional equations which are expressed in the first and second forward 

difference approximation is as follows; 
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This can be written as 
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The energy equation can be expressed in the first and second difference approximation 
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This can be written as 

 

            

   
 

 ji

z

jiji

z

jiqjiq

z

jiqjiq
Ec

z

jijiwt

ji ,
,12,1

,,1,,1
P

,1,Pr

Pr
1,

2

r






 


























































































 

………..…………………………….. 3.11 

Similarly, Concentration equation can be expressed in the first and second difference 

approximation as; 
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This can be written as: 
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Where index i refers to z and j to time t. 
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Finally, the finite difference form of the governing equations is as follows; 
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The initial conditions at t=0 take the form 

q (z, t) = 0 θ (z, t) = 0 

The initial conditions at t>0 take the form 

q (0, t) =1 θ (0, t) =1 

The boundary conditions as z→∞ take the form 

q (∞, t) =0 θ (∞, t) =0 

Using these initial and boundary conditions we can compute consecutive terms of 

temperature, concentration and velocity profiles computed using the following finite 

difference form of equations; 
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and 
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To ensure stability and convergence of finite difference scheme, the computations are 

made using small values ∆t. Using smaller values of ∆t and consecutively increasing the 

number of the mesh points does not have a significant effect on the results and thus they 

ensure the stability and convergence of the finite difference scheme used in the present 

analysis. 

 

3.4 RESULTS AND DISCUSSION 

A program was written and run for different values of non-dimensional parameters to 

determine velocity profiles, temperature profiles and concentration profiles when the 

plate was conventionally heated or conventionally cooled. The Non-dimensional 

parameters which were used are rotational parameter, Hall parameter, Eckert number, 

suction parameter, magnetic parameter and injection parameter.  

 

The velocities were classified as primary and secondary velocity along x and y-axes. 

Numerical computations for the velocities (both primary and secondary) profiles, 

temperature profiles and concentration profiles were obtained and the unsteady flow 
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results obtained were presented in form of graphs as in Figures 4.1 to 4.8. Prandtl 

number Pr and magnetic parameter M used were 0.71 and 5.0 respectively. The 

magnetic parameter M
2
 =5.0 signifies strong Magnetic field. Gr>0 (=5) corresponds to 

cooling of the plate by free convection currents since the plate is at a higher temperature 

than the surrounding and Gr<0(= -5) to heating of the plate by free convection currents 

since the plate is at lower temperature than the surrounding. 

Case 1 

In the presence of heating of the plate by free convection current for the case of Gr<0 (=-

5).  

From figure 4.1 and 4.2 we observe that: 

 For Ec= 0.02, a decrease in the rotational parameter leads to an increase in both the 

primary and secondary velocity profilers. Since the wall moves in opposite direction 

to that of the free stream, it tends to retard the flow. Similarly, the convectional 

currents due to rotation cause the fluid to retard in motion. 

 An increase in the Magnetic parameter leads to an increase in both the primary 

velocity and the secondary velocity profiles. Inclusion of Hall parameter decreases 

the resistive force imposed by the magnetic field due to its effect in reducing the 

effective conductivity
21 m

 . 

 We also observe that an increase in the suction parameter causes no effect in the 

primary velocity profile but decreases secondary velocity profiles. Introduction of 

suction retards fluid flow due to increase of convection currents of the fluid across 

the plates. 
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 Removal of injection increases both the primary and secondary velocity profiles. 

This is because the convectional currents of the fluid are reduced.  

 An increase in Eckert number results to an increase in the primary velocity and 

secondary velocity profiles. This is due to the fact that an increase in Ec increases 

convectional currents which cause a slight decrease in the primary velocity. 
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Primary Velocity Profiles For Gr = - 5 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig 4.1: Primary velocity profiles in the presence of heating of the plate by free 

convection current for the case of Gr<0 (= - 5) 
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Secondary Velocity profiles for Gr = - 5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.2: secondary velocity profiles in the presence of heating of the plate by free 

convection current for the case of Gr<0 (= -5) 
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From Fig 4.3: (Temperature profile for Gr< 0) we observe that; 

  A decrease in the Rotational parameter Er gives rise to an increase in the 

temperature profile.  The rotation causes the circulation of induced currents at the 

surface of the fluid, that is, the increase of the temperature affects the current 

distribution. Rotation leads up to additional transport; this contribution is a 

consequence of the decrease of the ion rotation. Viscous dissipation would 

immediately lead to an increase of ion-temperature, increasing ion momentum 

and thermal transport. 

 An increase in Hall parameter causes a decrease in the temperature profile. As 

the distance from the plate increases, these profiles increase. However, as the 

distance from the plate increases these profiles remain constant. Further, an 

increase of Hall parameter increases cyclotron frequency and hence the rotation 

and collision of electrons increases. An increase in Hall parameter leads to a 

decrease in the effective conductivity (
21 m

 ) which reduces magnetic damping 

force on the velocity and thus the velocity increases. 

 Increase in Eckert number leads to an increase in the temperature profiles. 

Increasing the Eckert number causes the fluid to become warmer and therefore 

increase its temperature.  This is attributed to the viscous dissipation.  

 Increase in the Magnetic parameter leads to an increase in the temperature 

profiles. The increase in the fluid temperature induces more flow in the boundary 

layer causing the velocity of the fluid there to increase. The magnetic field 
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produces a huge increment in the magnitude of the temperature. This can be 

explained physically as follows: it is well known that a magnetic field imparts 

some rigidity to the conducting fluid. Thus, with increase in the magnetic field, 

greater effort will be necessary to maintain the rotation of the plate and this 

implies an increase in temperature with an increase of the parameter M.  
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Temperature Profiles for Gr = - 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.3: Temperature profiles in the presence of heating of the plate by free convection 

current for the case of Gr <0 (= -5)  
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From Fig 4.4: (Concentration profile for Gr< 0) we observe that: 

  A decrease in the Rotational parameter Er has no effect to the concentration 

profiles. Rotation has been achieved by a transfer of angular momentum. Once 

this is drastically reduced, the rate at which the particles move and collide is too 

small such that the change is insignificant. 

 An increase in Hall parameter has no effect to the concentration profiles. An 

increase in Hall parameter which is due to the increase of collisions has no effect 

to the concentration profile. This is because there is no change in the charge 

carriers hence the effect is neutralized. Since no polarization voltage is imposed 

on the fluid, the concentration profile is not affected. 

 Removal of injection causes a rise in concentration profile. Removal of injection 

means an increase in the molecular diffusivity which consequently results in the 

rise of the concentration. 

 Increase in Eckert number has no effect to the concentration profiles.  The 

increase in an Eckert number increases thermal energy which consequently 

increases temperature and this does not affect the concentration of the fluid but 

increases the mass diffusion. 

 Increase in suction parameter leads to a decrease in the concentration profiles. 

Suction stabilizes the hydrodynamic, thermal as well as concentration boundary 

layers growth. Sucking decelerates the fluid particles through the porous wall 

hence reducing the concentration. 



 56 

Concentration Profiles for Gr = -5 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.4: Concentration profiles in the presence of heating of the plate by free convection 

current for the case of Gr<0 (= -5) 
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Case 2 

In the presence of cooling of the plate by free convectional currents i.e. when the 

Grashof number is greater than zero (equal to five) from Figure 4.5 and Figure 4.6 we 

note that:  

 For Ec = 0.02, a decrease in the rotational parameter leads to an increase in both 

the primary and secondary velocity profiles. This is because the presence of the 

transverse magnetic field creates a resistive force similar to the drag force that 

acts in the opposite direction of the fluid; thus causing the velocity of the fluid to 

decrease. 

 An increase in the Magnetic parameter leads to a decrease in the primary velocity 

and an increase in the secondary velocity profiles. Due the Lorentz force, there is 

a resistive force along the x-axis and this reduces the primary velocity but the 

secondary velocity profile increases since it is in the direction of the induced 

force. 

 An increase in Hall parameter leads to an increase in the primary velocity and a 

decrease in the secondary velocity profiles. When the Hall parameter is increased 

the induced current along x-axis increases and this translates to an increase in the 

primary velocity while the induced current along the y-axis decreases slightly 

and thus a reduction in the secondary velocity profiles. 

 We also observe that an increase in the suction parameter causes no effect in the 

primary velocity profiles but a decrease in secondary velocity profiles. Increasing 

suction parameter means pumping more fluid to the surface of the plate. This 
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does not affect the primary velocity profiles but decreases secondary velocity 

profiles since action and reaction forces which are in play are equal and opposite 

in nature. 

 Removal of injection increases both the primary and secondary velocity profiles. 

This is because convectional currents which are interfering with the fluid flow 

are reduced and thereby increasing both primary and secondary velocity profiles. 

 An increase in Eckert number results to an increase in both the primary and 

secondary velocity profiles. An increase in Eckert number means an increase in 

kinetic energy of the fluid particles and for this reason both primary and 

secondary velocity profiles.  
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Primary Velocity Profiles for Gr = 5 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig 4.5: Primary Velocity profiles in the presence of cooling of the plate by free 

convection current for the case of Gr>0 (= 5) 
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Secondary Velocity Profiles for Gr = 5 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.6: Secondary Velocity Profiles in the presence of cooling of the plate by free 

convection current for the case of Gr>0 (= 5) 
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From fig 4.7: Temperature profiles for Gr>0 we observe that: 

 A decrease in the Rotational parameter Er, leads to an increase in the temperature 

profiles. The rotation causes the circulation of induced currents at the surface of 

the fluid, that is, the increase of the temperature affects the current distribution. 

Rotation leads up to additional transport; this contribution is a consequence of 

the decrease of the ion rotation. Viscous dissipation would immediately lead to 

an increase of ion-temperature, thus increasing ion momentum and thermal 

transport.  

 An increase in Hall parameter causes an increase in the temperature profile. This 

is because in Hall parameter means an increase of ion collisions which translates 

to more thermal generation hence increasing the temperature profiles. 

 Removal of injection causes a rise in temperature profiles. The high injection 

current causes a strong self-heating effect which reduces the quantum of the 

particles.   

 Increase in Eckert number leads to an increase in the temperature profiles. 

Increasing the Eckert number causes the fluid to become warmer and therefore 

increase its temperature.  This is attributed to the viscous dissipation. Increasing 

Ec can lead to a situation that the viscous dissipation becomes significant hence 

increasing the temperature. 

 Increase in suction parameter has no effect on the temperature profiles. Increase 

in suction means a decrease in molecular diffusivity (D) and this means that the 

temperature profiles are not altered.  
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Temperature Profiles for Gr = 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.7: Temperature profiles in the presence of cooling of the plate by free convection 

current for the case of Gr>0 (= 5) 
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From fig 4.8: Concentration profile for Gr > 0 we observe that; 

 A decrease in the Rotational parameter Er has no effect to the concentration 

profiles. Rotation has been achieved by a transfer of angular momentum. Once 

this is drastically reduced, the rate at which the particles move and collide is too 

small such that the change is insignificant. 

 An increase in Hall parameter has no effect to the concentration profile. An 

increase in Hall parameter which is due to the increase of collisions has no effect 

to the concentration profile. This is because there is no change in the charge 

carriers hence the effect is neutralized. Since no polarization voltage is imposed 

on the fluid, the concentration profile is not affected. 

 Removal of injection causes a rise in concentration profiles. Removal of 

injection means an increase in the molecular diffusivity which consequently 

results in the rise of the concentration. 

 Increase in the Magnetic parameter has no effect to concentration profiles. As M 

increases, the Lorentz force which tends to oppose the flow also increases. The 

effect is enhanced deceleration which when combined with the momentum 

diffusivity has no effect to concentration. Again there is no increment in the 

buoyancy ratio hence no change in the concentration.   

 Increase in suction parameter leads to a decrease in the concentration profiles. 

Suction stabilizes the hydrodynamic, thermal as well as concentration boundary 

layers growth. Sucking decelerates the fluid particles through the porous wall 

hence reducing the concentration. 
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Concentration Profiles for Gr = 5 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.8 Concentration profiles of cooling of the plate by free convection current for the 

case of Gr>0 (= 5) 
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From Table 1 we observe that with Gr=5.0  

 Removal of injection leads to a decrease in the rate of heat transfer.  

  Removal of injection means the reduction of the particles which were causing 

 collisions resulting in heat changes. This means that the collision times, allows 

 the removal of air and the consequence is reduced heat transfer.  

 An increase in suction parameter or magnetic parameter leads to an increase in 

the rate of heat transfer. The increase of S means a decrease of molecular 

diffusivity (D) that result in increment of the rate of heat transfer. The 

application of the externally variable magnetic field reduces the velocity vectors 

and leads to an increase in the rate of heat transfer. 

 A decrease in rotational parameter Er leads to an increase in the rate of heat 

transfer. Due the presence of the Lorentz force and the gravitational force 

rotating at very low speeds, a friction factor is realized that results in thermal 

dispersion thereby increasing the rate of heat transfer. 

 Removal of w decreases the rate of heat transfer. Injection causes convectional 

currents on the plate and this reduces the rate of heat transfer. 

 Increase in the rotational parameter m leads to a decrease in the heat transfer. 

This reduction is due to the increase in the momentum, thermal and magnetic 

boundary layer thickness which in turn are caused by the deceleration of the 

magnetic field.    
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Table 1: Rate of heat transfer Nu with cooling Pr=0.71, Gr=5.0 

m M2 Ec Er S w Nu 

1 24 0.02 0.5 0.4 0.5 2.661606153 

2 24 0.02 0.5 0.4 0.5 2.659182396 

1 96 0.02 0.5 0.4 0.5 2.67362258 

1 24 0.5 0.5 0.4 0.5 2.478347258 

1 24 0.02 0.05 0.4 0.5 2.661558481 

1 24 0.02 0.5 0.7 0.5 2.661558481 

1 24 0.02 0.5 0.4 0 2.531911988 

 

From Table 2 it is observed that with Gr=5.0   

 Removal of injection parameter leads to an increase in  x  but a decrease in  y . 

The removal of injection parameter means reduction of the particles which were 

causing collisions this increases skin friction along x-axis and a decrease in skin 

friction along y-axis. 

 An increase in Hall parameter leads to a decrease in  x  but an increase in  y . 

The skin friction in the y-direction tends to be negative since it is in the opposite 

direction to that of gravitational force. 

 A decrease in rotational parameter Er lead to an increase in both  x  and  y  . 

Due the presence of the Lorentz force and the gravitational force rotating at very 

low speeds, a friction factor is realized and hence an increase in both  x  

and  y . 

 Increase in Magnetic parameter leads to a rise in both  x and  y . The 

application of the externally variable magnetic field reduces the velocity vectors 
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and since velocity is inversely proportional to frictional force and this means that 

both  x and  y increases. 

 Increase in S leads to decrease in both  x  and  y . Basically suction stabilizes 

the hydrodynamic, thermal as well as concentration boundary layers growth. 

Sucking decelerates the fluid particles through the porous wall, consequently this 

leads to decrease in both  x  and  y . 

 

 

Table 2: Skin frictions with cooling Pr=0.71, Gr=5.0 

 

m M2 Ec Er S w 
x  y  

1 24 0.02 0.5 0.4 0.5 3.303558315 0.07671002 

2 24 0.02 0.5 0.4 0.5 3.224548046 0.104524876 

1 96 0.02 0.5 0.4 0.5 3.388281036 0.322132187 

1 24 0.5 0.5 0.4 0.5 3.300116591 0.077290887 

1 24 0.02 0.05 0.4 0.5 3.303796334 0.082941388 

1 24 0.02 0.5 0.7 0.5 3.311764194 0.07528562 

1 24 0.02 0.5 0.4 0 3.223194216 0.121241577 

 

From table 3 (Gr=-5.0) we observe that  

 Removal of injection causes a decrease in rate of heat transfer. Injection causes 

convectional currents on the plate and this reduces the rate of heat transfer. 

 Increase in the Hall parameter lead to a decrease in rate of heat transfer.  The 

magnetic field gives rise to a resistive force and slows down the movement of the 

fluid.  

 A decrease in the Rotational parameter Er leads to a decrease in the rate of heat 

transfer. Rotation has been achieved by a transfer of angular momentum. Once 

this is drastically reduced, the rate at which the particles move and collide is too 

small thus the rate of heat transfer decreases. 
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 An increase in Eckert number Ec leads to a decrease in the heat transfer. Increase 

in Eckert number leads to increase in viscous dissipation and as a consequence, 

the rates of heat transfer decreases. 

 Increase in the Suction parameter leads to a decrease in the rate of heat transfer. 

Since the plate is free convectively heated, increasing suction means decreasing 

molecular diffusivity which results to a decrease of the rate of heat transfer.  

 An increase in Magnetic parameter leads to an increase in the rate of heat 

transfer. The application of the externally variable magnetic field reduces the 

velocity vectors and leads to an increase in the rate of heat transfer in a free 

convectional heating. 

 

Table 3: Rate of heat transfer Nu with heating Pr=0.71, Gr=-5.0 

 

m M2 Ec Er S w Nu 

1 24 0.02 0.5 0.4 0.5 2.661961166 

2 24 0.02 0.5 0.4 0.5 2.659542075 

1 96 0.02 0.5 0.4 0.5 2.674019269 

1 24 0.5 0.5 0.4 0.5 2.48783689 

1 24 0.02 0.05 0.4 0.5 2.661914493 

1 24 0.02 0.5 0.7 0.5 2.661914493 

1 24 0.02 0.5 0.4 0 2.532264669 

 

From Table 4 we observe that with Gr= -5.0  

  Removal of injection or increase in Ec leads to an increase in both  x  

and  y  . The removal of injection parameter means reduction of the particles 

which were causing collisions this increases skin friction along both x-axis 

and y-axis. 
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 An increase in Hall parameter leads to a decrease in  x  but an increase in 

 y . The skin friction in the y-direction tends to be negative since it is in the 

opposite direction to that of gravitational force. 

 A decrease in Rotational parameter Er leads to an increase in both  x  

and  y . Due the presence of the Lorentz force and the gravitational force 

rotating at very low speeds, a friction factor is realized and hence an increase 

in both  x  and  y . 

 Increase in magnetic parameter leads to a rise in  x  but a decrease  y . 

 Hall currents due to the magnetic field give rise to a cross flow making the flow 

 posses a resistive force that increases in the x- axis and decreases in the y-axis. It 

 is observed that the primary effect of the magnetic field is to decelerate the flow. 

 Increase in Suction leads to an increase in  x  but a decrease in  y . 

increasing suction means pumping more fluid to the surface of the plate. This 

means that the convectional currents are increased and as a consequence it 

increases the skin friction along the x-axis and decreases the skin friction along 

the y-axis due the action against the gravitational force. 
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Table 4: Skin frictions with heating Pr=0.71, Gr=-5.0 

 

m M2 Ec Er S w 
x  y  

1 24 0.02 0.5 0.4 0.5 3.324194444 0.071301668 

2 24 0.02 0.5 0.4 0.5 3.249333774 0.099589728 

1 96 0.02 0.5 0.4 0.5 3.393047856 -0.3369896 

1 24 0.5 0.5 0.4 0.5 3.327540829 0.070710633 

1 24 0.02 0.05 0.4 0.5 3.3245373 0.077084675 

1 24 0.02 0.5 0.7 0.5 3.332400323 0.069874435 

1 24 0.02 0.5 0.4 0 3.24851838 0.115209036 
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CHAPTER FOUR 

CONCLUSION AND RECOMMENDATIONS 

4.0 INTRODUCTION 

In this chapter, a conclusion on the results obtained in chapter four is presented and 

further areas of research recommended. 

4.1 CONCLUSIONS 

This study involved MHD free convection flow of a heat generating electrically 

conducting fluid past a semi-infinite vertical porous plate with variable suction. The 

effects of suction, injection, rotation and Hall current in presence of variable magnetic 

filed considering both free convectional heating and cooling were studied. The system 

was set in a rotational motion and a strong variable magnetic field applied transversely. 

One objective of this study was to investigate the effects of various fluid flow 

parameters on the velocity, concentration and temperature profiles. The next objective 

was to study how these parameters affect skin friction, mass transfer and the rate of heat 

transfer. This study came up with the fluid flow model that assisted in modeling the 

equations governing the flow problem. Equations governing the fluid flow that were 

developed are momentum equation, energy equation, concentration equation and 

induction equation. A non-dimensionalization scheme was used to non-dimensionalize 

the governing equations. A finite difference scheme was used to write the equations in 

finite difference form. A computer program was written and run to generate velocity, 

temperature and concentration profiles and presented in graphical form as depicted in 
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chapter four. Skin friction and rate of heat transfer were computed and presented in 

tabular form.  

 

The following conclusions on the effects of each non-dimensional parameter were made; 

Increase of suction parameter: There was no effect on primary velocity profiles, 

temperature profiles in both free convectional heating and cooling of the plate, though 

there was a decrease in; secondary velocity profiles, concentration profiles, rate of heat 

transfer and skin friction along y-axis. Free convectional heating of the plate increased 

skin friction along x-axis. 

Removal of injection: Both free convectional heating and cooling of the plate increased 

primary and secondary velocity profiles, concentration profiles, temperature profiles and 

skin friction along x-axis, but there was a decrease in the rate of heat transfer and skin 

friction along y-axis. 

Increase in Eckert number: In both free convectional heating and cooling of the plate, 

there was an increase in primary and secondary velocity profiles and temperature 

profiles, but a decrease in heat transfer on heating of the plate. In both cases, there was 

no effect on concentration profiles. 

Increase of magnetic parameter: An increase of magnetic parameter free convectional 

heating and cooling of the plate increased secondary velocity profiles, rate of heat 

transfer and skin friction both along x-axis and y-axis, but there was no effect on 

concentration profiles. The free convectional heating of the plate increased primary 
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velocity profiles but decreased primary velocity profiles on free convectional cooling of 

the plate. 

Decrease of rotational parameter: A decrease of rotational parameter in both free 

convectional heating and cooling of the plate increased primary and secondary velocity 

profiles, temperature profiles and both skin friction along x-axis and y-axis, but there 

was no effect on concentration profiles. The rate of heat transfer decreased on 

convectional heating of the plate while it increased on convectional cooling of the plate. 

Increase of hall parameter: Increase of hall parameter both on free convectional 

cooling and heating increased skin friction along y-axis and decreased skin friction 

along x-axis but there was no effect on concentration. It was noted that there was a 

decrease in temperature profiles and the rate of heat transfer in free convectional heating 

on the plate and an increase of primary velocity profiles and temperature profiles in free 

convectional cooling on the plate. 

4.2 RECOMMENDATIONS 

This study considered magnetohydrodynamic free convection of a heat generating fluid 

past a semi-infinite vertical porous plate with variable suction. The study on MHD flow 

for a vertical semi-infinite plate in a dissipative rotating fluid is a wide area of study. 

Most of it was not considered in this thesis and can be investigated in future because of 

its importance in its applications in Engineering.  

Some of the areas that can be researched on in future include: 

1. Fluid flow that is compressible  

2. Fluid flow that is rotational 
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3. Fluid flow past a vertical semi-infinite plate with Hall and Ion-slip current 

4. Fluid flow that is compressible past an infinite vertical porous plate with Hall and 

Ion-slip current 

5. Fluid flow that is compressible and rotational past an semi-infinite vertical porous 

plate with variable suction 

6. Fluid flow that is compressible and rotational past an infinite vertical porous plate 

with variable suction. 
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